Characterisation of miRNA Expression in Dental Pulp Cells during Epigenetically-Driven Reparative Processes
Abstract
:1. Introduction
2. Results
2.1. Growth Rate and Mineralisation in Rodent DPCs
2.2. Small RNA Sequencing and Differential Expression Analysis
2.3. Functional Annotation
2.4. Characterisation of Expression of Selected miRNAs Using qRT-PCR
3. Discussion
4. Materials and Methods
4.1. DPC Isolation and Culture
4.2. Induction of Mineralisation in Experimental Cultures with Addition of Pharmacological Epigenetic Inhibitors
4.3. Cell Growth Curve Analysis
4.4. Alizarin Red S Staining
4.5. miRNA Extraction
4.6. RNA Sequencing
4.7. Identification of Differentially Expressed miRNAs
4.8. Functional Annotation
4.9. Selection of miRNAs for Validation Using qRT-PCR
4.9.1. Target Gene Prediction
4.9.2. Functional Annotation of Individual miRNAs
4.9.3. Orthology Analysis
4.10. Validation of miRNA Expression Using qRT-PCR
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raedel, M.; Hartmann, A.; Bohm, S.; Walter, M.H. Three-year outcomes of root canal treatment: Mining an insurance database. J. Dent. 2015, 43, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Duncan, H.F.; Galler, K.M.; Tomson, P.L.; Simon, S.; El-Karim, I.; Kundzina, R.; Krastl, G.; Dammaschke, T.; Fransson, H.; Markvart, M. European Society of Endodontology position statement: Management of deep caries and the exposed pulp. Int. Endod. J. 2019, 52, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Barthel, C.R.; Rosenkranz, B.; Leuenberg, A.; Roulet, J.-F. Pulp capping of carious exposures: Treatment outcome after 5 and 10 years: A retrospective study. J. Endod. 2000, 26, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, Q.; Rao, L.; Yi, B.; Xu, Q. Effect of 5-Aza-2′-deoxycytidine on odontogenic differentiation of human dental pulp cells. J. Endod. 2015, 41, 640–645. [Google Scholar] [CrossRef]
- Duncan, H.F.; Smith, A.J.; Fleming, G.J.; Cooper, P.R. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells. Exp. Cell Res. 2013, 319, 1534–1543. [Google Scholar] [CrossRef]
- Duncan, H.F.; Smith, A.J.; Fleming, G.J.P.; Partridge, N.C.; Shimizu, E.; Moran, G.P.; Cooper, P.R. The Histone-Deacetylase-Inhibitor Suberoylanilide Hydroxamic Acid Promotes Dental Pulp Repair Mechanisms Through Modulation of Matrix Metalloproteinase-13 Activity. J. Cell. Physiol. 2016, 231, 798–816. [Google Scholar] [CrossRef]
- Jin, H.; Park, J.-Y.; Choi, H.; Choung, P.-H. HDAC Inhibitor Trichostatin A Promotes Proliferation and Odontoblast Differentiation of Human Dental Pulp Stem Cells. Tissue Eng. Part A 2013, 19, 613–624. [Google Scholar] [CrossRef]
- Paino, F.; Noce, M.; Tirino, V.; Naddeo, P.; Desiderio, V.; Pirozzi, G.; Rosa, A.; Laino, L.; Altucci, L.; Papaccio, G. Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: Evidence for HDAC2 involvement. Stem Cells 2014, 32, 279–289. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, X. MicroRNA-20a elevates osteogenic/odontoblastic differentiation potential of dental pulp stem cells by nuclear factor-κB/p65 signaling pathway via targeting interleukin-8. Arch. Oral Biol. 2022, 138, 105414. [Google Scholar] [CrossRef]
