Potential Role for Stem Cell Regenerative Therapy as a Treatment for Degenerative Disc Disease and Low Back Pain: A Systematic Review
Abstract
:1. Introduction
1.1. Structure and Anatomy of Intervertebral Discs
1.2. Pathophysiology of Degenerative Disc Disease and Back Pain
1.3. Stem Cell Regenerative Therapies and Discogenic Back Pain
2. Methods
3. Results and Discussion
3.1. Literature Search Results
3.2. Patient Characteristics and Demographics
3.3. Clinical Studies: Potential Role of Stem Cell Therapy for Degenerative Disc Disease and Low Back Pain
3.4. Clinical Trials: Current and Emerging Cell Therapies for Intervertebral Degenerative Disc Disease
3.5. Allogenic Bone Marrow Mesenchymal Stem Cell
3.6. Allogenic Discogenic Cells
3.7. Autologous Bone Marrow Mesenchymal Stem Cells
3.8. Adipose Mesenchymal Stem Cells
3.9. Human Umbilical Cord Mesenchymal Stem Cells
3.10. Adult Juvenile Chondrocytes
3.11. Autologous Disc Derived Chondrocytes
3.12. Other Clinical Investigations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohr, C.; Seffinger, M.A. Cost-Effective Management of Low Back and Joint Pain by Specialty. J. Am. Osteopath. Assoc. 2017, 117, 332. [Google Scholar] [CrossRef]
- Donelson, R.; Spratt, K.; McClellan, W.S.; Gray, R.; Miller, J.M.; Gatmaitan, E. The cost impact of a quality-assured mechanical assessment in primary low back pain care. J. Man. Manip. Ther. 2019, 27, 277–286. [Google Scholar] [CrossRef]
- Hoy, D.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Bain, C.; Williams, G.; Smith, E.; Vos, T.; Barendregt, J.; et al. The global burden of low back pain: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 2014, 73, 968–974. [Google Scholar] [CrossRef]
- Olafsson, G.; Jonsson, E.; Fritzell, P.; Hägg, O.; Borgström, F. Cost of low back pain: Results from a national register study in Sweden. Eur. Spine J. 2018, 27, 2875–2881. [Google Scholar] [CrossRef]
- Sumida, T.; Kitadai, Y.; Masuda, H.; Shinagawa, K.; Tanaka, M.; Kodama, M.; Kuroda, T.; Hiyama, T.; Tanaka, S.; Nakayama, H.; et al. Rapid progression of Epstein-Barr-virus-positive gastric diffuse large B-cell lymphoma during chemoradiotherapy: A case report. Clin. J. Gastroenterol. 2008, 1, 105–109. [Google Scholar] [CrossRef]
- Deyo, R.A.M.; Dworkin, S.F.D.; Amtmann, D.; Andersson, G.M.; Borenstein, D.; Carragee, E.; Carrino, J.M.; Chou, R.; Cook, K.; DeLitto, A.P.; et al. Focus article report of the NIH task force on research standards for chronic low back pain. Clin. J. Pain 2014, 30, 701–712. [Google Scholar] [CrossRef]
- Battié, M.C.; Videman, T.; Levalahti, E.; Gill, K.; Kaprio, J. Heritability of low back pain and the role of disc degeneration. Pain 2007, 131, 272–280. [Google Scholar] [CrossRef]
- Mirza, S.K.; White, A.A., 3rd. Anatomy of intervertebral disc and pathophysiology of herniated disc disease. J. Clin. Laser Med. Surg. 1995, 13, 131–142. [Google Scholar]
- Wang, Y.; Owoc, J.S.; Boyd, S.K.; Videman, T.; Battié, M.C. Regional variations in trabecular architecture of the lumbar vertebra: Associations with age, disc degeneration and disc space narrowing. Bone 2013, 56, 249–254. [Google Scholar] [CrossRef]
- Smith, L.J.; Fazzalari, N.L. Regional variations in the density and arrangement of elastic fibres in the anulus fibrosus of the human lumbar disc. J. Anat. 2006, 209, 359–367. [Google Scholar] [CrossRef]
- Zeckser, J.; Wolff, M.; Tucker, J.; Goodwin, J. Multipotent Mesenchymal Stem Cell Treatment for Discogenic Low Back Pain and Disc Degeneration. Stem Cells Int. 2016, 2016, 3908389. [Google Scholar] [CrossRef]
- Peng, B.; Wu, W.; Hou, S.; Li, P.; Zhang, C.; Yang, Y. The pathogenesis of discogenic low back pain. J. Bone Jt. Surg. Br. 2005, 87, 62–67. [Google Scholar] [CrossRef]
