Impact of Chronic Oral Administration of Gold Nanoparticles on Cognitive Abilities of Mice
Abstract
:1. Introduction
2. Results
2.1. Distribution of Gold in the Organs and Tissues
2.2. Elevated Plus-Maze Results
2.3. MWM Results
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Nanoparticles
4.3. Experiment
4.4. Measuring of Gold Content
4.5. Behavioral Tests
4.6. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sukhorukov, G.; Fery, A.; Möhwald, H. Intelligent Micro- and Nanocapsules. In Progress in Polymer Science, Proceedings of the World Polymer Congress, 40th IUPAC International Symposium on Macromolecules, Paris, Francw, 4–9 July 2005; Elsevier: Amsterdam, The Netherlands, 2005; Volume 30, pp. 885–897. [Google Scholar]
- Hou, K.; Zhao, J.; Wang, H.; Li, B.; Li, K.; Shi, X.; Wan, K.; Ai, J.; Lv, J.; Wang, D.; et al. Chiral Gold Nanoparticles Enantioselectively Rescue Memory Deficits in a Mouse Model of Alzheimer’s Disease. Nat. Commun. 2020, 11, 4790. [Google Scholar] [CrossRef] [PubMed]
- Kurapov, Y.A.; Litvin, S.; Belyavina, N.N.; Oranskaya, E.I.; Romanenko, S.M.; Stelmakh, Y. Synthesis of Pure (Ligandless) Titanium Nanoparticles by EB-PVD Method. J. Nanopart. Res. 2021, 23, 20. [Google Scholar] [CrossRef]
- Zhang, X.D.; Wu, D.; Shen, X.; Liu, P.X.; Yang, N.; Zhao, B.; Zhang, H.; Sun, Y.M.; Zhang, L.A.; Fan, F.Y. Size-Dependent In Vivo Toxicity of PEG-Coated Gold Nanoparticles. Int. J. Nanomed. 2011, 6, 2071–2081. [Google Scholar] [CrossRef] [PubMed]
- Abu-Dief, A.M.; Alsehli, M.; Awaad, A. A Higher Dose of PEGylated Gold Nanoparticles Reduces the Accelerated Blood Clearance Phenomenon Effect and Induces Spleen B Lymphocytes in Albino Mice. Histochem. Cell Biol. 2022, 157, 641–656. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Salaheldeen, M.; El-Dabea, T. Recent Advances in Development of Gold Nanoparticles for Drug Delivery Systems. J. Mod. Nanotechnol. 2021, 1, 1. [Google Scholar] [CrossRef]
- Ferreira, G.K.; Cardoso, E.; Vuolo, F.S.; Galant, L.S.; Michels, M.; Gonçalves, C.L.; Rezin, G.T.; Dal-Pizzol, F.; Benavides, R.; Alonso-Núñez, G.; et al. Effect of Acute and Long-Term Administration of Gold Nanoparticles on Biochemical Parameters in Rat Brain. Mater. Sci. Eng. C 2017, 79, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Lee, U.; Yoo, C.J.; Kim, Y.J.; Yoo, Y.M. Cytotoxicity of Gold Nanoparticles in Human Neural Precursor Cells and Rat Cerebral Cortex. J. Biosci. Bioeng. 2016, 121, 341–344. [Google Scholar] [CrossRef]
- Schuemann, J.; Bagley, A.F.; Berbeco, R.; Bromma, K.; Butterworth, K.T.; Byrne, H.L.; Chithrani, B.D.; Cho, S.H.; Cook, J.R.; Favaudon, V.; et al. Roadmap for Metal Nanoparticles in Radiation Therapy: Current Status, Translational Challenges, and Future Directions. Phys. Med. Biol. 2020, 65, 21RM02. [Google Scholar] [CrossRef]
- Behra, R.; Sigg, L.; Clift, M.J.D.; Herzog, F.; Minghetti, M.; Johnston, B.; Petri-Fink, A.; Rothen-Rutishauser, B. Bioavailability of Silver Nanoparticles and Ions: From a Chemical and Biochemical Perspective. J. R. Soc. Interface 2013, 10, 20130396. [Google Scholar] [CrossRef]
- Khan, H.A.; Alamery, S.; Ibrahim, K.E.; El-Nagar, D.M.; Al-Harbi, N.; Rusop, M.; Alrokayan, S.H. Size and Time-Dependent Induction of Proinflammatory Cytokines Expression in Brains of Mice Treated with Gold Nanoparticles. Saudi J. Biol. Sci. 2019, 26, 625–631. [Google Scholar] [CrossRef]
- Takeuchi, I.; Nobata, S.; Oiri, N.; Tomoda, K.; Makino, K. Biodistribution and Excretion of Colloidal Gold Nanoparticles after Intravenous Injection: Effects of Particle Size. Biomed. Mater. Eng. 2017, 28, 315–323. [Google Scholar] [CrossRef]