- Heair, H.M.; Kemper, A.G.; Roy, B.; Lopes, H.B.; Rashid, H.; Clarke, J.C.; Afreen, L.K.; Ferraz, E.P.; Kim, E.; Javed, A.; et al. MicroRNA 665 Regulates Dentinogenesis through MicroRNA-Mediated Silencing and Epigenetic Mechanisms. Mol. Cell. Biol. 2015, 35, 3116–3130. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, H.; Lin, H.; Yuan, G.; Zhang, L.; Chen, Z. MicroRNA-338-3p promotes differentiation of mDPC6T into odontoblast-like cells by targeting Runx2. Mol. Cell. Biochem. 2013, 377, 143–149. [Google Scholar] [CrossRef]
- Yao, Q.; Chen, Y.; Zhou, X. The roles of microRNAs in epigenetic regulation. Curr. Opin. Chem. Biol. 2019, 51, 11–17. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, R.; Jiang, H.; Lin, Z.; Ling, J. Alteration of MicroRNA expression of human dental pulp cells during odontogenic differentiation. J. Endod. 2012, 38, 1348–1354. [Google Scholar] [CrossRef]
- Babb, R.; Chandrasekaran, D.; Neves, V.C.M.; Sharpe, P.T. Axin2-expressing cells differentiate into reparative odontoblasts via autocrine Wnt/β-catenin signaling in response to tooth damage. Sci. Rep. 2017, 7, 3102. [Google Scholar] [CrossRef]
- Zhao, X.; He, W.; Song, Z.; Tong, Z.; Li, S.; Ni, L. Mineral trioxide aggregate promotes odontoblastic differentiation via mitogen-activated protein kinase pathway in human dental pulp stem cells. Mol. Biol. Rep. 2011, 39, 215–220. [Google Scholar] [CrossRef]
- Song, M.-S.; Rossi, J.J. Molecular mechanisms of Dicer: Endonuclease and enzymatic activity. Biochem. J. 2017, 474, 1603–1618. [Google Scholar] [CrossRef]
- Zhen, L.; Guo, W.; Peng, M.; Liu, Y.; Zang, S.; Ji, H.; Li, S.; Yang, H. Identification of cold-responsive miRNAs in rats by deep sequencing. J. Therm. Biol. 2017, 66, 114–124. [Google Scholar] [CrossRef]
- Chan, P.P.; Lowe, T.M. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. In Gene Prediction; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2019; Volume 1962, pp. 1–14. [Google Scholar] [CrossRef]
- Howe, K.L.; Achuthan, P.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; et al. Ensembl 2021. Nucleic Acids Res. 2021, 49, D884–D891. [Google Scholar] [CrossRef]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef]
- Storey, J.D.; Taylor, J.E.; Siegmund, D. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 2003, 66, 187–205. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Nemoto, E. Role of the Wnt signaling molecules in the tooth. Jpn. Dent. Sci. Rev. 2016, 52, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Liu, J.; Li, X.; Xiao, G.; Wang, H.; Yang, G.; Li, Y.; Tang, S.-C.; Qin, S.; Du, N.; et al. MYC and DNMT3A-mediated DNA methylation represses microRNA-200b in triple negative breast cancer. J. Cell. Mol. Med. 2018, 22, 6262–6274. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Park, S.J.; Jung, S.-H.; Kim, E.J.; Jogeswar, G.; Ajita, J.; Rhee, Y.; Kim, C.-H.; Lim, S.-K. miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1. J. Bone Miner. Res. 2012, 27, 1669–1679. [Google Scholar] [CrossRef]
- Pan, B.-L.; Tong, Z.-W.; Li, S.-D.; Wu, L.; Liao, J.-L.; Yang, Y.-X.; Li, H.-H.; Dai, Y.-J.; Li, J.-E.; Pan, L. Decreased microRNA-182-5p helps alendronate promote osteoblast proliferation and differentiation in osteoporosis via the Rap1/MAPK pathway. Biosci. Rep. 2018, 38, BSR20180696. [Google Scholar] [CrossRef]
- Inoue, K.; Deng, Z.; Chen, Y.; Giannopoulou, E.; Xu, R.; Gong, S.; Greenblatt, M.B.; Mangala, L.S.; Lopez-Berestein, G.; Kirsch, D.G.; et al. Bone protection by inhibition of microRNA-182. Nat. Commun. 2018, 9, 4108. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, R.-L.; Croce, C.M.; Stein, J.L.; Lian, J.B.; van Wijnen, A.J.; Stein, G.S. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc. Natl. Acad. Sci. USA 2011, 108, 9863–9868. [Google Scholar] [CrossRef]
- Hu, N.; Feng, C.; Jiang, Y.; Miao, Q.; Liu, H. Regulative Effect of Mir-205 on Osteogenic Differentiation of Bone Mesenchymal Stem Cells (BMSCs): Possible Role of SATB2/Runx2 and ERK/MAPK Pathway. Int. J. Mol. Sci. 2015, 16, 10491–10506. [Google Scholar] [CrossRef]
- Chuang, J.C.; Jones, P.A. Epigenetics and MicroRNAs. Pediatr. Res. 2007, 61, 24R–29R. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, K.; Qiu, W.; Luo, Y.; Pan, Y.; Li, J.; Yang, Y.; Wu, B.; Fang, F. Genome-wide identification of long noncoding RNAs and their competing endogenous RNA networks involved in the odontogenic differentiation of human dental pulp stem cells. Stem Cell Res. Ther. 2020, 11, 114. [Google Scholar] [CrossRef]
- Benesova, S.; Kubista, M.; Valihrach, L. Small RNA-Sequencing: Approaches and Considerations for miRNA Analysis. Diagnostics 2021, 11, 964. [Google Scholar] [CrossRef]
- Potla, P.; Ali, S.A.; Kapoor, M. A bioinformatics approach to microRNA-sequencing analysis. Osteoarthr. Cartil. Open 2020, 3, 100131. [Google Scholar] [CrossRef]
- Bourassa, M.W.; Ratan, R.R. The interplay between microRNAs and histone deacetylases in neurological diseases. Neurochem. Int. 2014, 77, 33–39. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, L.; Xing, L.; Chen, D. MicroRNA-204 regulates runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 2009, 28, 357–364. [Google Scholar] [CrossRef]
- Gregory, P.A.; Bert, A.G.; Paterson, E.L.; Barry, S.C.; Tsykin, A.; Farshid, G.; Vadas, M.A.; Khew-Goodall, Y.; Goodall, G.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 2008, 10, 593–601. [Google Scholar] [CrossRef]
- Ke, X.-S.; Qu, Y.; Rostad, K.; Li, W.-C.; Lin, B.; Halvorsen, O.J.; Haukaas, S.A.; Jonassen, I.; Petersen, K.; Goldfinger, N.; et al. Genome-Wide Profiling of Histone H3 Lysine 4 and Lysine 27 Trimethylation Reveals an Epigenetic Signature in Prostate Carcinogenesis. PLoS ONE 2009, 4, e4687. [Google Scholar] [CrossRef]
- Wiklund, E.D.; Bramsen, J.B.; Hulf, T.; Dyrskjøt, L.; Ramanathan, R.; Hansen, T.B.; Villadsen, S.B.; Gao, S.; Ostenfeld, M.S.; Borre, M.; et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int. J. Cancer 2011, 128, 1327–1334. [Google Scholar] [CrossRef]
- Collins-Burow, B.M.; Rhodes, L.V.; Nitschke, A.M.; Segar, H.C.; Martin, E.C.; Driver, J.L.; Elliott, S.; Nam, S.Y.; Li, M.; Nephew, K.P.; et al. The histone deacetylase inhibitor trichostatin A alters microRNA expression profiles in apoptosis-resistant breast cancer cells. Oncol. Rep. 2011, 27, 10–16. [Google Scholar] [CrossRef]
- Isozaki, Y.; Hoshino, I.; Nohata, N.; Kinoshita, T.; Akutsu, Y.; Hanari, N.; Mori, M.; Yoneyama, Y.; Akanuma, N.; Takeshita, N.; et al. Identification of novel molecular targets regulated by tumor suppressive miR-375 induced by histone acetylation in esophageal squamous cell carcinoma. Int. J. Oncol. 2012, 41, 985–994. [Google Scholar] [CrossRef]
- Lai, T.-H.; Ewald, B.; Zecevic, A.; Liu, C.; Sulda, M.; Papaioannou, D.; Garzon, R.; Blachly, J.S.; Plunkett, W.; Sampath, D. HDAC Inhibition Induces MicroRNA-182, which Targets RAD51 and Impairs HR Repair to Sensitize Cells to Sapacitabine in Acute Myelogenous Leukemia. Clin. Cancer Res. 2016, 22, 3537–3549. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.O.; Chung, I.H.; Xu, X.; Oka, S.; Zhao, H.; Cho, E.S.; Deng, C.; Chai, Y. Smad4 is required to regulate the fate of cranial neural crest cells. Dev. Biol. 2007, 312, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Pezelj-Ribaric, S.; Anic, I.; Brekalo, I.; Miletic, I.; Hasan, M.; Simunovic-Soskic, M. Detection of Tumor Necrosis Factor α in Normal and Inflamed Human Dental Pulps. Arch. Med. Res. 2002, 33, 482–484. [Google Scholar] [CrossRef] [PubMed]
- Paula-Silva, F.; Ghosh, A.; Silva, L.; Kapila, Y. TNF-α Promotes an odontoblastic phenotype in dental pulp cells. J. Dent. Res. 2009, 88, 339–344. [Google Scholar] [CrossRef]
- Simon, S.; Smith, A.J.; Berdal, A.; Lumley, P.J.; Cooper, P.R. The MAP Kinase Pathway Is Involved in Odontoblast Stimulation via p38 Phosphorylation. J. Endod. 2010, 36, 256–259. [Google Scholar] [CrossRef]
- Scott, G.K.; Mattie, M.D.; Berger, C.E.; Benz, S.C.; Benz, C.C. Rapid alteration of MicroRNA levels by histone deacetylase inhibition. Cancer Res. 2006, 66, 1277–1281. [Google Scholar] [CrossRef]
- Wang, H.; Cui, W.; Meng, C.; Zhang, J.; Li, Y.; Qian, Y.; Xing, G.; Zhao, D.; Cao, S. MC1568 Enhances Histone Acetylation during Oocyte Meiosis and Improves Development of Somatic Cell Nuclear Transfer Embryos in Pig. Cell. Reprogram. 2018, 20, 55–65. [Google Scholar] [CrossRef]
- Bender, C.M.; Gonzalgo, M.L.; Gonzales, F.A.; Nguyen, C.T.; Robertson, K.D.; Jones, P.A. Roles of Cell Division and Gene Transcription in the Methylation of CpG Islands. Mol. Cell. Biol. 1999, 19, 6690–6698. [Google Scholar] [CrossRef]
- Patel, M.; Smith, A.J.; Sloan, A.; Smith, G.; Cooper, P.R. Phenotype and behaviour of dental pulp cells during expansion culture. Arch. Oral Biol. 2009, 54, 898–908. [Google Scholar] [CrossRef]