- Stefanakis, M.; Al-Abbasi, M.; Harding, I.; Pollintine, P.; Dolan, P.; Tarlton, J.; Adams, M.A. Annulus fissures are mechanically and chemically conducive to the ingrowth of nerves and blood vessels. Spine 2012, 37, 1883–1891. [Google Scholar] [CrossRef]
- Johnson, W.E.; Eisenstein, S.M.; Roberts, S. Cell cluster formation in degenerate lumbar intervertebral discs is associated with increased disc cell proliferation. Connect. Tissue Res. 2001, 42, 197–207. [Google Scholar] [CrossRef]
- Lama, P.; Le Maitre, C.L.; Harding, I.J.; Dolan, P.; Adams, M.A. Nerves and blood vessels in degenerated intervertebral discs are confined to physically disrupted tissue. J. Anat. 2018, 233, 86–97. [Google Scholar] [CrossRef]
- Vernon-Roberts, B.; Moore, R.J.; Fraser, R.D. The natural history of age-related disc degeneration: The influence of age and pathology on cell populations in the L4–L5 disc. Spine 2008, 33, 2767–2773. [Google Scholar] [CrossRef]
- Macfarlane, G.; Thomas, E.; Papageorgiou, A.C.; Croft, P.R.; Jayson, M.I.V.; Silman, A.J. Employment and physical work activities as predictors of future low back pain. Spine 1997, 22, 1143–1149. [Google Scholar] [CrossRef]
- Papageorgiou, A.C.; Croft, P.R.; Ferry, S.; Jayson, M.I.V.; Silman, A.J. Estimating the prevalence of low back pain in the general population. Evidence from the South Manchester Back Pain Survey. Spine 1995, 20, 1889–1894. [Google Scholar] [CrossRef]
- Papageorgiou, A.C.; Croft, P.R.; Thomas, E.; Silman, A.J.; Macfarlane, G.J. Psychosocial risks for low back pain: Are these related to work? Ann. Rheum. Dis. 1998, 57, 500–502. [Google Scholar] [CrossRef]
- Skovron, M.L.; Szpalski, M.; Nordin, M.; Melot, C.; Cukier, D. Sociocultural factors and back pain. A population-based study in Belgian adults. Spine 1994, 19, 129–137. [Google Scholar] [CrossRef]
- Adams, M.A.; Roughley, P.J. What is intervertebral disc degeneration, and what causes it? Spine 2006, 31, 2151–2161. [Google Scholar] [CrossRef]
- Vo, N.V.; Hartman, R.A.; Patil, P.R.; Risbud, M.V.; Kletsas, D.; Iatridis, J.C.; Hoyland, J.A.; Le Maitre, C.L.; Sowa, G.A.; Kang, J.D. Molecular mechanisms of biological aging in intervertebral discs. J. Orthop. Res. 2016, 34, 1289–1306. [Google Scholar] [CrossRef]
- Keller, T.S.; Hansson, T.H.; Abram, A.C.; Spengler, D.M.; Panjabi, M.M. Regional variations in the compressive properties of lumbar vertebral trabeculae. Effects of disc degeneration. Spine 1989, 14, 1012–1019. [Google Scholar] [CrossRef]
- Bogduk, N.; Aprill, C.; Derby, R. Lumbar discogenic pain: State-of-the-art review. Pain Med. 2013, 14, 813–836. [Google Scholar] [CrossRef]
- Bogduk, N.; Bogduk, N. Clinical and Radiological Anatomy of the Lumbar Spine, 5th ed.; Elsevier: Amsterdam, The Netherlands; Churchill Livingstone: Edinburgh, UK, 2012; Volume xii, 260p. [Google Scholar]
- Freemont, A.; Peacock, T.; Goupille, P.; Hoyland, J.; O’Brien, J.; Jayson, M. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 1997, 350, 178–181. [Google Scholar] [CrossRef]
- He, L.; Hu, X.; Tang, Y.; Li, X.; Zheng, S.; Ni, J. Efficacy of coblation annuloplasty in discogenic low back pain: A prospective observational study. Medicine 2015, 94, e846. [Google Scholar] [CrossRef]
- Manchikanti, L.; Singh, V.; Pampati, V.; Damron, K.S.; Barnhill, R.C.; Beyer, C.; Cash, K.A. Evaluation of the relative contributions of various structures in chronic low back pain. Pain Physician 2001, 4, 308–316. [Google Scholar] [CrossRef]
- Richardson, S.M.; Hoyland, J.A.; Mobasheri, R.; Csaki, C.; Shakibaei, M.; Mobasheri, A. Mesenchymal stem cells in regenerative medicine: Opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J. Cell. Physiol. 2010, 222, 23–32. [Google Scholar] [CrossRef]
