Chitosan Membranes Containing Plant Extracts: Preparation, Characterization and Antimicrobial Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC Characterization of Plant Extracts
2.2. ATR-FTIR Characterization of Chitosan and Chitosan Plant Extract Membranes
2.3. SEM Evaluation of Chitosan and Chitosan Plant Extract Membranes
2.4. In Vitro Incubation
2.4.1. Swelling Capacity of Membranes
2.4.2. PH Metric Analysis
2.4.3. Mass Loss of Membranes
2.5. Antimicrobial Properties of Active Chitosan Membranes
3. Materials and Methods
3.1. Materials
3.2. Plant Materials and Extraction
3.3. Analysis of Polyphenols by HPLC-UV
3.4. Preparation of Chitosan Membranes
3.5. Preparation of Chitosan-Based Membranes Containing Plant Extracts
3.6. Characterization of Chitosan-Based Membranes
3.7. In Vitro Incubation
3.7.1. Swelling Capacity of Membranes
3.7.2. PH Metric Analysis
3.7.3. Mass Loss of Membranes
3.8. Evaluation of Antimicrobial Activity of Chitosan-Based Membranes
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Swami, O.C. Strategies to Combat Antimicrobial Resistance. J. Clin. Diagn. Res. 2014, 8, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Annunziato, G. Strategies to overcome antimicrobial resistance (AMR) making use of non-essential target inhibitors: A review. Int. J. Mol. Sci. 2019, 20, 5844. [Google Scholar] [CrossRef] [PubMed]
- Merkur, S.W.G. Tackling antimicrobial resistance globally. Eurohealth 2020, 26, 1–44. [Google Scholar]
- Sen, T.; Samanta, S.K. Medicinal Plants, Human Health and Biodiversity: A Broad Review. In Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 147, pp. 59–110. [Google Scholar]
- Hart, B.L. The evolution of herbal medicine: Behavioural perspectives. Anim. Behav. 2005, 70, 975–989. [Google Scholar] [CrossRef]
- Limsuwan, S.; Subhadhirasakul, S.; Voravuthikunchai, S.P. Medicinal plants with significant activity against important pathogenic bacteria. Pharm. Biol. 2009, 47, 683–689. [Google Scholar] [CrossRef]
- Heinrich, M.; Jiang, H.; Scotti, F.; Booker, A.; Walt, H.; Weckerle, C.; Maake, C. Medicinal plants from the Himalayan region for potential novel antimicrobial and anti-inflammatory skin treatments. J. Pharm. Pharmacol. 2021, 73, 956–967. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef]
- Saxena, M.; Saxena, J.; Nema, R.; Sing, D.; Gupta, A. Phytochemistry of Medicinal Plants. J. Pharmacogn. Phytochem. 2013, 1, 168–182. [Google Scholar] [CrossRef]
- Cameron, A. Salvia Officinalis: Production, Cultivation and Uses; Cameron, A., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2021; ISBN 978-1-53619-531-6. [Google Scholar]
- Walch, S. Antioxidant capacity and polyphenolic composition as quality indicators for aqueous infusions of Salvia officinalis L. (sage tea). Front. Pharmacol. 2011, 2, 79. [Google Scholar] [CrossRef]
- Maleš, I.; Dragović-Uzelac, V.; Jerković, I.; Zorić, Z.; Pedisić, S.; Repajić, M.; Garofulić, I.E.; Dobrinčić, A. Non-Volatile and Volatile Bioactives of Salvia officinalis L., Thymus serpyllum L. and Laurus nobilis L. Extracts with Potential Use in the Development of Functional Beverages. Antioxidants 2022, 11, 1140. [Google Scholar] [CrossRef] [PubMed]
