Overexpression of microRNA-21-5p and microRNA-221-5p in Monocytes Increases the Risk of Developing Coronary Artery Disease
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Population
2.2. miR Expression in Monocytes
2.3. NOS3 Expression in Monocytes
2.4. Association of Clinical Parameters and miR/NOS3 Expression with the Risk of Developing CAD
2.5. miR/NOS3 Expression with the Use of Drugs
3. Discussion
4. Materials and Methods
4.1. Research Population
4.2. Blood and Plasma Samples
4.3. Laboratory Analysis
4.4. Monocyte Isolation
4.5. RNA Extraction
4.6. miR Quantitative Real-Time
4.7. mRNA Quantitative Real-Time PCR
4.8. Statistical Analysis
4.9. Sample Size
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanson, M.A.; Fareed, M.T.; Argenio, S.L.; Agunwamba, A.O.; Hanson, T.R. Coronary Artery Disease. Prim. Care 2013, 40, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Camaré, C.; Pucelle, M.; Nègre-Salvayre, A.; Salvayre, R. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017, 12, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of Plaque Formation and Rupture. Circ. Res. 2014, 114, 1852–1866. [Google Scholar] [CrossRef] [PubMed]
- Cyr, A.R.; Huckaby, L.V.; Shiva, S.S.; Zuckerbraun, B.S. Nitric Oxide and Endothelial Dysfunction. Crit. Care Clin. 2020, 36, 307–321. [Google Scholar] [CrossRef]
- Abdo, A.I.; Rayner, B.S.; van Reyk, D.M.; Hawkins, C.L. Low-density lipoprotein modified by myeloperoxidase oxidants induces endothelial dysfunction. Redox Biol. 2017, 13, 623–632. [Google Scholar] [CrossRef]
- Pou, J.; Rebollo, A.; Alegret, M. El monocito/macrófago como diana terapéutica en la aterosclerosis. Clin. Investig. Arterioscl. 2007, 19, 92–108. [Google Scholar] [CrossRef]
- Oliveira-Paula, G.H.; Lacchini, R.; Tanus-Santos, J.E. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene 2016, 575, 584–599. [Google Scholar] [CrossRef]
- Alp, N.J.; Channon, K.M. Regulation of Endothelial Nitric Oxide Synthase by Tetrahydrobiopterin in Vascular Disease. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 413–420. [Google Scholar] [CrossRef]
- Bhaskaran, M.; Mohan, M. MicroRNAs: History, biogenesis, and their evolving role in animal development and disease. Vet. Pathol. 2014, 51, 759–774. [Google Scholar] [CrossRef]
- Ono, K.; Horie, T.; Nishino, T.; Baba, O.; Kuwabara, Y.; Kimura, T. MicroRNAs and High-Density Lipoprotein Cholesterol Metabolism. Int. Heart J. 2015, 56, 365–371. [Google Scholar] [CrossRef]
- Pirola, C.J.; Fernandez Gianotti, T.; Castano, G.O.; Mallardi, P.; San Martino, J.; Mora Gonzalez Lopez Ledesma, M.; Flichman, D.; Mirshahi, F.; Sanyal, A.J.; Sookoian, S. Circulating microRNA signature in non-alcoholic fatty liver disease: From serum non-coding RNAs to liver histology and disease pathogenesis. Gut 2015, 64, 800–812. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhang, C. MicroRNA-21 in Cardiovascular Disease. J. Cardiovasc. Transl. Res. 2010, 3, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D.A.; Sobenin, I.A.; Orekhov, A.N.; Bobryshev, Y.V. Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling. BioMed. Res. Int. 2015, 2015, 354517. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Ziegler, O.; Yeri, A.; Liu, X.; Murthy, V.; Rabideau, D.; Xiao, C.Y.; Hanspers, K.; Belcher, A.; Tackett, M.; et al. MicroRNAs Associated With Reverse Left Ventricular Remodeling in Humans Identify Pathways of Heart Failure Progression. Circ. Heart Fail. 2018, 11, e004278. [Google Scholar] [CrossRef]