- Tuna, B.G.; Yesilay, G.; Yavuz, Y.; Yilmaz, B.; Culha, M.; Maharramov, A.; Dogan, S. Electrophysiological Effects of Polyethylene Glycol Modified Gold Nanoparticles on Mouse Hippocampal Neurons. Heliyon 2020, 6, e05824. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, X.; Kang, X.; Yang, H.; Guo, W.; Guan, L.; Wu, H.; Du, L. Surface Functionalization of Pegylated Gold Nanoparticles with Antioxidants Suppresses Nanoparticle-Induced Oxidative Stress and Neurotoxicity. Chem. Res. Toxicol. 2020, 33, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Meyer-Zaika, W.; Franzka, S.; Schmid, G.; Tsoli, M.; Kuhn, H. Gold-Cluster Degradation by the Transition of B-DNA into A-DNA and the Formation of Nanowires. Angew. Chemie Int. Ed. 2003, 42, 2853–2857. [Google Scholar] [CrossRef] [PubMed]
- Tsoli, M.; Kuhn, H.; Brandau, W.; Esche, H.; Schmid, G. Cellular Uptake and Toxicity of Au55 Clusters. Small 2005, 1, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; Shi, L.; Xu, J.; Duan, G.; Yang, H. A Focus on the Genotoxicity of Gold Nanoparticles. Nanomedicine 2020, 15, 319–323. [Google Scholar] [CrossRef]
- Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of Nanopartides. Small 2008, 4, 26–49. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Suzuki, K.I.; Ishihara, A.; Kubo-Irie, M.; Fujimoto, R.; Tabata, M.; Oshio, S.; Nihei, Y.; Ihara, T.; Sugamata, M. Nanoparticles Transferred from Pregnant Mice to Their Offspring Can Damage the Genital and Cranial Nerve Systems. J. Health Sci. 2009, 55, 95–102. [Google Scholar] [CrossRef]
- Yavuz, Y.; Yesilay, G.; Guvenc Tuna, B.; Maharramov, A.; Culha, M.; Erdogan, C.S.; Garip, G.A.; Yilmaz, B. Investigation of Effects of Transferrin-Conjugated Gold Nanoparticles on Hippocampal Neuronal Activity and Anxiety Behavior in Mice. Mol. Cell. Biochem. 2022. [Google Scholar] [CrossRef]
- Rattanapinyopituk, K.; Shimada, A.; Morita, T.; Sakurai, M.; Asano, A.; Hasegawa, T.; Inoue, K.; Takano, H. Demonstration of the Clathrin- and Caveolin-Mediated Endocytosis at the Maternal-Fetal Barrier in Mouse Placenta after Intravenous Administration of Gold Nanoparticles. J. Vet. Med. Sci. 2014, 76, 377–387. [Google Scholar] [CrossRef]
- Sadauskas, E.; Wallin, H.; Stoltenberg, M.; Vogel, U.; Doering, P.; Larsen, A.; Danscher, G. Kupffer Cells Are Central in the Removal of Nanoparticles from the Organism. Part. Fibre Toxicol. 2007, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Zinicovscaia, I.; Grozdov, D.; Yushin, N.; Ivlieva, A.; Petritskaya, E.; Rogatkin, D. Neutron Activation Analysis as a Tool for Tracing the Accumulation of Silver Nanoparticles in Tissues of Female Mice and Their Offspring. J. Radioanal. Nucl. Chem. 2019, 322, 1079–1083. [Google Scholar] [CrossRef]
- Zhang, X.D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y.M.; Liu, P.X.; Liang, X.J. Size-Dependent Radiosensitization of PEG-Coated Gold Nanoparticles for Cancer Radiation Therapy. Biomaterials 2012, 33, 6408–6419. [Google Scholar] [CrossRef] [PubMed]
- Lasagna-Reeves, C.; Gonzalez-Romero, D.; Barria, M.A.; Olmedo, I.; Clos, A.; Sadagopa Ramanujam, V.M.; Urayama, A.; Vergara, L.; Kogan, M.J.; Soto, C. Bioaccumulation and Toxicity of Gold Nanoparticles after Repeated Administration in Mice. Biochem. Biophys. Res. Commun. 2010, 393, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Nghiem, T.H.L.; Nguyen, T.T.; Fort, E.; Nguyen, T.P.; Hoang, T.M.N.; Nguyen, T.Q.; Tran, H.N. Capping and In Vivo Toxicity Studies of Gold Nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 015002. [Google Scholar] [CrossRef]
- Valentini, X.; Rugira, P.; Frau, A.; Tagliatti, V.; Conotte, R.; Laurent, S.; Colet, J.M.; Nonclercq, D. Hepatic and Renal Toxicity Induced by TiO2 Nanoparticles in Rats: A Morphological and Metabonomic Study. J. Toxicol. 2019, 2019, 5767012. [Google Scholar] [CrossRef]
- Ghaderi, S.; Tabatabaei, S.R.F.; Varzi, H.N.; Rashno, M. Induced Adverse Effects of Prenatal Exposure to Silver Nanoparticles on Neurobehavioral Development of Offspring of Mice. J. Toxicol. Sci. 2015, 40, 263–275. [Google Scholar] [CrossRef]
- Dǎnilǎ, O.O.; Berghian, A.S.; Dionisie, V.; Gheban, D.; Olteanu, D.; Tabaran, F.; Baldea, I.; