The Revolution of Animal Genomics in Forensic Sciences
Abstract
:1. Introduction
2. Animal DNA in Forensic Cases
3. Genetic Markers Used in the Forensic Field
4. Recommendations for Animal DNA Analysis in Forensic Sciences
5. Domestic Animal DNA as Forensic Evidence
5.1. Predicting Canine Phenotypic Traits: Canine DNA Phenotyping
5.2. Fecal Samples as a Source of Animal DNA
5.3. The Dog as Suspect
6. Wildlife in Forensic Genetics
6.1. Species Identification
6.2. Identification of Sample Geographical Origin
6.3. Identification of Individuals
6.4. Family Identification
7. Towards Innovative Technologies
- Reference genomes and population reference databases;
- As much as possible variation analyzed in a unique experiment;
- Untargeted approaches for unknown and multiple samples;
- Quality control, assurance, and certification: protocol development based on genomic big data and population genomics, and consequent standardization;
- Transitioning forensic DNA analysis from the laboratory to the crime scene or on the field with single-molecule sequencing methods;
- Joint efforts and concerted protocols between scientific communities (primarily the International Society for Animal Genetics, International Society for Forensic Genetics, Society for Wildlife Forensic Science, and International Society of Environmental Forensics) in order to establish shared recommendations, standards, and guidelines.
8. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Butler, J.M.; Shen, Y.; McCord, B.R. The Development of Reduced Size STR Amplicons as Tools for Analysis of Degraded DNA. J. Forensic Sci. 2003, 48, 2003043. [Google Scholar] [CrossRef]
- Graham, E.A.M. Nonhuman DNA. Forensic Sci. Med. Pathol. 2005, 1, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Basu, S.; Jabin, G.; Khatri, H.; Singh, S.K.; Maheswaran, G.; Chandra, K.; Thakur, M. Wildlife Forensics in Voiding False Offences: A Case Study to Deal with Unidentified Cooked Meat. Forensic Sci. Int. Rep. 2019, 1, 100011. [Google Scholar] [CrossRef]
- Lee, C.-L.; Huang, Y.-H.; Hsu, I.C.; Lee, H.C. Evaluation of Plant Seed DNA and Botanical Evidence for Potential Forensic Applications. Forensic Sci. Res. 2020, 5, 55–63. [Google Scholar] [CrossRef]
- Spencer, M.A. Forensic Botany: Time to Embrace Natural History Collections, Large Scale Environmental Data and Environmental DNA. Emerg. Top. Life Sci. 2021, 5, 475–485. [Google Scholar] [CrossRef]
- Robinson, J.M.; Pasternak, Z.; Mason, C.E.; Elhaik, E. Forensic Applications of Microbiomics: A Review. Front. Microbiol. 2021, 11, 608101. [Google Scholar] [CrossRef]
- Kanthaswamy, S. Review: Domestic Animal Forensic Genetics—Biological Evidence, Genetic Markers, Analytical Approaches and Challenges. Anim. Genet. 2015, 46, 473–484. [Google Scholar] [CrossRef]
- Jordan, D.; Mills, D. Past, Present, and Future of DNA Typing for Analyzing Human and Non-Human Forensic Samples. Front. Ecol. Evol. 2021, 9, 646130. [Google Scholar] [CrossRef]
- D’Amato, M.E.; Bodner, M.; Butler, J.M.; Gusmão, L.; Linacre, A.; Parson, W.; Schneider, P.M.; Vallone, P.; Carracedo, A. Ethical Publication of Research on Genetics and Genomics of Biological Material: Guidelines and Recommendations. Forensic Sci. Int. Genet. 2020, 48, 102299. [Google Scholar] [CrossRef]
- Kanthaswamy, S.; Brendel, T.; Cancela, L.; de Andrade Oliveira, D.A.; Brenig, B.; Cons, C.; Crespi, J.A.; Dajbychová, M.; Feldl, A.; Itoh, T.; et al. An Inter-Laboratory Study of DNA-Based Identity, Parentage and Species Testing in Animal Forensic Genetics. Forensic Sci. Res. 2022, 7, 708–713. [Google Scholar] [CrossRef]
- Meiklejohn, K.A.; Burnham-Curtis, M.K.; Straughan, D.J.; Giles, J.; Moore, M.K. Current Methods, Future Directions and Considerations of DNA-Based Taxonomic Identification in Wildlife Forensics. Forensic Sci. Int. Anim. Environ. 2021, 1, 100030. [Google Scholar] [CrossRef]
- Lynch, M. God’s Signature: DNA Profiling, the New Gold Standard in Forensic Science. Endeavour 2003, 27, 93–97. [Google Scholar] [CrossRef]
- Mori, C.; Matsumura, S. Development and validation of simultaneous identification of 26 mammalian and poultry species by a multiplex assay. Int. J. Leg. Med. 2022, 136, 1–12. [Google Scholar] [CrossRef]
- Ewart, K.M.; Lightson, A.L.; Sitam, F.T.; Rovie-Ryan, J.J.; Mather, N.; McEwing, R. Expediting the Sampling, Decalcification, and Forensic DNA Analysis of Large Elephant Ivory Seizures to Aid Investigations and Prosecutions. Forensic Sci. Int. Genet. 2020, 44, 102187. [Google Scholar] [CrossRef]
- Smart, U.; Cihlar, J.C.; Budowle, B. International Wildlife Trafficking: A Perspective on the Challenges and Potential Forensic Genetics Solutions. Forensic Sci. Int. Genet. 2021, 54, 102551. [Google Scholar] [CrossRef]
- Gouda, S.; Kerry, R.G.; Das, A.; Chauhan, N.S. Wildlife Forensics: A Boon for Species Identification and Conservation Implications. Forensic Sci. Int. 2020, 317, 110530. [Google Scholar] [CrossRef]