- Duffy, R.L. Low back pain: An approach to diagnosis and management. Prim. Care 2010, 37, 729–741. [Google Scholar] [CrossRef]
- Foster, N.E.; Anema, J.R.; Cherkin, D.; Chou, R.; Cohen, S.P.; Gross, D.P.; Ferreira, P.H.; Fritz, J.M.; Koes, B.W.; Peul, W.; et al. Prevention and treatment of low back pain: Evidence, challenges, and promising directions. Lancet 2018, 391, 2368–2383. [Google Scholar] [CrossRef]
- Heuch, I.; Foss, I.S. Acute low back usually resolves quickly but persistent low back pain often persists. J. Physiother. 2013, 59, 127. [Google Scholar] [CrossRef] [PubMed]
- Dowdell, J.; Erwin, M.; Choma, T.; Vaccaro, A.; Iatridis, J.; Cho, S.K. Intervertebral Disk Degeneration and Repair. Neurosurgery 2017, 80, S46–S54. [Google Scholar] [CrossRef]
- Urits, I.; Capuco, A.; Sharma, M.; Kaye, A.D.; Viswanath, O.; Cornett, E.M.; Orhurhu, V. Stem Cell Therapies for Treatment of Discogenic Low Back Pain: A Comprehensive Review. Curr. Pain Headache Rep. 2019, 23, 65. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef] [PubMed]
- De Coppi, P.; Bartsch, G.; Siddiqui, M.; Xu, T.; Santos, C.C.; Perin, L.; Mostoslavsky, G.; Serre, A.C.; Snyder, E.Y.; Yoo, J.J.; et al. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 2007, 25, 100–106. [Google Scholar] [CrossRef]
- Guilak, F.; Estes, B.T.; Diekman, B.O.; Moutos, F.T.; Gimble, J.M. 2010 Nicolas Andry Award: Multipotent Adult Stem Cells from Adipose Tissue for Musculoskeletal Tissue Engineering. Clin. Orthop. Relat. Res. 2010, 468, 2530–2540. [Google Scholar] [CrossRef]
- Murphy, M.B.; Moncivais, K.; I Caplan, A. Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp. Mol. Med. 2013, 45, e54. [Google Scholar] [CrossRef]
- Pittenger, M.F. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef]
- Silverman, L.I.; Dulatova, G.; Tandeski, T.; Erickson, I.E.; Lundell, B.; Toplon, D.; Wolff, T.; Howard, A.; Chintalacharuvu, S.; Foley, K.T. In vitro and in vivo evaluation of discogenic cells, an investigational cell therapy for disc degeneration. Spine J. 2020, 20, 138–149. [Google Scholar] [CrossRef]
- Djouad, F.; Bouffi, C.; Ghannam, S.; Noël, D.; Jorgensen, C. Mesenchymal stem cells: Innovative therapeutic tools for rheumatic diseases. Nat. Rev. Rheumatol. 2009, 5, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Freitag, J.; Kenihan, M.A. Mesenchymal Stem Cell Therapy in Osteoarthritis and Regenerative Medicine. Curr. Sport. Med. Rep. 2018, 17, 441–443. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.D. Stem Cells and Discogenic Low Back Pain. Spine 2016, 41, S11–S12. [Google Scholar] [CrossRef]
- Miguélez-Rivera, L.; Pérez-Castrillo, S.; González-Fernández, M.L.; Prieto-Fernández, J.G.; López-González, M.E.; García-Cosamalón, J.; Villar-Suárez, V. Immunomodulation of mesenchymal stem cells in discogenic pain. Spine J. 2018, 18, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Orozco, L.; Soler, R.; Morera, C.; Alberca, M.; Sánchez, A.; Garcia-Sancho, J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: A pilot study. Transplantation 2011, 92, 822–828. [Google Scholar] [CrossRef]
- Pettine, K.A.; Suzuki, R.K.; Sand, T.T.; Murphy, M.B. Autologous bone marrow concentrate intradiscal injection for the treatment of degenerative disc disease with three-year follow-up. Int. Orthop. 2017, 41, 2097–2103. [Google Scholar] [CrossRef]
- Centeno, C.; Markle, J.; Dodson, E.; Stemper, I.; Williams, C.J.; Hyzy, M.; Ichim, T.; Freeman, M. Treatment of lumbar degenerative disc disease-associated radicular pain with culture-expanded autologous mesenchymal stem cells: A pilot study on safety and efficacy. J. Transl. Med. 2017, 15, 197. [Google Scholar] [CrossRef]