- He, X.-M.; Zheng, Y.-Q.; Liu, S.-Z.; Liu, Y.; He, Y.-Z.; Zhou, X.-Y. Altered Plasma MicroRNAs as Novel Biomarkers for Arteriosclerosis Obliterans. J. Atheroscler. Thromb. 2016, 23, 196–206. [Google Scholar] [CrossRef]
- Landgraf, P.; Rusu, M.; Sheridan, R.; Sewer, A.; Iovino, N.; Aravin, A.; Pfeffer, S.; Rice, A.; Kamphorst, A.O.; Landthaler, M.; et al. A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing. Cell 2007, 129, 1401–1414. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Baker, M.B.; Moore, J.P.; Searles, C.D. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem. Biophys. Res. Commun. 2010, 393, 643–648. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, K.C.; Wu, W.; Subramaniam, S.; Shyy, J.Y.; Chiu, J.J.; Li, J.Y.; Chien, S. MicroRNA-21 targets peroxisome proliferators-activated receptor-α in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc. Natl. Acad. Sci. USA 2011, 108, 10355–10360. [Google Scholar] [CrossRef]
- Zhu, G.-F.; Yang, L.-X.; Guo, R.-W.; Liu, H.; Shi, Y.-K.; Ye, J.-S.; Yang, Z.-H. microRNA-155 is inversely associated with severity of coronary stenotic lesions calculated by the Gensini score. Coron. Artery Dis. 2014, 25, 304–310. [Google Scholar] [CrossRef]
- Mahesh, G.; Biswas, R. MicroRNA-155: A Master Regulator of Inflammation. J. Interf. Cytokine Res. 2019, 39, 321–330. [Google Scholar] [CrossRef]
- Donners, M.M.P.C.; Wolfs, I.M.J.; Stöger, L.J.; Van Der Vorst, E.P.C.; Pöttgens, C.C.H.; Heymans, S.; Schroen, B.; Gijbels, M.J.J.; de Winther, M. Hematopoietic miR155 Deficiency Enhances Atherosclerosis and Decreases Plaque Stability in Hyperlipidemic Mice. PLoS ONE 2012, 7, e35877. [Google Scholar] [CrossRef] [PubMed]
- Zawada, A.M.; Zhang, L.; Emrich, I.E.; Rogacev, K.S.; Krezdorn, N.; Rotter, B.; Fliser, D.; Devaux, Y.; Ziegler-Heitbrock, L.; Heine, G.H. MicroRNA profiling of human intermediate monocytes. Immunobiology 2017, 222, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.-M.; Wong, W.-C.; Ong, S.-M.; Li, P.; Lum, J.; Chen, J.; Poidinger, M.; Zolezzi, F.; Wong, S.-C. MicroRNA expression profiling of human blood monocyte subsets highlights functional differences. Immunology 2015, 145, 404–416. [Google Scholar] [CrossRef]
- Cengiz, M.; Yavuzer, S.; Avcı, B.K.; Yürüyen, M.; Yavuzer, H.; Dikici, S.A.; Karataş, F.; Özen, M.; Uzun, H.; Öngen, Z. Circulating miR-21 and eNOS in subclinical atherosclerosis in patients with hypertension. Clin. Exp. Hypertens. 2015, 37, 643–649. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Chen, S.; Liu, X.; Lin, L.; Huang, X.; Guo, Z.; Liu, J.; Wang, Y.; Yuan, W.; et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis 2011, 215, 286–293. [Google Scholar] [CrossRef]
- Kumar, A.; Fausto, A. Robbins & Cotran. In Pathologic Basis of Disease, 10th ed.; Elsevier España, S.L.U.: Barcelona, Spain, 2020; ISBN 9780323531139. [Google Scholar]
- Sanlialp, M.; Dodurga, Y.; Uludag, B.; Alihanoglu, Y.I.; Enli, Y.; Secme, M.; Bostanci, H.E.; Sanlialp, S.C.; Tok, O.O.; Kaftan, A.; et al. Peripheral blood mononuclear cell microRNAs in coronary artery disease. J. Cell Biochem. 2020, 121, 3005–3009. [Google Scholar] [CrossRef]