- Mendes, F.S.F.; Garcia, L.M.; da Silva Moraes, T.; Casemiro, L.A.; de Alcântara, C.B.; Ambrósio, S.R.; Veneziani, R.C.S.; Miranda, M.L.D.; Martins, C.H.G. Antibacterial activity of Salvia officinalis L. against periodontopathogens: An in vitro study. Anaerobe 2020, 63, 102194. [Google Scholar] [CrossRef] [PubMed]
- Rami, K.; Zheng Guo, L. Antimicrobial activity of essential oil of Salvia officinalis L. collected in Syria. Afr. J. Biotechnol. 2011, 10, 8397–8402. [Google Scholar] [CrossRef]
- Ghezelbash, G.H.R.; Parishani, M.R.F.M. Antimicrobial activity of Salvia officinalis acetone extract against pathogenic isolates. J. Herb. Drug 2015, 5, 215–218. [Google Scholar]
- Abou Baker, D.H.; Amarowicz, R.; Kandeil, A.; Ali, M.A.; Ibrahim, E.A. Antiviral activity of Lavandula angustifolia L. and Salvia officinalis L. essential oils against avian influenza H5N1 virus. J. Agric. Food Res. 2021, 4, 100135. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.M.; Al Mahmud, A.; Islam, M.S.; Gouhar, A.I. Common sage (Salvia officinalis) antiviral role: Potentiality of a Unani hand sanitizer in COVID-19 (corona virus) second wave control. Asian J. Med. Biol. Res. 2020, 6, 611–617. [Google Scholar] [CrossRef]
- Rus, C.F.; Alexa, E.; Pop, G.; Sumalan, R.M.; Copolovici, D.M. Antifungal Activity and Chemical Composition of Salvia officinalis L. Essential Oil. Res. J. Agric. Sci. 2015, 47, 186–193. [Google Scholar]
- Yilar, M.; Kadioglu, I.; Telci, I. Chemical composition and antifungal activity of Salvia officinalis, S. criptantha, S. tomentosa plant essentila oils and extracts. Fresenius Environ. Bull. 2018, 27, 1695–1706. [Google Scholar]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef]
- Miraj, S.; Kiani, S. A review study of therapeutic effects of Salvia officinalis L. Der Pharm. Lett. 2016, 8, 299–303. [Google Scholar]
- Raal, A.; Orav, A.; Arak, E. Composition of the essential oil of Salvia officinalis L. from various European countries. Nat. Prod. Res. 2007, 21, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, M.; Jokić, S.; Molnar, M.; Jašić, M.; Babić, J.; Jukić, H.; Banjari, I. Bioactive Profile of Various Salvia officinalis L. Preparations. Plants 2019, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Mennini, T.; Gobbi, M. The antidepressant mechanism of Hypericum perforatum. Life Sci. 2004, 75, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Wurglics, M.; Schubert-Zsilavecz, M. Hypericum perforatum: A “modern” herbal antidepressant—Pharmacokinetics of active ingredients. Clin. Pharmacokinet. 2006, 45, 449–468. [Google Scholar] [CrossRef] [PubMed]
- Flausino, O.A.; Zangrossi, H.; Salgado, J.V.; Viana, M.B. Effects of acute and chronic treatment with Hypericum perforatum L. (LI 160) on different anxiety-related responses in rats. Pharmacol. Biochem. Behav. 2002, 71, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Rizshsky, L.; Hauck, C.; Nikolau, B.J.; Murphy, P.A.; Birt, D.F. Identification of anti-inflammatory constituents in Hypericum perforatum and Hypericum gentianoides extracts using RAW 264.7 mouse macrophages. Phytochemistry 2011, 72, 2015–2023. [Google Scholar] [CrossRef] [PubMed]