- Linacre, A. Animal Forensic Genetics. Genes 2021, 12, 515. [Google Scholar] [CrossRef]
- Pérez-Espona, S. Conservation-Focused Biobanks: A Valuable Resource for Wildlife DNA Forensics. Forensic Sci. Int. Anim. Environ. 2021, 1, 100017. [Google Scholar] [CrossRef]
- Groot, M.; Anderson, H.; Bauer, H.; Bauguil, C.; Bellone, R.R.; Brugidou, R.; Buckley, R.M.; Dovč, P.; Forman, O.; Grahn, R.A.; et al. Standardization of a SNP Panel for Parentage Verification and Identification in the Domestic Cat (Felis Silvestris Catus). Anim. Genet. 2021, 52, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.M. Recent Advances in Forensic Biology and Forensic DNA Typing: INTERPOL Review 2019–2022. Forensic Sci. Int. Synerg. 2023, 6, 100311. [Google Scholar] [CrossRef] [PubMed]
- Oldt, R.; Ng, J.; Kanthaswamy, S. The Application of Forensic Animal DNA Analysis in Criminal and Civil Investigations. In Security Science and Technology; World Scientific: London, UK, 2016; Volume 2, pp. 473–491. ISBN 978-1-78634-077-1. [Google Scholar]
- Menotti-Raymond, M.A.; David, V.A.; O’Brien, S.J. Pet Cat Hair Implicates Murder Suspect. Nature 1997, 386, 774. [Google Scholar] [CrossRef]
- Grahn, R.A.; Kurushima, J.D.; Billings, N.C.; Grahn, J.C.; Halverson, J.L.; Hammer, E.; Ho, C.K.; Kun, T.J.; Levy, J.K.; Lipinski, M.J.; et al. Feline Non-Repetitive Mitochondrial DNA Control Region Database for Forensic Evidence. Forensic Sci. Int. Genet. 2011, 5, 33–42. [Google Scholar] [CrossRef]
- Grahn, R.A.; Alhaddad, H.; Alves, P.C.; Randi, E.; Waly, N.E.; Lyons, L.A. Feline Mitochondrial DNA Sampling for Forensic Analysis: When Enough Is Enough! Forensic Sci. Int. Genet. 2015, 16, 52–57. [Google Scholar] [CrossRef]
- Arcieri, M.; Agostinelli, G.; Gray, Z.; Spadaro, A.; Lyons, L.A.; Webb, K.M. Establishing a Database of Canadian Feline Mitotypes for Forensic Use. Forensic Sci. Int. Genet. 2016, 22, 169–174. [Google Scholar] [CrossRef]
- Monkman, H.; Van Oorschot, R.A.H.; Goray, M. Is There Human DNA on Cats. Forensic Sci. Int. Genet. Suppl. Ser. 2022, 8, 145–146. [Google Scholar] [CrossRef]
- Nussbaumer, C.; Korschineck, I. Non-Human MtDNA Helps to Exculpate a Suspect in a Homicide Case. Int. Congr. Ser. 2006, 1288, 136–138. [Google Scholar] [CrossRef]
- Somnay, V.; Duong, T.; Tsao, R.-Y.; Prahlow, J.A. Crime Scene Analysis through DNA Testing of Canine Feces—A Case Report. Acad. Forensic Pathol. 2020, 10, 56–61. [Google Scholar] [CrossRef]
- Dadousis, C.; Muñoz, M.; Óvilo, C.; Fabbri, M.C.; Araújo, J.P.; Bovo, S.; Potokar, M.Č.; Charneca, R.; Crovetti, A.; Gallo, M.; et al. Admixture and Breed Traceability in European Indigenous Pig Breeds and Wild Boar Using Genome-Wide SNP Data. Sci. Rep. 2022, 12, 7346. [Google Scholar] [CrossRef]
- Gamarra, D.; Taniguchi, M.; Aldai, N.; Arakawa, A.; Lopez-Oceja, A.; De Pancorbo, M.M. Genetic Characterization of the Local Pirenaica Cattle for Parentage and Traceability Purposes. Animals 2020, 10, 1584. [Google Scholar] [CrossRef]
- Hulsegge, I.; Schoon, M.; Windig, J.; Neuteboom, M.; Hiemstra, S.J.; Schurink, A. Development of a Genetic Tool for Determining Breed Purity of Cattle. Livest. Sci. 2019, 223, 60–67. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, Z.; You, X.; Zhao, Y.; He, W.; Zhao, L.; Chen, A.; Yang, S. Genetic Traceability Practices in a Large-Size Beef Company in China. Food Chem. 2019, 277, 222–228. [Google Scholar] [CrossRef] [PubMed]
- de Camargo, G.M.F. The Role of Molecular Genetics in Livestock Production. Anim. Prod. Sci. 2019, 59, 201. [Google Scholar] [CrossRef]
- Soglia, D.; Sacchi, P.; Sartore, S.; Maione, S.; Schiavone, A.; De Marco, M.; Bottero, M.T.; Dalmasso, A.; Pattono, D.; Rasero, R. Distinguishing Industrial Meat from That of Indigenous Chickens with Molecular Markers. Poult. Sci. 2017, 96, 2552–2561. [Google Scholar] [CrossRef] [PubMed]
- Ropohl, D.; Scheithauer, R.; Pollak, S. Postmortem Injuries Inflicted by Domestic Golden Hamster: Morphological Aspects and Evidence by DNA Typing. Forensic Sci. Int. 1995, 72, 81–90. [Google Scholar] [CrossRef]
- Sato, I.; Nakaki, S.; Murata, K.; Takeshita, H.; Mukai, T. Forensic Hair Analysis to Identify Animal Species on a Case of Pet Animal Abuse. Int. J. Leg. Med. 2010, 124, 249–256. [Google Scholar] [CrossRef]
- Gustafson, K.D.; Hawkins, M.G.; Drazenovich, T.L.; Church, R.; Brown, S.A.; Ernest, H.B. Founder Events, Isolation, and Inbreeding: Intercontinental Genetic Structure of the Domestic Ferret. Evol. Appl. 2018, 11, 694–704. [Google Scholar] [CrossRef]
- Meier, S.M.; Dennler, M.; Martinez, R.M.; Albini, S. Forensic Examination of a Decapitated Rabbit: Interdisciplinary Investigations on Perpetrator’s Traces. Vet. Rec. Case Rep. 2019, 7, e000876. [Google Scholar] [CrossRef]
- Grela, M.; Jakubczak, A.; Kowalczyk, M.; Listos, P.; Gryzińska, M. Effectiveness of Various Methods of DNA Isolation from Bones and Teeth of Animals Exposed to High Temperature. J. Forensic Leg. Med. 2021, 78, 102131. [Google Scholar] [CrossRef]
- Stern, A.W.; Smith-Blackmore, M. Veterinary Forensic Pathology of Animal Sexual Abuse. Vet. Pathol. 2016, 53, 1057–1066. [Google Scholar] [CrossRef]
- Hvozdík, A.; Bugarský, A.; Kottferová, J.; Vargová, M.; Ondrašovičová, O.; Ondrašovič, M.; Sasáková, N. Ethological, Psychological and Legal Aspects of Animal Sexual Abuse. Vet. J. 2006, 172, 374–376. [Google Scholar] [CrossRef]
- Imbschweiler, I.; Kummerfeld, M.; Gerhard, M.; Pfeiffer, I.; Wohlsein, P. Animal Sexual Abuse in a Female Sheep. Vet. J. 2009, 182, 481–483. [Google Scholar] [CrossRef]
- Munro, H.M.C.; Thrusfield, M.V. ‘Battered Pets’: Sexual Abuse. J. Small Anim. Pract. 2001, 42, 333–337. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Zawadzka, E.; Szewczuk, D.; Gryzińska, M.; Jakubczak, A. Molecular Markers Used in Forensic Genetics. Med. Sci. Law 2018, 58, 201–209. [Google Scholar] [CrossRef]
- Wickenheiser, R.A. Expanding DNA Database Effectiveness. Forensic Sci. Int. Synerg. 2022, 4, 100226. [Google Scholar] [CrossRef]
- Jeffreys, A.J.; Wilson, V.; Thein, S.L. Individual-Specific “fingerprints” of Human DNA. Nature 1985, 316, 76–79. [Google Scholar] [CrossRef]
- Tande, C.M. DNA Typing: A New Investigatory Tool. Duke Law J. 1989, 1989, 474–494. [Google Scholar] [CrossRef]
- Bini, C.; Cilli, E.; Sarno, S.; Traversari, M.; Fontani, F.; Boattini, A.; Pelotti, S.; Luiselli, D. Twenty-Seven Y-Chromosome Short Tandem Repeats Analysis of Italian Mummies of the 16th and 18th Centuries: An Interdisciplinary Research. Front. Genet. 2021, 12, 720640. [Google Scholar] [CrossRef]
- Berger, B.; Berger, C.; Hecht, W.; Hellmann, A.; Rohleder, U.; Schleenbecker, U.; Parson, W. Validation of Two Canine STR Multiplex-Assays Following the ISFG Recommendations for Non-Human DNA Analysis. Forensic Sci. Int. Genet. 2014, 8, 90–100. [Google Scholar] [CrossRef]
- Berger, B.; Heinrich, J.; Niederstätter, H.; Hecht, W.; Morf, N.; Hellmann, A.; Rohleder, U.; Schleenbecker, U.; Berger, C.; Parson, W. Forensic Characterization and Statistical Considerations of the CaDNAP 13-STR Panel in 1,184 Domestic Dogs from Germany, Austria, and Switzerland. Forensic Sci. Int. Genet. 2019, 42, 90–98. [Google Scholar] [CrossRef]
- Wyner, N.; Barash, M.; McNevin, D. Forensic Autosomal Short Tandem Repeats and Their Potential Association with Phenotype. Front. Genet. 2020, 11, 884. [Google Scholar] [CrossRef]
- Chen, Y.; Branicki, W.; Walsh, S.; Nothnagel, M.; Kayser, M.; Liu, F. The Impact of Correlations between Pigmentation Phenotypes and Underlying Genotypes on Genetic Prediction of Pigmentation Traits. Forensic Sci. Int. Genet. 2021, 50, 102395. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Budowle, B. Forensic Investigation Approaches of Searching Relatives in DNA Databases. J. Forensic Sci. 2021, 66, 430–443. [Google Scholar] [CrossRef] [PubMed]
- Lendvay, B.; Cartier, L.E.; Costantini, F.; Iwasaki, N.; Everett, M.V.; Krzemnicki, M.S.; Kratzer, A.; Morf, N.V. Coral-ID: A Forensically Validated Genetic Test to Identify Precious Coral Material and Its Application to Objects Seized from Illegal Traffic. Forensic Sci. Int. Genet. 2022, 58, 102663. [Google Scholar] [CrossRef]
- Harper, C.K. Poaching Forensics: Animal Victims in the Courtroom. Annu. Rev. Anim. Biosci. 2023, 11, 269–286. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.-G.; Bravi, C.M.; Bandelt, H.-J. A Call for MtDNA Data Quality Control in Forensic Science. Forensic Sci. Int. 2004, 141, 1–6. [Google Scholar] [CrossRef]
- Wenzlow, N.; Mills, D.; Byrd, J.; Warren, M.; Long, M.T. Review of the current and potential use of biological and molecular methods for the estimation of the postmortem interval in animals and humans. J. Vet. Diagn. Investig. 2023, 35, 97–108. [Google Scholar] [CrossRef]
- Amorim, A.; Fernandes, T.; Taveira, N. Mitochondrial DNA in Human Identification: A Review. PeerJ 2019, 7, e7314. [Google Scholar] [CrossRef]
- Syndercombe Court, D. Mitochondrial DNA in Forensic Use. Emerg. Top. Life Sci. 2021, 5, 415–426. [Google Scholar] [CrossRef]
- Parson, W.; Gusmão, L.; Hares, D.R.; Irwin, J.A.; Mayr, W.R.; Morling, N.; Pokorak, E.; Prinz, M.; Salas, A.; Schneider, P.M.; et al. DNA Commission of the International Society for Forensic Genetics: Revised and Extended Guidelines for Mitochondrial DNA Typing. Forensic Sci. Int. Genet. 2014, 13, 134–142. [Google Scholar] [CrossRef]
- Vai, S.; Ghirotto, S.; Pilli, E.; Tassi, F.; Lari, M.; Rizzi, E.; Matas-Lalueza, L.; Ramirez, O.; Lalueza-Fox, C.; Achilli, A.; et al. Genealogical Relationships between Early Medieval and Modern Inhabitants of Piedmont. PLoS ONE 2015, 10, e0116801. [Google Scholar] [CrossRef]