- Elabd, C.; Centeno, C.J.; Schultz, J.R.; Lutz, G.; Ichim, T.; Silva, F.J. Intra-discal injection of autologous, hypoxic cultured bone marrow-derived mesenchymal stem cells in five patients with chronic lower back pain: A long-term safety and feasibility study. J. Transl. Med. 2016, 14, 253. [Google Scholar] [CrossRef]
- Kumar, H.; Ha, D.-H.; Lee, E.-J.; Park, J.H.; Shim, J.H.; Ahn, T.-K.; Kim, K.-T.; Ropper, A.E.; Sohn, S.; Kim, C.-H.; et al. Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase I study. Stem Cell Res. Ther. 2017, 8, 262. [Google Scholar] [CrossRef]
- Mochida, J.; Sakai, D.; Nakamura, Y.; Watanabe, T.; Yamamoto, Y.; Kato, S. Intervertebral disc repair with activated nucleus pulposus cell transplantation: A three-year, prospective clinical study of its safety. Eur. Cells Mater. 2015, 29, 202–212; discussion 212. [Google Scholar] [CrossRef]
- Noriega, D.C.; Ardura, F.; Hernández-Ramajo, R.; Martín-Ferrero, M.Á.; Sánchez-Lite, I.; Toribio, B.; Alberca, M.; García, V.; Moraleda, J.M.; Sánchez, A.; et al. Intervertebral Disc Repair by Allogeneic Mesenchymal Bone Marrow Cells. Transplantation 2017, 101, 1945–1951. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Yang, H.; Peng, B. Human umbilical cord mesenchymal stem cell transplantation for the treatment of chronic discogenic low back pain. Pain Physician 2014, 17, E525–E530. [Google Scholar] [CrossRef] [PubMed]
- Pettine, K.A.; Murphy, M.B.; Suzuki, R.K.; Sand, T.T. Percutaneous Injection of Autologous Bone Marrow Concentrate Cells Significantly Reduces Lumbar Discogenic Pain Through 12 Months. Stem Cells 2014, 33, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Pettine, K.; Suzuki, R.; Sand, T.; Murphy, M. Treatment of discogenic back pain with autologous bone marrow concentrate injection with minimum two year follow-up. Int. Orthop. 2015, 40, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Childs, J.D.; Piva, S.R. Psychometric properties of the functional rating index in patients with low back pain. Eur. Spine J. 2005, 14, 1013. [Google Scholar] [CrossRef]
- Henriksson, H.; Thornemo, M.; Karlsson, C.; Hägg, O.; Junevik, K.; Lindahl, A.; Brisby, H. Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: A study in four species. Spine 2009, 34, 2278–2287. [Google Scholar]
- Sakai, D.; Mochida, J.; Iwashina, T.; Watanabe, T.; Nakai, T.; Ando, K.; Hotta, T. Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: Potential and limitations for stem cell therapy in disc regeneration. Spine 2005, 30, 2379–2387. [Google Scholar] [CrossRef]
- Sakai, D.; Mochida, J.; Iwashina, T.; Watanabe, T.; Nakai, T.; Ando, K.; Hotta, T. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials 2006, 27, 335–345. [Google Scholar] [CrossRef]
- Kawada, H.; Ando, K.; Tsuji, T.; Shimakura, Y.; Nakamura, Y.; Chargui, J.; Hagihara, M.; Itagaki, H.; Shimizu, T.; Inokuchi, S.; et al. Rapid ex vivo expansion of human umbilical cord hematopoietic progenitors using a novel culture system. Exp. Hematol. 1999, 27, 904–915. [Google Scholar]
- Crevensten, G.; Walsh, A.J.L.; Ananthakrishnan, D.; Page, P.; Wahba, G.M.; Lotz, J.C.; Berven, S. Intervertebral disc cell therapy for regeneration: Mesenchymal stem cell implantation in rat intervertebral discs. Ann. Biomed. Eng. 2004, 32, 430–434. [Google Scholar] [CrossRef]
- Ghosh, P.; Moore, R.J.; Vernon-Roberts, B.; Goldschlager, T.; Pascoe, D.; Zannettino, A.; Gronthos, S.; Itescu, S. Immunoselected STRO-3+ mesenchymal precursor cells and restoration of the extracellular matrix of degenerate intervertebral discs. J. Neurosurg. Spine 2012, 16, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Hiyama, A.; Mochida, J.; Sakai, D. Stem cell applications in intervertebral disc repair. Cell. Mol. Biol. 2008, 54, 24–32. [Google Scholar] [PubMed]