- Egamberdieva, D.; Wirth, S.; Behrendt, U.; Ahmad, P.; Berg, G. Antimicrobial Activity of Medicinal Plants Correlates with the Proportion of Antagonistic Endophytes. Front. Microbiol. 2017, 8, 199. [Google Scholar] [CrossRef]
- Yasar, M.; Kaya, A.; Karaman, H.; Kavugudurmaz, M.; Polat, H.; Sagit, M.; Ozcan, I. Potential Curative Role of Hypericum perforatum in an Experimental Rat Model of Tympanic Membrane Perforation. J. Int. Adv. Otol. 2016, 12, 252–256. [Google Scholar] [CrossRef]
- Menegazzi, M.; Masiello, P.; Novelli, M. Anti-Tumor Activity of Hypericum perforatum L. and Hyperforin through Modulation of Inflammatory Signaling, ROS Generation and Proton Dynamics. Antioxidants 2020, 10, 18. [Google Scholar] [CrossRef]
- Coppock, R.W.; Dziwenka, M.S. John’s Wort. In Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2016; pp. 619–631. ISBN 9780128021477. [Google Scholar]
- Orčić, D.Z.; Mimica-Dukić, N.M.; Francišković, M.M.; Petrović, S.S.; Jovin, E.Đ. Antioxidant activity relationship of phenolic compounds in Hypericum perforatum L. Chem. Cent. J. 2011, 5, 34. [Google Scholar] [CrossRef]
- Fathi, H.; Ebrahimzadeh, M.A. Antioxidant and free radical scavenging activities of Hypericum perforatum L. (st. John’s wort). Int. J. For. Soil Eros. 2013, 3, 68–72. [Google Scholar]
- Süntar, I.; Oyardı, O.; Akkol, E.K.; Ozçelik, B. Antimicrobial effect of the extracts from Hypericum perforatum against oral bacteria and biofilm formation. Pharm. Biol. 2016, 54, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Saddiqe, Z.; Naeem, I.; Maimoona, A. A review of the antibacterial activity of Hypericum perforatum L. J. Ethnopharmacol. 2010, 131, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.A.; Gerschenson, L.N.; Flores, S.K. Development of Edible Films and Coatings with Antimicrobial Activity. Food Bioprocess Technol. 2010, 4, 849–875. [Google Scholar] [CrossRef]
- Reshad, R.A.I.; Jishan, T.A.; Chowdhury, N.N. Chitosan and its Broad Applications: A Brief Review. J. Clin. Exp. Investig. 2021, 12, em00779. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Rabea, E.I.; Badawy, M.E.T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, S.; Sun, B.; Gao, S.; Guo, S.; Zhao, K. Biomedical Applications of Chitosan and Its Derivative Nanoparticles. Polymers 2018, 10, 462. [Google Scholar] [CrossRef]
- Xiong Chang, X.; Mujawar Mubarak, N.; Ali Mazari, S.; Sattar Jatoi, A.; Ahmad, A.; Khalid, M.; Walvekar, R.; Abdullah, E.C.; Karri, R.R.; Siddiqui, M.T.; et al. A review on the properties and applications of chitosan, cellulose and deep eutectic solvent in green chemistry. J. Ind. Eng. Chem. 2021, 104, 362–380. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef]
- Ahmadi, F.; Oveisi, Z.; Samani, S.M.; Amoozgar, Z. Chitosan based hydrogels: Characteristics and pharmaceutical applications. Res. Pharm. Sci. 2015, 10, 1–16. [Google Scholar] [PubMed]
- Domalik-Pyzik, P.; Chłopek, J.; Pielichowska, K. Chitosan-Based Hydrogels: Preparation, Properties, and Applications. In Cellulose-Based Superabsorbent Hydrogels, Polymer and Polymeric Composites: A Reference Series; Mondal, I.H., Ed.; Springer: Basel, Switzerland, 2019; pp. 1665–1693. ISBN 9783319778303. [Google Scholar] [CrossRef]
- Yan, D.; Li, Y.; Liu, Y.; Li, N.; Zhang, X.; Yan, C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules 2021, 26, 7136. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhuang, S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur. Polym. J. 2020, 138, 109984. [Google Scholar] [CrossRef]
- Ke, C.-L.; Deng, F.-S.; Chuang, C.-Y.; Lin, C.-H. Antimicrobial Actions and Applications of Chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.; Gomes, L.C.; Teixeira-Santos, R.; Romeu, M.J.; Valcarcel, J.; Vázquez, J.A.; Cerqueira, M.A.; Pastrana, L.; Bourbon, A.I.; de Jong, E.D.; et al. Assessment of the Antibiofilm Performance of Chitosan-Based Surfaces in Marine Environments. Int. J. Mol. Sci. 2022, 23, 14647. [Google Scholar] [CrossRef] [PubMed]
- Aflori, M.; Butnaru, M.; Tihauan, B.-M.; Doroftei, F. Eco-Friendly Method for Tailoring Biocompatible and Antimicrobial Surfaces of Poly-L-Lactic Acid. Nanomaterials 2019, 9, 428. [Google Scholar] [CrossRef] [PubMed]
- Aflori, M. Chitosan-based Silver Nanoparticles Incorporated at the Surface of Plasma-treated PHB Films. Chem. Lett. 2017, 46, 65–67. [Google Scholar] [CrossRef]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef]
- Borges, C.V.; Minatel, I.O.; Gomez-Gomez, H.A.; Lima, G.P.P. Medicinal Plants: Influence of Environmental Factors on the Content of Secondary Metabolites. In Medicinal Plants and Environmental Challenges; Ghorbanpour, M., Ajit, A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 259–277. ISBN 9783319687179. [Google Scholar]
- Vieira, S.F.; Ferreira, H.; Neves, N.M. Antioxidant and Anti-Inflammatory Activities of Cytocompatible Salvia officinalis Extracts: A Comparison between Traditional and Soxhlet Extraction. Antioxidants 2020, 9, 1157. [Google Scholar] [CrossRef]
- Longaray Delamare, A.P.; Moschen-Pistorello, I.T.; Artico, L.; Atti-Serafini, L.; Echeverrigaray, S. Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chem. 2007, 100, 603–608. [Google Scholar] [CrossRef]
- Velickovic, D.; Randjelovic, N.; Ristic, M.; Smelcerovic, A.; Velickovic, A. Chemical composition and antimicrobial action of the ethanol extracts of Salvia pratensis L., Salvia glutinosa L. and Salvia aethiopis L. J. Serbian Chem. Soc. 2002, 67, 639–646. [Google Scholar] [CrossRef]
- Temerdashev, Z.; Milevskaya, V.; Shpigun, O.; Prasad, S.; Vinitskaya, E.; Ryaboko, L. Stability of some biologically active substances in extracts and preparations based on st. John’s wort (Hypericum perforatum L.) and sage (Salvia officinalis L.). Ind. Crops Prod. 2020, 156, 112879. [Google Scholar] [CrossRef]
- Stamenković, J.; Radojković, I.; Đorđević, A.; Jovanović, O.; Stojanović, G. Optimization of HPLC method for the isolation of Hypericum perforatum L. methanol extract. Biol. Nyssana 2013, 4, 81–85. [Google Scholar]
- Paluszkiewicz, C.; Stodolak, E.; Hasik, M.; Blazewicz, M. FT-IR study of montmorillonite–chitosan nanocomposite materials. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 784–788. [Google Scholar] [CrossRef]
- Abd-Elghany, A.A.; Mohamad, E.A.; El-Sakhawy, M.A.; Mansouri, S.; Ismail, S.H.; Elneklawi, M.S. Enhancement of mechanical properties of chitosan film by doping with sage extract-loaded niosomes. Mater. Res. Express 2022, 9, 035006. [Google Scholar] [CrossRef]