- Modi, A.; Lancioni, H.; Cardinali, I.; Capodiferro, M.R.; Rambaldi Migliore, N.; Hussein, A.; Strobl, C.; Bodner, M.; Schnaller, L.; Xavier, C.; et al. The Mitogenome Portrait of Umbria in Central Italy as Depicted by Contemporary Inhabitants and Pre-Roman Remains. Sci. Rep. 2020, 10, 10700. [Google Scholar] [CrossRef]
- Bodner, M.; Amory, C.; Olivieri, A.; Gandini, F.; Cardinali, I.; Lancioni, H.; Huber, G.; Xavier, C.; Pala, M.; Fichera, A.; et al. Helena’s Many Daughters: More Mitogenome Diversity behind the Most Common West Eurasian MtDNA Control Region Haplotype in an Extended Italian Population Sample. Int. J. Mol. Sci. 2022, 23, 6725. [Google Scholar] [CrossRef]
- Cardinali, I.; Bodner, M.; Capodiferro, M.R.; Amory, C.; Rambaldi Migliore, N.; Gomez, E.J.; Myagmar, E.; Dashzeveg, T.; Carano, F.; Woodward, S.R.; et al. Mitochondrial DNA Footprints from Western Eurasia in Modern Mongolia. Front. Genet. 2022, 12, 819337. [Google Scholar] [CrossRef]
- Alacs, E.A.; Georges, A.; FitzSimmons, N.N.; Robertson, J. DNA Detective: A Review of Molecular Approaches to Wildlife Forensics. Forensic Sci. Med. Pathol. 2010, 6, 180–194. [Google Scholar] [CrossRef]
- Kastelic, V.; Pośpiech, E.; Draus-Barini, J.; Branicki, W.; Drobnič, K. Prediction of Eye Color in the Slovenian Population Using the IrisPlex SNPs. Croat. Med. J. 2013, 54, 381–386. [Google Scholar] [CrossRef]
- Pośpiech, E.; Karłowska-Pik, J.; Marcińska, M.; Abidi, S.; Andersen, J.D.; van den Berge, M.; Carracedo, Á.; Eduardoff, M.; Freire-Aradas, A.; Morling, N.; et al. Evaluation of the Predictive Capacity of DNA Variants Associated with Straight Hair in Europeans. Forensic Sci. Int. Genet. 2015, 19, 280–288. [Google Scholar] [CrossRef]
- Brooks, A.; Creighton, E.K.; Gandolfi, B.; Khan, R.; Grahn, R.A.; Lyons, L.A. SNP Miniplexes for Individual Identification of Random-Bred Domestic Cats. J. Forensic Sci. 2016, 61, 594–606. [Google Scholar] [CrossRef]
- Raymond, P.W.; Velie, B.D.; Wade, C.M. Forensic DNA Phenotyping: Canis familiaris Breed Classification and Skeletal Phenotype Prediction Using Functionally Significant Skeletal SNPs and Indels. Anim. Genet. 2022, 53, 247–263. [Google Scholar] [CrossRef]
- Johnsson, M. Genomics in Animal Breeding from the Perspectives of Matrices and Molecules. Hereditas 2023, 160, 20. [Google Scholar] [CrossRef]
- Sin, T.-N.; Kim, S.; Li, Y.; Wang, J.; Chen, R.; Chung, S.H.; Kim, S.; Casanova, M.I.; Park, S.; Smit-McBride, Z.; et al. A Spontaneous Nonhuman Primate Model of Myopic Foveoschisis. Investig. Ophthalmol. Vis. Sci. 2023, 64, 18. [Google Scholar] [CrossRef]
- Yoshiki, A.; Ballard, G.; Perez, A.V. Genetic Quality: A Complex Issue for Experimental Study Reproducibility. Transgenic Res. 2022, 31, 413–430. [Google Scholar] [CrossRef] [PubMed]
- Benavides, F.; Rülicke, T.; Prins, J.-B.; Bussell, J.; Scavizzi, F.; Cinelli, P.; Herault, Y.; Wedekind, D. Genetic Quality Assurance and Genetic Monitoring of Laboratory Mice and Rats: FELASA Working Group Report. Lab. Anim. 2020, 54, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.P.F.; Woolliams, J.A. Precision Animal Breeding. Phil. Trans. R. Soc. B 2008, 363, 573–590. [Google Scholar] [CrossRef]
- Linacre, A.; Gusmão, L.; Hecht, W.; Hellmann, A.P.; Mayr, W.R.; Parson, W.; Prinz, M.; Schneider, P.M.; Morling, N. ISFG: Recommendations Regarding the Use of Non-Human (Animal) DNA in Forensic Genetic Investigations. Forensic Sci. Int. Genet. 2011, 5, 501–505. [Google Scholar] [CrossRef]
- Roccaro, M.; Bini, C.; Fais, P.; Merialdi, G.; Pelotti, S.; Peli, A. Who Killed My Dog? Use of Forensic Genetics to Investigate an Enigmatic Case. Int. J. Leg. Med. 2021, 135, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.N.; Wilson-Wilde, L.; Linacre, A. Current and Future Directions of DNA in Wildlife Forensic Science. Forensic Sci. Int. Genet. 2014, 10, 1–11. [Google Scholar] [CrossRef]
- Arenas, M.; Pereira, F.; Oliveira, M.; Pinto, N.; Lopes, A.M.; Gomes, V.; Carracedo, A.; Amorim, A. Forensic Genetics and Genomics: Much More than Just a Human Affair. PLoS Genet. 2017, 13, e1006960. [Google Scholar] [CrossRef]
- Moore, M.K.; Baker, B.W.; Bauman, T.L.; Burnham-Curtis, M.K.; Espinoza, E.O.; Ferrell, C.S.; Frankham, G.J.; Frazier, K.; Giles, J.L.; Hawk, D.; et al. The Society for Wildlife Forensic Science Standards and Guidelines. Forensic Sci. Int. Anim. Environ. 2021, 1, 100015. [Google Scholar] [CrossRef]
- Oostdik, K.; Lenz, K.; Nye, J.; Schelling, K.; Yet, D.; Bruski, S.; Strong, J.; Buchanan, C.; Sutton, J.; Linner, J.; et al. Developmental Validation of the PowerPlex® Fusion System for Analysis of Casework and Reference Samples: A 24-Locus Multiplex for New Database Standards. Forensic Sci. Int. Genet. 2014, 12, 69–76. [Google Scholar] [CrossRef]
- Tillmar, A.O.; Kling, D.; Butler, J.M.; Parson, W.; Prinz, M.; Schneider, P.M.; Egeland, T.; Gusmão, L. DNA Commission of the International Society for Forensic Genetics (ISFG): Guidelines on the Use of X-STRs in Kinship Analysis. Forensic Sci. Int. Genet. 2017, 29, 269–275. [Google Scholar] [CrossRef]