- Hohaus, C.; Ganey, T.M.; Minkus, Y.; Meisel, H.J. Cell transplantation in lumbar spine disc degeneration disease. Eur. Spine J. 2008, 17, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; He, J.; Li, R. Appropriateness of sham or placebo acupuncture for randomized controlled trials of acupuncture for nonspecific low back pain: A systematic review and meta-analysis. J. Pain Res. 2017, 11, 83–94. [Google Scholar] [CrossRef]
- Wang, Z.; Perez-Terzic, C.M.; Smith, J.; Mauck, W.D.; Shelerud, R.A.; Maus, T.P.; Yang, T.-H.; Murad, M.H.; Gou, S.; Terry, M.J.; et al. Efficacy of intervertebral disc regeneration with stem cells—A systematic review and meta-analysis of animal controlled trials. Gene 2015, 564, 1–8. [Google Scholar] [CrossRef] [PubMed]
- NCT02412735. Placebo-Controlled Study to Evaluate Rexlemestrocel-L Alone or Combined with Hyaluronic Acid in Participants with Chronic Low Back Pain (MSB-DR003). Available online: https://clinicaltrials.gov/ct2/show/results/NCT02412735 (accessed on 17 October 2022).
- NCT05066334. Efficacy of Intradiscal Injection of Autologous BM-MSC in Subjects with Chronic LBP Due to Multilevel Lumbar IDD (DREAM). Available online: https://beta.clinicaltrials.gov/study/NCT05066334 (accessed on 17 October 2022).
- NCT04759105. Efficacy of Intradiscal Injection of Autologous BM-MSC in Worker Patients Affected by Chronic LBP Due to Multilevel IDD (ACTIVE). Available online: https://beta.clinicaltrials.gov/study/NCT04759105 (accessed on 17 October 2022).
- NCT 03347708. Study to Evaluate the Safety and Preliminary Efficacy of IDCT, a Treatment for Symptomatic Lumbar Intervertebral Disc Degeneration. Available online: https://clinicaltrials.gov/ct2/show/NCT03347708 (accessed on 17 October 2022).
- Lavoie, J.R.; Rosu-Myles, M. Uncovering the secretes of mesenchymal stem cells. Biochimie 2013, 95, 2212–2221. [Google Scholar] [CrossRef]
- NCT02338271. Autologous Adipose Derived Stem Cell Therapy for Intervertebral Disc Degeneration. Available online: https://beta.clinicaltrials.gov/study/NCT02338271 (accessed on 17 October 2022).
- NCT02097862. Adipose Cells for Degenerative Disc Disease. Available online: https://beta.clinicaltrials.gov/study/NCT02097862 (accessed on 17 October 2022).
- Xia, Y.; Yang, R.; Hou, Y.; Wang, H.; Li, Y.; Zhu, J.; Fu, C. Application of mesenchymal stem cell-derived exosomes from different sources in intervertebral disc degeneration. Front. Bioeng. Biotechnol. 2022, 10, 1019437. [Google Scholar] [CrossRef]
- NCT05011474. Safety and Efficacy Study of Matrilin-3 Pretreated Autologous Adipose Derived Mesenchymal Stem Cells Implantation in Chronic Low Back Pain Patients with Lumbar Intervertebral Disc Degeneration (MANT3_ASC). Available online: https://beta.clinicaltrials.gov/study/NCT05011474 (accessed on 17 October 2022).
- NCT04414592. Human Umbilical Cord Mesenchymal Stem Cells for the Treatment of Lumbar Disc Degeneration Disease. Available online: https://beta.clinicaltrials.gov/study/NCT04414592 (accessed on 17 October 2022).
- Anderson, D.G.; Markova, D.; An, H.S.; Chee, A.; Enomoto-Iwamoto, M.; Markov, V.; Saitta, B.; Shi, P.; Gupta, C.; Zhang, Y.; et al. Human umbilical cord blood-derived mesenchymal stem cells in the cultured rabbit intervertebral disc: A novel cell source for disc repair. Am. J. Phys. Med. Rehabil. 2013, 92, 420–429. [Google Scholar] [CrossRef]
- Leckie, B.J.; Bottrill, A.R. A specific binding site for the prorenin propart peptide Arg10-Arg20 does not occur on human endothelial cells. J. Renin-Angiotensin-Aldosterone Syst. 2011, 12, 36–41. [Google Scholar] [CrossRef]
- NCT01771471. A Study Comparing the Safety and Effectiveness of Cartilage Cell Injected into the Lumbar Disc as Compared to a Placebo. Available online: https://beta.clinicaltrials.gov/study/NCT01771471 (accessed on 17 October 2022).