- Bajić, M.; Ročnik, T.; Oberlintner, A.; Scognamiglio, F.; Novak, U.; Likozar, B. Natural plant extracts as active components in chitosan-based films: A comparative study. Food Packag. Shelf Life 2019, 21, 100365. [Google Scholar] [CrossRef]
- Drabczyk, A.; Kudłacik-Kramarczyk, S.; Głąb, M.; Kędzierska, M.; Jaromin, A.; Mierzwiński, D.; Tyliszczak, B. Physicochemical Investigations of Chitosan-Based Hydrogels Containing Aloe Vera Designed for Biomedical Use. Materials 2020, 13, 3073. [Google Scholar] [CrossRef]
- Norahan, M.H.; Pedroza-González, S.C.; Sánchez-Salazar, M.G.; Álvarez, M.M.; Trujillo de Santiago, G. Structural and biological engineering of 3D hydrogels for wound healing. Bioact. Mater. 2023, 24, 197–235. [Google Scholar] [CrossRef]
- Bueno, C.Z.; Dias, A.M.A.; de Sousa, H.J.C.; Braga, M.E.M.; Moraes, Â.M. Control of the properties of porous chitosan–alginate membranes through the addition of different proportions of Pluronic F68. Mater. Sci. Eng. C 2014, 44, 117–125. [Google Scholar] [CrossRef]
- Dall’Agnol, R.; Ferraz, A.; Bernardi, A.P.; Albring, D.; Nör, C.; Sarmento, L.; Lamb, L.; Hass, M.; von Poser, G.; Schapoval, E.E.S. Antimicrobial activity of some Hypericum species. Phytomedicine 2003, 10, 511–516. [Google Scholar] [CrossRef]
- Ilieva, Y.; Marinov, T.; Trayanov, I.; Kaleva, M.; Zaharieva, M.M.; Yocheva, L.; Kokanova-Nedialkova, Z.; Najdenski, H.; Nedialkov, P. Outstanding Antibacterial Activity of Hypericum rochelii—Comparison of the Antimicrobial Effects of Extracts and Fractions from Four Hypericum Species Growing in Bulgaria with a Focus on Prenylated Phloroglucinols. Life 2023, 13, 274. [Google Scholar] [CrossRef] [PubMed]
- Mazandaran, M.; Yassaghi, S.; Rezaei, M.B.; Mansourian, A.; Ghaemi, E.O. Ethnobotany and Antibacterial Activities of Two Endemic Species of Hypericum in North-East of Iran. Asian J. Plant Sci. 2007, 6, 354–358. [Google Scholar] [CrossRef]
- Bagheri, R.; Bohlouli, S.; Maleki Dizaj, S.; Shahi, S.; Memar, M.Y.; Salatin, S. The Antimicrobial and Anti-Biofilm Effects of Hypericum perforatum Oil on Common Pathogens of Periodontitis: An In Vitro Study. Clin. Pract. 2022, 12, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Beran, M.; Horna, A.; Vorisek, V.; Berkova, E.; Korinkova, R.; Trousil, V.; Hrubanova, M. Antimicrobial polyhydroxybutyrate submicron fiber mat loaded with extract of Hypericum perforatum. J. Plant Biotechnol. 2022, 49, 257–270. [Google Scholar] [CrossRef]
- Manso, T.; Lores, M.; De Miguel, T. Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics 2021, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Butterweck, V.; Schmidt, M.S. John’s wort: Role of active compounds for its mechanism of action and efficacy. Wien. Med. Wochenschr. 2007, 157, 356–361. [Google Scholar] [CrossRef]
- Arima, H.; Ashida, H.; Danno, G. Rutin-enhanced Antibacterial Activities of Flavonoids against Bacillus cereus and Salmonella enteritidis. Biosci. Biotechnol. Biochem. 2002, 66, 1009–1014. [Google Scholar] [CrossRef]
- Yun, J.; Woo, E.-R.; Lee, D.G. Effect of isoquercitrin on membrane dynamics and apoptosis-like death in Escherichia coli. Biochim. Biophys. Acta-Biomembr. 2018, 1860, 357–363. [Google Scholar] [CrossRef]