- Chen, Z.; Song, S.; Zhu, J.; Lai, X. Regulatory mechanism of MiR-21 in formation and rupture of intracranial aneurysm through JNK signaling pathway-mediated inflammatory response. Int. J. Clin. Exp. Pathol. 2020, 13, 1834–1841. [Google Scholar]
- Lv, X.; Liang, J.; Wang, Z. MiR-21-5p reduces apoptosis and inflammation in rats with spinal cord injury through PI3K/AKT pathway. Panminerva Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Tang, L.-N.; Li, G.-Z.; Xu, Z.-L.; Xu, Q.-H.; Wang, M.; Li, L. Effects of MiR-21 on the proliferation and migration of vascular smooth muscle cells in rats with atherosclerosis via the Akt/ERK signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 2216–2222. [Google Scholar] [CrossRef]
- Talepoor, A.G.; Kalani, M.; Dahaghani, A.S.; Doroudchi, M. Hydrogen Peroxide and Lipopolysaccharide Differentially Affect the Expression of MicroRNAs 10a, 33a, 21, 221 in Endothelial Cells Before and After Coculture With Monocytes. Int. J. Toxicol. 2017, 36, 133–141. [Google Scholar] [CrossRef]
- Minami, Y.; Satoh, M.; Maesawa, C.; Takahashi, Y.; Tabuchi, T.; Itoh, T.; Nakamura, M. Effect of atorvastatin on microRNA 221/222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. Eur. J. Clin. Investig. 2009, 39, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Kandic, I.; Kutryk, M.J. Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease. Biochem. Biophys. Res. Commun. 2011, 405, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Liau, N.P.D.; Laktyushin, A.; Lucet, I.S.; Murphy, J.M.; Yao, S.; Whitlock, E.; Callaghan, K.; Nicola, N.A.; Kershaw, N.J.; Babon, J.J. The molecular basis of JAK/STAT inhibition by SOCS1. Nat. Commun. 2018, 9, 1558. [Google Scholar] [CrossRef]
- Demirsoy, I.H.; Ertural, D.Y.; Balci, Ş.; Çınkır, Ü.; Sezer, K.; Tamer, L.; Aras, N. Profiles of Circulating miRNAs Following Metformin Treatment in Patients with Type 2 Diabetes. J. Med. Biochem. 2018, 37, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Coleman, C.B.; Lightell, D.J., Jr.; Moss, S.C.; Bates, M.; Parrino, P.E.; Woods, T.C. Elevation of miR-221 and -222 in the internal mammary arteries of diabetic subjects and normalization with metformin. Mol. Cell Endocrinol. 2013, 374, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Lin, F.; Wan, Q.; Wu, J.; Luo, M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol. Res. 2021, 164, 105390. [Google Scholar] [CrossRef]
- Bu, Y.; Peng, M.; Tang, X.; Xu, X.; Wu, Y.; Chen, A.F.; Yang, X. Protective effects of metformin in various cardiovascular diseases: Clinical evidence and AMPK -dependent mechanisms. J. Cell Mol. Med. 2022, 26, 4886–4903. [Google Scholar] [CrossRef] [PubMed]
- Pulito, C.; Mori, F.; Sacconi, A.; Goeman, F.; Ferraiuolo, M.; Pasanisi, P.; Campagnoli, C.; Berrino, F.; Fanciulli, M.; Ford, R.J.; et al. Metformin-induced ablation of microRNA 21-5p releases Sestrin-1 and CAB39L antitumoral activities. Cell Discov. 2017, 3, 17022. [Google Scholar] [CrossRef]
- McCoy, C.E.; Sheedy, F.J.; Qualls, J.E.; Doyle, S.L.; Quinn, S.R.; Murray, P.J.; O’Neill, L.A. IL-10 Inhibits miR-155 Induction by Toll-like Receptors. J. Biol. Chem. 2010, 285, 20492–20498. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, T.; Yang, L.; Li, Z.; Wong, M.M.; Zheng, X.; Pan, X.; Zhang, L.; Yan, H. Regulation of MicroRNA-155 in Atherosclerotic Inflammatory Responses by Targeting MAP3K10. PLoS ONE 2012, 7, e46551. [Google Scholar] [CrossRef]