- Coric, D.; Pettine, K.; Sumich, A.; Boltes, M.O. Prospective study of disc repair with allogeneic chondrocytes presented at the 2012 Joint Spine Section Meeting. J. Neurosurg. Spine 2013, 18, 85–95. [Google Scholar] [CrossRef]
- Tschugg, A.; Diepers, M.; Steinert, S.; Michnacs, F.; Quirbach, S.; Strowitzki, M.; Meisel, H.J.; Thomé, C. Erratum to: A prospective randomized multicenter phase I/II clinical trial to evaluate safety and efficacy of NOVOCART disk plus autologous disk chondrocyte transplantation in the treatment of nucleotomized and degenerative lumbar disks to avoid secondary disease: Safety results of Phase I-a short report. Neurosurg. Rev. 2016, 40, 177. [Google Scholar]
- NCT02440074. Adipose Cells for Degenerative Disc Disease. Available online: https://beta.clinicaltrials.gov/study/NCT02440074 (accessed on 17 October 2022).
- NCT01643681. Autologous Adipose Tissue Derived Mesenchymal Stem Cells Transplantation in Patient with Lumbar Intervertebral Disc Degeneration. Available online: https://beta.clinicaltrials.gov/study/NCT01643681 (accessed on 17 October 2022).
- NCT00810212. Safety and Efficacy Study of NeoFuse in Subjects Requiring Posterolateral Lumbar Fusion. Available online: https://beta.clinicaltrials.gov/study/NCT00810212 (accessed on 17 October 2022).
- NCT03461458. Autologous, Culture-Expanded Mesenchymal Stromal Cells for Degenerative Disc Disease. Available online: https://beta.clinicaltrials.gov/study/NCT03461458 (accessed on 17 October 2022).
- NCT04735185. Stem Cells vs. Steroids for Discogenic Back Pain. Available online: https://beta.clinicaltrials.gov/study/NCT04735185 (accessed on 17 October 2022).
- NCT02529566. Human Autograft Mesenchymal Stem Cell Mediated Stabilization of The Degenerative Lumbar Spine. Available online: https://beta.clinicaltrials.gov/study/NCT02529566 (accessed on 17 October 2022).
- NCT01213953. Isolation and Authentication of Mesenchymal Stem Cell-Like Progenitor Cells from the Degenerated Intervertebral Disc of Lumbar Spine. Available online: https://beta.clinicaltrials.gov/study/NCT01213953 (accessed on 17 October 2022).
- Krock, E.; Rosenzweig, D.H.; Haglund, L. The Inflammatory Milieu of the Degenerate Disc: Is Mesenchymal Stem Cell-Based Therapy for Intervertebral Disc Repair a Feasible Approach? Curr. Stem Cell Res. Ther. 2015, 10, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Chang, C.-C.; Shieh, M.-J.; Wang, J.-P.; Chen, Y.-T.; Young, T.-H.; Hung, S.-C. Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect. Sci. Rep. 2013, 3, 2683. [Google Scholar] [CrossRef] [PubMed]
Study | Sample Size/ Study Design | Patient Demographics | Follow up (Months) | Involved Levels | Dose Regimen | Main Results |
---|---|---|---|---|---|---|
Centeno et al. [48] | N = 33 Cohort | Age: 19–72 yo Mean 40.3 yo 21 M 12 F BMI: 24.8 | 72 | All single-level injections L5–S1 (n = 22) L4–L5 (n = 11) | Single injection Autologous 2.3 × 107 cells/disc range 1.73–45 × 106 | Mean NPS outcome scores: •At baseline—5.2, 3 months—1.6 *, 12 months—0.6 *, 24 months—1.3 *, 48 months—2.5 *, 6 years—3.7 Mean FRI outcome scores: •At baseline—61, 3 months—20 *, 12 months—4.9 *, 24 months—17 *, 48 months—19 *, 6 years—30 |
Elabd et al. [49] | N = 5 Nonrandomized cohort with no control group or validated endpoints | Age: 25–53 yo 3 M 2 F | 48–72 | 5 injections at L5–S1 (1 patient received two injections 1 year apart) | Single injection Autologous bone marrow-derived MSCs 15.8–37.3 × 106 cells/ disc hypoxic cultured | •No adverse events related to MSC injection •All patients maintained or mildly worsened disc height •Majority reported an overall improvement in QoL, strength, and mobility. •Effect independent of cell dose |