- Ludeman, M.J.; Zhong, C.; Mulero, J.J.; Lagacé, R.E.; Hennessy, L.K.; Short, M.L.; Wang, D.Y. Developmental Validation of GlobalFilerTM PCR Amplification Kit: A 6-Dye Multiplex Assay Designed for Amplification of Casework Samples. Int. J. Leg. Med. 2018, 132, 1555–1573. [Google Scholar] [CrossRef]
- Roewer, L.; Andersen, M.M.; Ballantyne, J.; Butler, J.M.; Caliebe, A.; Corach, D.; D’Amato, M.E.; Gusmão, L.; Hou, Y.; de Knijff, P.; et al. DNA Commission of the International Society of Forensic Genetics (ISFG): Recommendations on the Interpretation of Y-STR Results in Forensic Analysis. Forensic Sci. Int. Genet. 2020, 48, 102308. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, Z.; Wang, L.; Quan, C.; Liu, Q.; Tang, Z.; Liu, L.; Liu, Y.; Wang, S. Pairwise Kinship Testing with a Combination of STR and SNP Loci. Forensic Sci. Int. Genet. 2020, 46, 102265. [Google Scholar] [CrossRef]
- Gjertson, D.W.; Brenner, C.H.; Baur, M.P.; Carracedo, A.; Guidet, F.; Luque, J.A.; Lessig, R.; Mayr, W.R.; Pascali, V.L.; Prinz, M.; et al. ISFG: Recommendations on Biostatistics in Paternity Testing. Forensic Sci. Int. Genet. 2007, 1, 223–231. [Google Scholar] [CrossRef]
- Buckleton, J.; Triggs, C.M. Relatedness and DNA: Are We Taking It Seriously Enough? Forensic Sci. Int. 2005, 152, 115–119. [Google Scholar] [CrossRef]
- Morling, N.; Allen, R.W.; Carracedo, A.; Geada, H.; Guidet, F.; Hallenberg, C.; Martin, W.; Mayr, W.R.; Olaisen, B.; Pascali, V.L.; et al. Paternity Testing Commission of the International Society of Forensic Genetics: Recommendations on Genetic Investigations in Paternity Cases. Forensic Sci. Int. 2002, 129, 148–157. [Google Scholar] [CrossRef]
- Inokuchi, S.; Mizuno, N.; Nakanishi, H.; Saito, K.; Kitayama, T.; Fujii, K.; Nakahara, H.; Sekiguchi, K. Non-Specific Peaks Generated by Animal DNA during Human STR Analysis: Peak Characteristics and a Novel Analysis Method for Mixed Human/Animal Samples. Forensic Sci. Int. Genet. 2018, 37, 73–80. [Google Scholar] [CrossRef]
- Parson, W.; Pegoraro, K.; Niederstätter, H.; Föger, M.; Steinlechner, M. Species Identification by Means of the Cytochrome b Gene. Int. J. Leg. Med. 2000, 114, 23–28. [Google Scholar] [CrossRef]
- Berger, C.; Berger, B.; Parson, W. Sequence Analysis of the Canine Mitochondrial DNA Control Region from Shed Hair Samples in Criminal Investigations. In DNA Electrophoresis Protocols for Forensic Genetics; Alonso, A., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; Volume 830, pp. 331–348. ISBN 978-1-61779-460-5. [Google Scholar]
- Eichmann, C.; Parson, W. Molecular Characterization of the Canine Mitochondrial DNA Control Region for Forensic Applications. Int. J. Leg. Med. 2007, 121, 411–416. [Google Scholar] [CrossRef]
- Berger, C.; Heinrich, J.; Berger, B.; Hecht, W.; Parson, W.; on behalf of CaDNAP. Towards Forensic DNA Phenotyping for Predicting Visible Traits in Dogs. Genes 2021, 12, 908. [Google Scholar] [CrossRef]
- Schury, N.; Schleenbecker, U.; Hellmann, A.P. Forensic Animal DNA Typing: Allele Nomenclature and Standardization of 14 Feline STR Markers. Forensic Sci. Int. Genet. 2014, 12, 42–59. [Google Scholar] [CrossRef] [PubMed]
- Morf, N.V.; Kopps, A.M.; Nater, A.; Lendvay, B.; Vasiljevic, N.; Webster, L.M.I.; Fautley, R.G.; Ogden, R.; Kratzer, A. STRoe Deer: A Validated Forensic STR Profiling System for the European Roe Deer (Capreolus capreolus). Forensic Sci. Int. Anim. Environ. 2021, 1, 100023. [Google Scholar] [CrossRef]
- Plassais, J.; Kim, J.; Davis, B.W.; Karyadi, D.M.; Hogan, A.N.; Harris, A.C.; Decker, B.; Parker, H.G.; Ostrander, E.A. Whole Genome Sequencing of Canids Reveals Genomic Regions under Selection and Variants Influencing Morphology. Nat. Commun. 2019, 10, 1489. [Google Scholar] [CrossRef] [PubMed]
- Bannasch, D.L.; Baes, C.F.; Leeb, T. Genetic Variants Affecting Skeletal Morphology in Domestic Dogs. Trends Genet. 2020, 36, 598–609. [Google Scholar] [CrossRef]
- Friedrich, J.; Talenti, A.; Arvelius, P.; Strandberg, E.; Haskell, M.J.; Wiener, P. Unravelling Selection Signatures in a Single Dog Breed Suggests Recent Selection for Morphological and Behavioral Traits. Adv. Genet. 2020, 1, e10024. [Google Scholar] [CrossRef]
- Schneider, P.M.; Prainsack, B.; Kayser, M. The Use of Forensic DNA Phenotyping in Predicting Appearance and Biogeographic Ancestry. Dtsch. Ärztebl. Int. 2019, 116, 873. [Google Scholar] [CrossRef]
- Berger, B.; Berger, C.; Heinrich, J.; Niederstätter, H.; Hecht, W.; Hellmann, A.; Rohleder, U.; Schleenbecker, U.; Morf, N.; Freire-Aradas, A.; et al. Dog Breed Affiliation with a Forensically Validated Canine STR Set. Forensic Sci. Int. Genet. 2018, 37, 126–134. [Google Scholar] [CrossRef]
- Barrientos, L.S.; Crespi, J.A.; Fameli, A.; Posik, D.M.; Morales, H.; Peral García, P.; Giovambattista, G. DNA Profile of Dog Feces as Evidence to Solve a Homicide. Leg. Med. 2016, 22, 54–57. [Google Scholar] [CrossRef]
- Lindquist, C.D.; Wictum, E.J. Less Is More-Optimization of DNA Extraction from Canine Feces. J. Forensic Sci. 2016, 61, 212–218. [Google Scholar] [CrossRef]
- Tsokos, M.; Byard, R.W.; Püschel, K. Extensive and Mutilating Craniofacial Trauma Involving Defleshing and Decapitation: Unusual Features of Fatal Dog Attacks in the Young. Am. J. Forensic Med. Pathol. 2007, 28, 131–136. [Google Scholar] [CrossRef]
- Fonseca, G.; Mora, E.; Lucena, J.; Cantín, M. Forensic Studies of Dog Attacks on Humans: A Focus on Bite Mark Analysis. RRFMS 2015, 2015, 39–51. [Google Scholar] [CrossRef]
- Santoro, V.; Smaldone, G.; Lozito, P.; Smaldone, M.; Introna, F. A Forensic Approach to Fatal Dog Attacks. A Case Study and Review of the Literature. Forensic Sci. Int. 2011, 206, e37–e42. [Google Scholar] [CrossRef]
- Kneafsey, B.; Condon, K.C. Severe dog-bite injuries, introducing the concept of pack attack: A literature review and seven case reports. Injury 1995, 26, 37–41. [Google Scholar] [CrossRef]
- Bernitz, H.; Bernitz, Z.; Steenkamp, G.; Blumenthal, R.; Stols, G. The Individualisation of a Dog Bite Mark: A Case Study Highlighting the Bite Mark Analysis, with Emphasis on Differences between Dog and Human Bite Marks. Int. J. Leg. Med. 2012, 126, 441–446. [Google Scholar] [CrossRef]
- De Munnynck, K.; Van de Voorde, W. Forensic Approach of Fatal Dog Attacks: A Case Report and Literature Review. Int. J. Leg. Med. 2002, 116, 295–300. [Google Scholar] [CrossRef]
- Byard, R.W.; James, R.A.; Gilbert, J.D. Diagnostic Problems Associated with Cadaveric Trauma from Animal Activity. Am. J. Forensic Med. Pathol. 2002, 23, 238–244. [Google Scholar] [CrossRef]
- Iarussi, F.; Cipolloni, L.; Bertozzi, G.; Sasso, L.; Ferrara, M.; Salerno, M.; Rubino, G.T.R.; Maglietta, F.; Dinisi, A.; Albano, D.; et al. Dog-Bite-Related Attacks: A New Forensic Approach. Forensic Sci. Int. 2020, 310, 110254. [Google Scholar] [CrossRef]
- Moore, M.K.; Frazier, K. Humans Are Animals, Too: Critical Commonalities and Differences Between Human and Wildlife Forensic Genetics. J. Forensic Sci. 2019, 64, 1603–1621. [Google Scholar] [CrossRef]
- Ogden, R.; Dawnay, N.; McEwing, R. Wildlife DNA Forensics—Bridging the Gap between Conservation Genetics and Law Enforcement. Endang. Species Res. 2009, 9, 179–195. [Google Scholar] [CrossRef]
- Morf, N.V.; Wood, K.L.; Köppel, R.; Felderer, N.; Daniels, M.; Tenger, B.; Kratzer, A. A Multiplex PCR Method to Identify Bushmeat Species in Wildlife Forensics. Forensic Sci. Int. Genet. Suppl. Ser. 2013, 4, e202–e203. [Google Scholar] [CrossRef]
- Karabasanavar, N.S.; Singh, S.P.; Kumar, D.; Shebannavar, S.N. Detection of Pork Adulteration by Highly-Specific PCR Assay of Mitochondrial D-Loop. Food Chem. 2014, 145, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Hossain, M.S.; Munshi, M.K.; Huque, R. Detection of Species Adulteration in Meat Products and Mozzarella-Type Cheeses Using Duplex PCR of Mitochondrial Cyt b Gene: A Food Safety Concern in Bangladesh. Food Chem. Mol. Sci. 2021, 2, 100017. [Google Scholar] [CrossRef]
- Gupta, S.K.; Verma, S.K.; Singh, L. Molecular Insight into a Wildlife Crime: The Case of a Peafowl Slaughter. Forensic Sci. Int. 2005, 154, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Hajibabaei, M.; Smith, M.A.; Janzen, D.H.; Rodriguez, J.J.; Whitfield, J.B.; Hebert, P.D.N. A Minimalist Barcode Can Identify a Specimen Whose DNA Is Degraded: Barcoding. Mol. Ecol. Notes 2006, 6, 959–964. [Google Scholar] [CrossRef]
- Ashrifurrahman, A.; Simamora, S.; Ritonga, R.; Novarino, W.; Tjong, D.H.; Rizaldi, R.; Syaifullah, S.; Roesma, D.I. Sumatran Tiger Identification and Phylogenetic Analysis Based on the CO1 Gene: Molecular Forensic Application. Biodiversitas 2022, 23, 1788–1794. [Google Scholar] [CrossRef]
- Rodionov, A.; Deniskova, T.; Dotsev, A.; Volkova, V.; Petrov, S.; Kharzinova, V.; Koshkina, O.; Abdelmanova, A.; Solovieva, A.; Shakhin, A.; et al. Combination of Multiple Microsatellite Analysis and Genome-Wide SNP Genotyping Helps to Solve Wildlife Crime: A Case Study of Poaching of a Caucasian Tur (Capra caucasica) in Russian Mountain National Park. Animals 2021, 11, 3416. [Google Scholar] [CrossRef]
- Lancioni, H.; Di Lorenzo, P.; Cardinali, I.; Ceccobelli, S.; Capodiferro, M.R.; Fichera, A.; Grugni, V.; Semino, O.; Ferretti, L.; Gruppetta, A.; et al. Survey of Uniparental Genetic Markers in the Maltese Cattle Breed Reveals a Significant Founder Effect but Does Not Indicate Local Domestication. Anim. Genet. 2016, 47, 267–269. [Google Scholar] [CrossRef]
- Giontella, A.; Cardinali, I.; Pieramati, C.; Cherchi, R.; Biggio, G.P.; Achilli, A.; Silvestrelli, M.; Lancioni, H. A Genetic Window on Sardinian Native Horse Breeds through Uniparental Molecular Systems. Animals 2020, 10, 1544. [Google Scholar] [CrossRef]
- Heidegger, A.; Pisarek, A.; de la Puente, M.; Niederstätter, H.; Pośpiech, E.; Woźniak, A.; Schury, N.; Unterländer, M.; Sidstedt, M.; Junker, K.; et al. Development and Inter-Laboratory Validation of the VISAGE Enhanced Tool for Age Estimation from Semen Using Quantitative DNA Methylation Analysis. Forensic Sci. Int. Genet. 2022, 56, 102596. [Google Scholar] [CrossRef]
- de la Puente, M.; Ruiz-Ramírez, J.; Ambroa-Conde, A.; Xavier, C.; Pardo-Seco, J.; Álvarez-Dios, J.; Freire-Aradas, A.; Mosquera-Miguel, A.; Gross, T.E.; Cheung, E.Y.Y.; et al. Development and Evaluation of the Ancestry Informative Marker Panel of the VISAGE Basic Tool. Genes 2021, 12, 1284. [Google Scholar] [CrossRef]
- Katsara, M.-A.; Branicki, W.; Walsh, S.; Kayser, M.; Nothnagel, M. Evaluation of Supervised Machine-Learning Methods for Predicting Appearance Traits from DNA. Forensic Sci. Int. Genet. 2021, 53, 102507. [Google Scholar] [CrossRef]
- Potoczniak, M.J.; Chermak, M.; Quarino, L.; Tobe, S.S.; Conte, J. Development of a Multiplex, PCR-Based Genotyping Assay for African and Asian Elephants for Forensic Purposes. Int. J. Leg. Med. 2020, 134, 55–62. [Google Scholar] [CrossRef]
- Brustad, H.K.; Colucci, M.; Jobling, M.A.; Sheehan, N.A.; Egeland, T. Strategies for Pairwise Searches in Forensic Kinship Analysis. Forensic Sci. Int. Genet. 2021, 54, 102562. [Google Scholar] [CrossRef]
- Lendvay, B.; Cartier, L.E.; Gysi, M.; Meyer, J.B.; Krzemnicki, M.S.; Kratzer, A.; Morf, N.V. DNA Fingerprinting: An Effective Tool for Taxonomic Identification of Precious Corals in Jewelry. Sci. Rep. 2020, 10, 8287. [Google Scholar] [CrossRef]
- Gupta, S.K.; Bhagavatula, J.; Thangaraj, K.; Singh, L. Establishing the Identity of the Massacred Tigress in a Case of Wildlife Crime. Forensic Sci. Int. Genet. 2011, 5, 74–75. [Google Scholar] [CrossRef]
- Magliolo, M.; Prost, S.; Orozco-terWengel, P.; Burger, P.; Kropff, A.S.; Kotze, A.; Grobler, J.P.; Dalton, D.L. Unlocking the Potential of a Validated Single Nucleotide Polymorphism Array for Genomic Monitoring of Trade in Cheetahs (Acinonyx jubatus). Mol. Biol. Rep. 2021, 48, 171–181. [Google Scholar] [CrossRef]
- Børsting, C.; Morling, N. Next Generation Sequencing and Its Applications in Forensic Genetics. Forensic Sci. Int. Genet. 2015, 18, 78–89. [Google Scholar] [CrossRef]
- Ballard, D.; Winkler-Galicki, J.; Wesoły, J. Massive Parallel Sequencing in Forensics: Advantages, Issues, Technicalities, and Prospects. Int. J. Leg. Med. 2020, 134, 1291–1303. [Google Scholar] [CrossRef]
- Giardina, E.; Ragazzo, M. Special Issue “Forensic Genetics and Genomics”. Genes 2021, 12, 158. [Google Scholar] [CrossRef]
- Plesivkova, D.; Richards, R.; Harbison, S. A Review of the Potential of the MinIONTM Single-molecule Sequencing System for Forensic Applications. WIREs Forensic Sci. 2019, 1, e1323. [Google Scholar] [CrossRef]
- Maestri, S.; Cosentino, E.; Paterno, M.; Freitag, H.; Garces, J.M.; Marcolungo, L.; Alfano, M.; Njunjić, I.; Schilthuizen, M.; Slik, F.; et al. A Rapid and Accurate MinION-Based Workflow for Tracking Species Biodiversity in the Field. Genes 2019, 10, 468. [Google Scholar] [CrossRef] [PubMed]
- Vasiljevic, N.; Lim, M.; Humble, E.; Seah, A.; Kratzer, A.; Morf, N.V.; Prost, S.; Ogden, R. Developmental Validation of Oxford Nanopore Technology MinION Sequence Data and the NGSpeciesID Bioinformatic Pipeline for Forensic Genetic Species Identification. Forensic Sci. Int. Genet. 2021, 53, 102493. [Google Scholar] [CrossRef] [PubMed]
- Ogden, R.; Vasiljevic, N.; Prost, S. Nanopore Sequencing in Non-Human Forensic Genetics. Emerg. Top. Life Sci. 2021, 5, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Tytgat, O.; Gansemans, Y.; Weymaere, J.; Rubben, K.; Deforce, D.; Van Nieuwerburgh, F. Nanopore Sequencing of a Forensic STR Multiplex Reveals Loci Suitable for Single-Contributor STR Profiling. Genes 2020, 11, 381. [Google Scholar] [CrossRef]
- Ren, Z.-L.; Zhang, J.-R.; Zhang, X.-M.; Liu, X.; Lin, Y.-F.; Bai, H.; Wang, M.-C.; Cheng, F.; Liu, J.-D.; Li, P.; et al. Forensic Nanopore Sequencing of STRs and SNPs Using Verogen’s ForenSeq DNA Signature Prep Kit and MinION. Int. J. Leg. Med. 2021, 135, 1685–1693. [Google Scholar] [CrossRef]
- Hall, C.L.; Kesharwani, R.K.; Phillips, N.R.; Planz, J.V.; Sedlazeck, F.J.; Zascavage, R.R. Accurate Profiling of Forensic Autosomal STRs Using the Oxford Nanopore Technologies MinION Device. Forensic Sci. Int. Genet. 2022, 56, 102629. [Google Scholar] [CrossRef]
Database | Website | Description |
---|---|---|
ADW (Animal Diversity Web) | https://animaldiversity.org/ | Online database of animal natural history, distribution, classification, and conservation biology |
Avibase (The World Bird Database) | https://avibase.bsc-eoc.org/ | Extensive database information system about all birds of the world |
Barcode of Life Data System | https://www.boldsystems.org/ | Online workbench and database of DNA barcode data |
CABI (Commonwealth Agricultural Bureaux International) | https://www.cabi.org/product-training/online-resources/ | Bibliographic Database |
DDBJ (DNA Data Bank of Japan) | https://www.ddbj.nig.ac.jp/ | DNA Database |
EMBL (European Molecular Biology Laboratory) | https://www.embl.org/ | Intergovernmental organization focused on molecular biology |
FAO (Food and Agriculture Organization) | https://www.fao.org/home/en/ | Specialized agency of the United Nations |
Fauna Europaea | https://fauna-eu.org/ | Main zoological taxonomic index in Europe |
FishBase | https://www.fishbase.se/ | Database on the biology of fish |
ForCyt Project | https://www.ForCyt.org | Fully regulated database of species encountered in forensic investigations |
GenBank | https://www.ncbi.nlm.nih.gov/genbank/ | Genetic Sequence Database in NCBI (National Center for Biotechnology Information) |
IBAT (Integrated Biodiversity Assessment Tool) | https://www.ibat-alliance.org/ | Database of the global biodiversity |
Loxodonta Localizer | https://www.loxodontalocalizer.org/ | Tool for inferring the provenance of African Elephants and their ivory using mtDNA |
NatureServe | https://www.natureserve.org/ | Source for conservation science and biodiversity data in North America |
RhODIS (Rhino DNA Index System) | http://rhodis.co.za/ | Store of the genetic fingerprint of every rhino that has been sampled |
Systema Naturae | https://systemanaturae.org/ | Database for the protection of biodiversity |
Wild Welfare | https://wildwelfare.org/ | Online zoo animal databases and associations for the wild welfare |
WoRMS (World Register of Marine Species) | https://www.marinespecies.org/index.php | List of names of marine organisms, including information on synonymy |
Zoonomia Project | https://zoonomiaproject.org/ | International collaboration to discover the genomic basis of shared and specialized traits in mammals |
Genetic Marker | Applications/ Advantages | Limitations/ Recommendations | References |
---|---|---|---|
STR | Individual/population identification and kinship testing; many characterized species | Lack of representative samples (wild species) and high-quality genomic sequences; presence of artifacts; integrity and traceability of sample collection | [8,75,78,79] |
Y-chromosome STR | Gender identification, resolving paternity and family structures | Uncharacterized for many animal species | [75,78] |
X-chromosome STR | Gender identification, resolving paternity and family structures | Uncharacterized for many animal species | [75,78] |
Autosomal SNPs | Individual identification | Highly degraded or low template DNA | [75,78] |
Mitochondrial DNA | Species identification; high copy number per cell; useful in degraded samples | Not used for individual or breed identification | [75,78] |
Genetic Marker | Applications/ Advantages | Limitations/ Recommendations | References |
---|---|---|---|
STR | Technical robustness and high variation among individuals; several commercial kits; high level of discrimination, standardized across laboratories | PCR artifacts; highly degraded or low template DNA; certain degree of linkage between some STR markers | [8,80,81,82] |
Y-chromosome STR | Gender identification, resolving paternity and family structures | Database sufficiently large and continuously expanded; samples need to be collected randomly; each haplotype submission must include metadata | [83] |
X-chromosome STR | Gender identification, resolving paternity and family structures | Evaluation of DNA mixture profiles and linked markers | [81] |
Autosomal SNPs | Individual identification; information about physical traits | Highly degraded or low template DNA | [81] |
Mitochondrial DNA | High copy number per cell; useful in degraded samples; existence of rich population databases; software tools for phylogenetic checks and data quality control | Inter-laboratory differences about the interpretation of length and point heteroplasmy; not used for individual or breed identification | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardinali, I.; Tancredi, D.; Lancioni, H. The Revolution of Animal Genomics in Forensic Sciences. Int. J. Mol. Sci. 2023, 24, 8821. https://doi.org/10.3390/ijms24108821
Cardinali I, Tancredi D, Lancioni H. The Revolution of Animal Genomics in Forensic Sciences. International Journal of Molecular Sciences. 2023; 24(10):8821. https://doi.org/10.3390/ijms24108821
Chicago/Turabian StyleCardinali, Irene, Domenico Tancredi, and Hovirag Lancioni. 2023. "The Revolution of Animal Genomics in Forensic Sciences" International Journal of Molecular Sciences 24, no. 10: 8821. https://doi.org/10.3390/ijms24108821
APA StyleCardinali, I., Tancredi, D., & Lancioni, H. (2023). The Revolution of Animal Genomics in Forensic Sciences. International Journal of Molecular Sciences, 24(10), 8821. https://doi.org/10.3390/ijms24108821