- Sun, H.-X.; Zeng, D.-Y.; Li, R.-T.; Pang, R.-P.; Yang, H.; Hu, Y.-L.; Zhang, Q.; Jiang, Y.; Huang, L.-Y.; Tang, Y.-B.; et al. Essential Role of MicroRNA-155 in Regulating Endothelium-Dependent Vasorelaxation by Targeting Endothelial Nitric Oxide Synthase. Hypertension 2012, 60, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Alimoradi, N.; Firouzabadi, N.; Fatehi, R. Metformin and insulin-resistant related diseases: Emphasis on the role of microRNAs. Biomed. Pharmacother. 2021, 139, 111662. [Google Scholar] [CrossRef]
- Feinberg, M.W.; Moore, K.J. MicroRNA Regulation of Atherosclerosis. Circ. Res. 2016, 118, 703–720. [Google Scholar] [CrossRef] [PubMed]
- Verjans, R.; Peters, T.; Beaumont, F.J.; van Leeuwen, R.; van Herwaarden, T.; Verhesen, W.; Munts, C.; Bijnen, M.; Henkens, M.; Diez, J.; et al. MicroRNA-221/222 Family Counteracts Myocardial Fibrosis in Pressure Overload–Induced Heart Failure. Hypertension 2018, 71, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Elton, T.S.; Selemon, H.; Elton, S.M.; Parinandi, N.L. Regulation of the MIR155 host gene in physiological and pathological processes. Gene 2013, 532, 2189–2196. [Google Scholar] [CrossRef]
- Perry, M.M.; Moschos, S.A.; Williams, A.E.; Shepherd, N.J.; Larner-Svensson, H.M.; Lindsay, M.A. Rapid Changes in MicroRNA-146a Expression Negatively Regulate the IL-1β-Induced Inflammatory Response in Human Lung Alveolar Epithelial Cells. J. Immunol. 2008, 180, 5689–5698. [Google Scholar] [CrossRef] [PubMed]
- Kuhlencordt, P.J.; Gyurko, R.; Han, F.; Scherrer-Crosbie, M.; Aretz, T.H.; Hajjar, R.; Picard, M.; Huang, P.L. Accelerated Atherosclerosis, Aortic Aneurysm Formation, and Ischemic Heart Disease in Apolipoprotein E/Endothelial Nitric Oxide Synthase Double-Knockout Mice. Circulation 2001, 104, 448–454. [Google Scholar] [CrossRef]
- Kalinowski, L.; Janaszak-Jasiecka, A.; Siekierzycka, A.; Bartoszewska, S.; Woźniak, M.; Lejnowski, D.; Collawn, J.F.; Bartoszewski, R. Posttranscriptional and transcriptional regulation of endothelial nitric-oxide synthase during hypoxia: The role of microRNAs. Cell Mol. Biol. Lett. 2016, 21, 16. [Google Scholar] [CrossRef]
- Chen, C.-F.; Huang, J.; Li, H.; Zhang, C.; Huang, X.; Tong, G.; Xu, Y.-Z. MicroRNA-221 regulates endothelial nitric oxide production and inflammatory response by targeting adiponectin receptor 1. Gene 2015, 565, 246–251. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- DeLong, D.M.; DeLong, E.R.; Wood, P.D.; Lippel, K.; Rifkind, B.M. A Comparison of Methods for the Estimation of Plasma Low- and Very Low-Density Lipoprotein Cholesterol. JAMA 1986, 256, 2372–2377. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Variable | Controls (n = 50) | CAD (n = 60) | p |
---|---|---|---|
Age (years) | 48.67 ± 6.47 | 62.10 ± 11.75 | <0.001 |
Gender % M/W | 60.7%/39.3% | 85.3%/14.7% | 0.001 |
BMI (kg/m2) | 27.75 ± 3.78 | 26.42 ± 3.90 | 0.849 |
Total cholesterol (mg/dL) | 171.06 ± 24.47 | 138.26 ± 49.98 | <0.001 |
HDL-C (mg/dL) | 45.80 ± 14.75 | 30.98 ± 7.90 | <0.001 |
LDL-C (mg/dL) | 102.86 ± 23.17 | 90.61 ± 49.70 | 0.066 |
Triglycerides (mg/dL) | 131.48 ± 49.86 | 141.94 ± 62.30 | 0.302 |
Statins % | 0% | 72.0% | <0.001 |
Glucose (mg/dL) | 93.76 ± 7.82 | 120.34 ± 48.78 | <0.001 |
Diabetes % | 0% | 43.0% | <0.001 |
Hypoglycemic agents % | 0% | 20.0% | <0.001 |
SBP (mmHg) | 112.43 ± 9.12 | 127.33 ± 18.81 | <0.001 |
DBP (mmHg) | 70.43 ± 6.01 | 79.60 ± 12.03 | <0.001 |
Hypertension % | 0% | 55.0% | <0.001 |
CF (pulsations/min) | 65.44 ± 9.81 | 79.44 ± 13.10 | <0.001 |
Antihypertensive % | 0% | 62.0% | <0.001 |
Smoking % | 9.5% | 17.1% | 0.381 |
Alcoholism % | 0% | 2.6% | <0.001 |
χ2 | OR | CI 95% | p | |
---|---|---|---|---|
Age | 6.177 | 1.088 | 1.018–1.163 | 0.013 |
HDL-C | 8.863 | 0.848 | 0.761–0.945 | 0.003 |
SBP | 5.951 | 1.071 | 1.014–1.133 | 0.015 |
miR-21-5p | 8.411 | 8.373 | 1.992–35.206 | 0.004 |
miR-221-5p | 6.839 | 6.447 | 1.595–26.061 | 0.009 |
NOS3 | 23.647 | 19.61 | 5.920–66.670 | <0.001 |
Control | CAD Unmedicated Group with Metformin | p1 | CAD Medicated Group with Metformin | p2 | p3 | |
---|---|---|---|---|---|---|
n = 50 | n = 48 | n = 12 | ||||
NOS3 | 108.44 (5.70–1125.22) | 25.11 (1.00–129.55) | 0.001 | 23.98 (2.27–83.71) | 0.001 | 0.776 |
miR-21-5p | 7.54 (0.69–61.42) | 15.43 (1.45–82.65) | 0.001 | 7.35 (2.50–18.62) | 0.983 | 0.022 |
miR-221-5p | 7.47 (0.12–74.64) | 21.79 (2.48–116.42) | <0.001 | 11.01 (2.78–46.85) | 0.321 | 0.086 |
miR-155-5p | 14.04 (0.74–78.72) | 7.98 (0.91–33.15) | 0.049 | 4.26 (2.63–21.63) | 0.050 | 0.528 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Paz, Y.E.; Gamboa, R.; Fuentevilla-Álvarez, G.; Soto, M.E.; González-Moyotl, N.; Martínez-Alvarado, R.; Torres-Tamayo, M.; Ramírez-Marroquín, E.S.; Vásquez-Jiménez, X.; Sainz-Escarrega, V.; et al. Overexpression of microRNA-21-5p and microRNA-221-5p in Monocytes Increases the Risk of Developing Coronary Artery Disease. Int. J. Mol. Sci. 2023, 24, 8641. https://doi.org/10.3390/ijms24108641
Torres-Paz YE, Gamboa R, Fuentevilla-Álvarez G, Soto ME, González-Moyotl N, Martínez-Alvarado R, Torres-Tamayo M, Ramírez-Marroquín ES, Vásquez-Jiménez X, Sainz-Escarrega V, et al. Overexpression of microRNA-21-5p and microRNA-221-5p in Monocytes Increases the Risk of Developing Coronary Artery Disease. International Journal of Molecular Sciences. 2023; 24(10):8641. https://doi.org/10.3390/ijms24108641
Chicago/Turabian StyleTorres-Paz, Yazmín Estela, Ricardo Gamboa, Giovanny Fuentevilla-Álvarez, María Elena Soto, Nadia González-Moyotl, Rocío Martínez-Alvarado, Margarita Torres-Tamayo, Edgar Samuel Ramírez-Marroquín, Xicoténcatl Vásquez-Jiménez, Víctor Sainz-Escarrega, and et al. 2023. "Overexpression of microRNA-21-5p and microRNA-221-5p in Monocytes Increases the Risk of Developing Coronary Artery Disease" International Journal of Molecular Sciences 24, no. 10: 8641. https://doi.org/10.3390/ijms24108641
APA StyleTorres-Paz, Y. E., Gamboa, R., Fuentevilla-Álvarez, G., Soto, M. E., González-Moyotl, N., Martínez-Alvarado, R., Torres-Tamayo, M., Ramírez-Marroquín, E. S., Vásquez-Jiménez, X., Sainz-Escarrega, V., & Huesca-Gómez, C. (2023). Overexpression of microRNA-21-5p and microRNA-221-5p in Monocytes Increases the Risk of Developing Coronary Artery Disease. International Journal of Molecular Sciences, 24(10), 8641. https://doi.org/10.3390/ijms24108641