Kumar et al. [50] | N = 10 Single center, single arm, open-label phase 1 clinical trial | Age 30–64 yo Mean 43.5 yo 6 M 4 F BMI 20.2–30.8 | 12 | Autologous MSCs isolated from subcutaneous. abdominal adipose tissue. Number of cells: 4.7–5.4 × 107 | Mean VAS scores: •At baseline—6.5, 1 month—4.6 *, 3 months—4.3 *, 6 months—4.3 *, 12 months—2.9 * ODI scores: •At baseline—42.8, 1 month—31.2 *, 3 months—31.7 *, 6 months—21.3 *, 12 months—16.8 * SF-36: No difference between the groups at 12 months (significant improvement in 6/12 patients). | |
Mochida et al. [51] | N = 9 Single-arm cohort with no control group | Age: 20–29 yo 8 M 1 F | 36 | L5–S1 (n = 4) L4–L5 (n = 4) 2 patients with lumbar disc herniation; 7 patients w/ lumbar discopathy. | 1 million activated autologous NPcells suspended with sterile saline were transplanted into the degenerated disc adjacent to the fusion level 7 d after the first fusion surgery | Mean JOA Score: •At baseline—14.2 •36 months—27.2 •No injected disc showed worsening degeneration on MRI at 36 months. |
Noriega et al. [52] | N = 24 Cohort study with control group | Age: 18–75 yo Inclusion Criteria (Mean 38) | 12 | The patients had 1 or 2 affected discs, with the lesion located at L1–L2 (n = 1), L2–L3 (1), L3–L4 (3), L4–L5 (18), or L5–S1 (15). | Bone marrow was obtained from 5 healthy donors and processed using GMP conditions. Immune matching was not attempted | Lumbar pain VAS and disability (ODI) were reduced at 3 months, 6 months, and 12 months * ODI scores: •At baseline—34 (vs. 24 for control group), 6 month—16 (vs. 30), 12 months—22 (vs. 34) Mean VAS scores: •At baseline—67 (vs. 62 for control group), 6 month—40 (vs. 51), 12 months—47 (vs. 47) •Treated patients had decrease in Pfirrmann disc degeneration grade at 12 months, whereas control group had increase in grade at 12 months * |
Orozco et al. [46] | N = 10 Cohort single arm study no control group | Age: 18–65 yo Inclusion Criteria (Mean 35) 4 M6 F | 12 | L4–L5 (2), L5–S1 (6), or both discs (2). | Autologous MSC transplantation bone marrow volume, 89 ± 5 mL; Expansion was performed under GMP conditions | Lumbar pain VAS and disability (ODI) decreased at 3 months, 6 months, and 12 months * Mean VAS scores: •At baseline—68.9, 6 months—21.6 *, 12 months—20* ODI scores: •At baseline—25, 6 months—9.4 *, 12 months—7.4 * Disc hydration (water content ratios) on imaging improved at 12 months * |
Pang et al. [53] | N = 2 Cohort No control group | 38 yo M 45 yo F | 24 | L4–L5 (n = 1) L3–L4 (n = 1) | Human umbilical cord tissue-derived mesenchymal stem cells (HUC-MSCs) contain stem cells | •Improvement in back pain and lumbar function at 24 months for both patients. •Water content higher in disc of 1 patient at 24 months. T2-change increased at disc level compared to preinjection Mean VAS scores: •At baseline—7, 6 months—2 *, 12 months—1 * ODI scores: •At baseline—46, 6 months—10 *, 12 months—5 * |
Pettine et al. [54] | N = 26 Prospective, nonrandomized two-arm study (one vs. two-level injection) at a single center with no control group | Age 18–61 yo Mean 40 11 M 15 F BMI Mean 27, range 19–37) 13 had traumatic cause of injury | 12 | 1-level N = 13 2-level N = 13 L4–L5 level N = 18 L5–S1 N = 21 | Autologous bone marrow concentrate (BMC) disc injections. | •At 3 months and 6 months, ODI and VAS scores improved more in higher concentration MSC injection patients versus lower concentration * •Improvement of at least 1 grade in Modified Pfirrmann Score in 8 of 20 at 12 months Mean VAS scores: •At baseline—80.1, 12 months—22.9 * ODI scores: •At baseline—56.5, 12 months—18.3 * |
Pettine et al. [55] | Same cohort as above | Same cohort as above | 24 | Reduction in ODI and VAS scores endured at 24 months * | ||