- Lee, O.K.; Kuo, T.K.; Chen, W.-M.; Lee, K.-D.; Hsieh, S.-L.; Chen, T.-H. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004, 103, 1669–1675. [Google Scholar] [CrossRef]
- Gregory, C.A.; Gunn, W.G.; Peister, A.; Prockop, D.J. An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Anal. Biochem. 2004, 329, 77–84. [Google Scholar] [CrossRef]
- Karolchik, D.; Barber, G.P.; Casper, J.; Clawson, H.; Cline, M.S.; Diekhans, M.; Dreszer, T.R.; Fujita, P.A.; Guruvadoo, L.; Haeussler, M.; et al. The UCSC Genome Browser database: 2014 update. Nucleic Acids Res. 2013, 42, D764–D770. [Google Scholar] [CrossRef]
- Vlachos, I.S.; Zagganas, K.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 2015, 43, W460–W466. [Google Scholar] [CrossRef]
- Agarwal, V.; Bell, G.W.; Nam, J.-W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2019, 48, D127–D131. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019, 20, 18. [Google Scholar] [CrossRef]
- Paraskevopoulou, M.D.; Georgakilas, G.; Kostoulas, N.; Vlachos, I.S.; Vergoulis, T.; Reczko, M.; Filippidis, C.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-microT web server v5.0: Service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013, 41, W169–W173. [Google Scholar] [CrossRef]
- D’aurizio, R.; Russo, F.; Chiavacci, E.; Baumgart, M.; Groth, M.; D’onofrio, M.; Arisi, I.; Rainaldi, G.; Pitto, L.; Pellegrini, M. Discovering miRNA regulatory networks in holt–oram syndrome using a zebrafish model. Front. Bioeng. Biotechnol. 2016, 4, 60. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Tian, L.; Wang, F.; Han, L.; Zhang, W.; Bai, Y.-A. miR-15b Inhibits the Progression of Glioblastoma Cells through Targeting Insulin-like Growth Factor Receptor 1. Horm. Cancer 2016, 8, 49–57. [Google Scholar] [CrossRef]
- Yue, J.; Wu, B.; Gao, J.; Huang, X.; Li, C.; Ma, D.; Fang, F. DMP1 is a target of let-7 in dental pulp cells. Int. J. Mol. Med. 2012, 30, 295–301. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [PubMed]
Experimental Group | Upregulated | Downregulated | Total |
---|---|---|---|
Compared to NInd | |||
Ind | 0 | 0 | 0 |
Ind+S | 15 | 11 | 26 |
Ind+A | 29 | 1 | 30 |
Compared to Ind | |||
Ind+S | 62 | 33 | 95 |
Ind+A | 23 | 1 | 24 |
Experimental Group | No. of DEmiRNAs | No. of Target Genes | Selected Target Genes of Interest |
---|---|---|---|
Compared to NInd | |||
Ind+S | 26 | 150 | Wnt2b, Map2k1 |
Ind+A | 30 | 468 | Alpl, Tgif2, Dkk1, Mmp13, Smad1, Wnt10b |
Compared to Ind | |||
Ind+S | 95 | 425 | Sfrp4, Wnt2b, Map3k8, Smad7, Sox4, Tgif1 |
Ind+A | 24 | 345 | Dkk1, Mapkapk2, Smad1, Tgif2, Wisp3, Calb1 |
Experimental Group | GO Term | GO ID | No. of Genes |
---|---|---|---|
Compared to NInd | |||
Ind+S | Regulation of stress-activated MAPK cascade | GO:0032872 | 5 |
Ind+A | Ossification | GO:0001503 | 26 |
Osteoblast differentiation | GO:0001649 | 16 | |
Biomineral tissue development | GO:0031214 | 12 | |
Tooth mineralisation | GO:0034505 | 5 | |
Compared to Ind | |||
Ind+S | Regulation of MAPK cascade | GO:0043408 | 22 |
Stem cell proliferation | GO:0072089 | 6 | |