- Bassolé, I.H.N.; Juliani, H.R. Essential Oils in Combination and Their Antimicrobial Properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef]
- Bouajaj, S.; Benyamna, A.; Bouamama, H.; Romane, A.; Falconieri, D.; Piras, A.; Marongiu, B. Antibacterial, allelopathic and antioxidant activities of essential oil of Salvia officinalis L. growing wild in the Atlas Mountains of Morocco. Nat. Prod. Res. 2013, 27, 1673–1676. [Google Scholar] [CrossRef]
- Aćimović, M.; Pezo, L.; Čabarkapa, I.; Trudić, A.; Stanković Jeremić, J.; Varga, A.; Lončar, B.; Šovljanski, O.; Tešević, V. Variation of Salvia officinalis L. Essential Oil and Hydrolate Composition and Their Antimicrobial Activity. Processes 2022, 10, 1608. [Google Scholar] [CrossRef]
- Gheorghita, D.; Robu, A.; Antoniac, A.; Antoniac, I.; Ditu, L.M.; Raiciu, A.-D.; Tomescu, J.; Grosu, E.; Saceleanu, A. In Vitro Antibacterial Activity of Some Plant Essential Oils against Four Different Microbial Strains. Appl. Sci. 2022, 12, 9482. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F. Antibacterial and Antifungal Activities of Essential Oils. In Lipids and Essential Oils as Antimicrobial Agents; Wiley: Hoboken, NJ, USA, 2011; pp. 255–306. ISBN 9780470741788. [Google Scholar]
- Goy, R.C.; De Britto, D.; Assis, O.B.G. A review of the antimicrobial activity of chitosan. Polímeros 2009, 19, 241–247. [Google Scholar] [CrossRef]
- Barbălată-Mândru, M.; Serbezeanu, D.; Butnaru, M.; Rîmbu, C.M.; Enache, A.A.; Aflori, M. Poly(vinyl alcohol)/Plant Extracts Films: Preparation, Surface Characterization and Antibacterial Studies against Gram Positive and Gram Negative Bacteria. Materials 2022, 15, 2493. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Wei, S.; Yan, Z. Comparative seasonal variation and chemical composition of essential oils from the leaves and stems of Schefflera heptaphylla using microwave-assisted and conventional hydrodistillation. Ind. Crops Prod. 2012, 36, 229–237. [Google Scholar] [CrossRef]
- Enache, A.A.; David, L.; Puaux, J.-P.; Banu, I.; Bozga, G. Kinetics of chitosan coagulation from aqueous solutions. J. Appl. Polym. Sci. 2018, 135, 46062. [Google Scholar] [CrossRef]
- Weinstein, M. Performance Standards for Antimicrobial Disk Suspectibility Tests, Approved Standard-Eleventh Edition. Clin. Lab. Stand. Inst. 2018, 38, 2162–2914. [Google Scholar]
Nr. crt | Compound | H. perforatum | S. officinalis | ||
---|---|---|---|---|---|
tR (min) | Conc (μg/mL) | tR (min) | Conc (μg/mL) | ||
1 | Gallic acid | Nd | - | 3.58 ± 0.01 | subLOD |
2 | Catechin | Nd | - | 7.62 ± 0.04 | 11.64 ± 1.57 |
3 | Epicatechin | 9.11 ± 0.03 | 90.61 ± 0.91 | Nd | - |
4 | Ellagic acid | 12.19 ± 0.003 | 71.92 ± 0.47 | 12.33 ± 0.01 | 38.22 ± 0.06 |
5 | Hesperidin | 14.33 ± 0.01 | 24.83 ± 1.34 | 14.52 ± 0.004 | 34.72 ± 1.17 |
6 | Daidzein | Nd | - | Nd | - |
7 | Cinnamic acid | Nd | - | Nd | - |
8 | Apigenin | Nd | - | 20.75 ± 0.01 | 21.88 ± 0.70 |
9 | Genistein | 21.20 ± 0.31 | 54.95 ± 0.59 | Nd | - |
10 | Chrysin | Nd | - | 27.29 ± 0.02 | 2.06 ± 0.29 |
11 | Pinocembrin | 27.68 ± 0.004 | 0.83 ± 0.09 | 27.62 ± 0.02 | 8.46 ± 0.32 |
12 | Pinostrobin | Nd | - | Nd | - |
13 | Caftaric acid | 6.36 ± 0.03 | 4.45 ± 0.31 | 6.62 ± 0.08 | 3.85 ± 0.12 |
14 | Chlorogenic acid | 7.99 ± 0.04 | 9.18 ± 1.69 | Nd | - |
15 | Caffeic acid | 9.11 ± 0.03 | 9.94 ± 0.05 | 8.85 ± 0.14 | subLOD |
16 | Cynarine | 9.91 ± 0.01 | 24.62 ± 0.01 | 10.00 ± 0.03 | 16.59 ± 0.05 |
17 | P-Coumaric acid | 11.63 ± 0.01 | 16.32 ± 0.04 | 11.64 ± 0.02 | 14.92 ± 0.16 |
18 | Ferulic acid | 12.62 ± 0.004 | 16.56 ± 0.21 | 12.81 ± 0.01 | 7.62 ± 0.37 |
19 | Rosmarinic acid | Nd | - | 14.93 ± 0.01 | 29.12 ± 0.10 |
20 | Naringenin | Nd | - | 21.30 ± 0.01 | subLOD |
21 | Rutin | 12.19 ± 0.003 | 105.97 ± 0.10 | 12.29 ± 0.01 | 1.79 ± 0.18 |
22 | Isoquercetin | 12.62 ± 0.004 | 183.95 ± 0.91 | 12.81 ± 0.01 | 124.18 ± 0.54 |
23 | Myricetin | 15.35 ± 0.03 | 9.13 ± 0.35 | 14.92 ± 0.01 | 34.36 ± 0.01 |
24 | Quercetin | Nd | - | 18.63 ± 0.01 | 9.83 ± 1.89 |
25 | Kaempferol | 21.25 ± 0.01 | 15.95 ± 0.12 | 21.61 ± 0.01 | 28.92 ± 0.29 |
26 | Rhamnetin | 24.41± 0.002 | 13.87 ± 0.23 | 25.06 ± 0.01 | 36.49 ± 0.41 |
Samples | Initial Diameter | S. aureus ATCC 25923 | MRSA ATCC 43300 | E. coli ATCC 25922 | P. aeruginosa ATCC 27853 |
---|---|---|---|---|---|
(Ø) (mm) | Mean ± SD Ø (mm) | Mean ± SD Ø (mm) | Mean ± SD Ø (mm) | Mean ± SD Ø (mm) | |
CL3-Hyp | 7 | 8 ± 0.4 | 7 ± 0.34 | 10 ± 0.346 | 10.16 ± 1.06 |
CL4-Hyp | 7 | 7.5 ± 0.60 | 9 ± 0.43 | 12.33 ± 0.61 | 8.2 ± 0.53 |
CL3-Sal | 7 | 10.16 ± 0.35 | 11.36 ± 0.152 | 13.23 ± 0.55 | 12.2 ± 0.2 |
CL4-Sal | 7 | 12.06 + 0.30 | 8.9 ± 0.53 | 9.23 ± 0.45 | 12.06 ± 0.30 |
CL3 + H2O | 7 | 7 ± 0 | 7 ± 0 | 7 ± 0 | 7 ± 0 |
CL4 + H2O | 7 | 7 ± 0 | 7 ± 0 | 7 ± 0 | 7 ± 0 |
CL3 + ethanol | 7 | 7 ± 0 | 7.9 ± 0.41 | 7 ± 0 | 7 ± 0 |
CL4 + ethanol | 7 | 7 ± 0 | 7 ± 0 | 9 ± 0.53 | 7 ± 0 |
H. perforatum Extract (10 ul) Control | 7 | 12.13 ± 0.30 | 10 ± 0 | 13.06 ± 0.30 | 10.06 ± 0.23 |
S. officinalis Extract (10 ul) Control | 7 | 12.3 ± 0.43 | 9.93 ± 0.32 | 12.9 ± 0.53 | 10.86 ± 0.47 |
Gentamicin (10 ug) Control | 5 | 24 ± 0 | 0 ± 0 | 22 ± 0 | 20 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gradinaru, L.M.; Barbalata-Mandru, M.; Enache, A.A.; Rimbu, C.M.; Badea, G.I.; Aflori, M. Chitosan Membranes Containing Plant Extracts: Preparation, Characterization and Antimicrobial Properties. Int. J. Mol. Sci. 2023, 24, 8673. https://doi.org/10.3390/ijms24108673
Gradinaru LM, Barbalata-Mandru M, Enache AA, Rimbu CM, Badea GI, Aflori M. Chitosan Membranes Containing Plant Extracts: Preparation, Characterization and Antimicrobial Properties. International Journal of Molecular Sciences. 2023; 24(10):8673. https://doi.org/10.3390/ijms24108673
Chicago/Turabian StyleGradinaru, Luiza Madalina, Mihaela Barbalata-Mandru, Alin Alexandru Enache, Cristina Mihaela Rimbu, Georgiana Ileana Badea, and Magdalena Aflori. 2023. "Chitosan Membranes Containing Plant Extracts: Preparation, Characterization and Antimicrobial Properties" International Journal of Molecular Sciences 24, no. 10: 8673. https://doi.org/10.3390/ijms24108673
APA StyleGradinaru, L. M., Barbalata-Mandru, M., Enache, A. A., Rimbu, C. M., Badea, G. I., & Aflori, M. (2023). Chitosan Membranes Containing Plant Extracts: Preparation, Characterization and Antimicrobial Properties. International Journal of Molecular Sciences, 24(10), 8673. https://doi.org/10.3390/ijms24108673