Pettine et al. [47] | Same cohort as above | Same cohort as above | 36 | Reduction in ODI and VAS scores endured at 36 months * |
Cell Type | Clinical Trial ID | Phase | Author/Sponsor | Title |
---|---|---|---|---|
Allogenic BM MSC | NCT02412735 | Phase 3 | Mesoblast, Ltd. | Placebo-controlled Study to Evaluate Rexlemestrocel-L Alone or Combined with Hyaluronic Acid in Subjects With Chronic Low Back Pain |
Allogenic BM MSC | NCT01860417 | Phase 2 | David C Noriega, M.D. | Treatment of Degenerative Disc Disease with Allogenic Mesenchymal Stem Cells (MSV) |
Autologous BM MSC | NCT05066334 | Phase 2 | Campus Bio-Medico University | Efficacy of Intradiscal Injection of Autologous BM-MSC in Subjects with Chronic LBP Due to Multilevel Lumbar IDD (DREAM) |
Autologous BM MSC | NCT04759105 | Phase 2 | Campus BioMedico University | Efficacy of Intradiscal Injection of Autologous BM-MSC in Worker Patients Affected by Chronic LBP Due to Multilevel IDD (ACTIVE) |
Allogenic Discogenic Cells | NCT03347708 | Phase 1 | DiscGenics, Inc. | Study to Evaluate the Safety and Preliminary Efficacy of IDCT, a Treatment for Symptomatic Lumbar Intervertebral Disc Degeneration |
Adipose MSC | NCT02097862 | Phase 1 | Kristin Comella, Ph.D. | Adipose Cells for Degenerative Disc Disease |
Autologous Adipose MSC | NCT02338271 | Phase 1/2 | Hermant Kumar, Ph.D. | Autologous Adipose-Derived Stem Cell Therapy for Intervertebral Disc Degeneration |
Autologous Adipose MSC | NCT05011474 | Phase 1/2 | Inbo Han | Safety and Efficacy Study of Matrilin-3 Pretreated Autologous Adipose Derived Mesenchymal Stem Cells Implantation in Chronic Low Back Pain Patients with Lumbar Intervertebral Disc Degeneration (MANT3_ASC |
Human Umbilical MSC | NCT04414592 | Phase 1 | Shanghai General Hospital | Human Umbilical Cord Mesenchymal Stem Cells for the Treatment of Lumbar Disc Degeneration Disease |
Allogenic Juvenile Chondrocytes | NCT01771471 | Phase 2 | Domagoj Coric, M.D., ISTO Technologies, Inc. | A Study Comparing the Safety and Effectiveness of Cartilage Cell Injected into the Lumbar Disc as Compared to a Placebo |
Autologous Disc Derived Chondrocytes | NCT01640457 | Phase 1/2 | Anja Tschugg M.D., Tetec AG | A Prospective Randomized Multicentre Phase I/II Clinical Trial to Evaluate Safety and Efficacy of NOVOCARTÆ Disc Plus Autologous Disc Chondrocyte Transplantation (ADCT) in the Treatment of Nucleotomized and Degenerative Lumbar Discs to Avoid Secondary Disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soufi, K.H.; Castillo, J.A.; Rogdriguez, F.Y.; DeMesa, C.J.; Ebinu, J.O. Potential Role for Stem Cell Regenerative Therapy as a Treatment for Degenerative Disc Disease and Low Back Pain: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 8893. https://doi.org/10.3390/ijms24108893
Soufi KH, Castillo JA, Rogdriguez FY, DeMesa CJ, Ebinu JO. Potential Role for Stem Cell Regenerative Therapy as a Treatment for Degenerative Disc Disease and Low Back Pain: A Systematic Review. International Journal of Molecular Sciences. 2023; 24(10):8893. https://doi.org/10.3390/ijms24108893
Chicago/Turabian StyleSoufi, Khadija H., Jose A. Castillo, Freddie Y. Rogdriguez, Charles J. DeMesa, and Julius O. Ebinu. 2023. "Potential Role for Stem Cell Regenerative Therapy as a Treatment for Degenerative Disc Disease and Low Back Pain: A Systematic Review" International Journal of Molecular Sciences 24, no. 10: 8893. https://doi.org/10.3390/ijms24108893
APA StyleSoufi, K. H., Castillo, J. A., Rogdriguez, F. Y., DeMesa, C. J., & Ebinu, J. O. (2023). Potential Role for Stem Cell Regenerative Therapy as a Treatment for Degenerative Disc Disease and Low Back Pain: A Systematic Review. International Journal of Molecular Sciences, 24(10), 8893. https://doi.org/10.3390/ijms24108893