Ind+A | Osteoblast differentiation | GO:0001649 | 8 |
Bone mineralisation | GO:0030282 | 5 | |
MAPK cascade | GO:0000165 | 18 |
Experimental Group | KEGG Pathway | KEGG ID | No. of Genes |
---|---|---|---|
Compared to NInd | |||
Ind+S | TGF-β signalling pathway | rno04350 | 21 |
Wnt signalling pathway | rno04310 | 32 | |
Ind+A | TGF-β signalling pathway | rno04350 | 17 |
MAPK signalling pathway | rno04010 | 52 | |
Compared to Ind | |||
Ind+S | MAPK signalling pathway | rno04010 | 95 |
Wnt signalling pathway | rno04310 | 57 | |
TGF-β signalling pathway | rno04350 | 36 | |
Ind+A | TGF-β signalling pathway | rno04350 | 17 |
MAPK signalling pathway | rno04010 | 40 |
miRNA | Experimental Group (Compared to Ind) | Fold Change (RNAseq) | Fold Change (qRT-PCR) |
---|---|---|---|
miR-346 | Ind+S | 9.03 | 3.65 |
miR-881-3p | Ind+A | 273.97 | 125.31 |
Group | Medium |
---|---|
Non-Induced (NInd) | Normal medium |
Induced (Ind) | Mineralising medium |
Induced + SAHA (Ind+S) | Mineralising medium + 1 µM SAHA |
Induced + 5-AZA-CdR (Ind+A) | Mineralising medium + 1 µM 5-AZA-CdR |
miRNA | Product Name | GeneGlobe ID | Primer Sequence (5′–3′) |
---|---|---|---|
miR-182 | mmu-miR-182-5p miRCURY LNA miRNA PCR Assay | (YP0020508) | UUUGGCAAUGGUAGAACUCACACCG |
miR-200b-3p | rno-miR-200b-3p miRCURY LNA miRNA PCR Assay | (YP00205111) | UAAUACUGCCUGGUAAUGAUGAC |
miR-205 | rno-miR-205-5p miRCURY LNA miRNA PCR Assay | (YP00205958) | UCCUUCAUUCCACCGGAGUCUGU |
miR-221-5p | rno-miR-221-5p miRCURY LNA miRNA PCR Assay | (YP02116701) | ACCUGGCAUACAAUGUAGAUUUC |
miR-346 | rno-miR-346 miRCURY LNA miRNA PCR Assay | (YP00205130) | UGUCUGCCUGAGUGCCUGCCUCU |
miR-881-3p | rno-miR-881-3p miRCURY LNA miRNA PCR Assay | (YP00205578) | UAACUGUGGCAUUUCUGAAUAG |
U6 | U6 snRNA miRCURY LNA miRNA PCR Assay | (YP00203907) | GUGCUCGCUUCGGCAGCACAUAUACUAAAAUUGGAACGAUACAGAGAAGAUUAGCAUGGCCCCUGCGCAAGGAUGACACGCAAAUUCGUGAAGCGUUCCAUAUUUUU |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kearney, M.; Cooper, P.R.; Smith, A.J.; Duncan, H.F. Characterisation of miRNA Expression in Dental Pulp Cells during Epigenetically-Driven Reparative Processes. Int. J. Mol. Sci. 2023, 24, 8631. https://doi.org/10.3390/ijms24108631
Kearney M, Cooper PR, Smith AJ, Duncan HF. Characterisation of miRNA Expression in Dental Pulp Cells during Epigenetically-Driven Reparative Processes. International Journal of Molecular Sciences. 2023; 24(10):8631. https://doi.org/10.3390/ijms24108631
Chicago/Turabian StyleKearney, Michaela, Paul R. Cooper, Anthony J. Smith, and Henry F. Duncan. 2023. "Characterisation of miRNA Expression in Dental Pulp Cells during Epigenetically-Driven Reparative Processes" International Journal of Molecular Sciences 24, no. 10: 8631. https://doi.org/10.3390/ijms24108631
APA StyleKearney, M., Cooper, P. R., Smith, A. J., & Duncan, H. F. (2023). Characterisation of miRNA Expression in Dental Pulp Cells during Epigenetically-Driven Reparative Processes. International Journal of Molecular Sciences, 24(10), 8631. https://doi.org/10.3390/ijms24108631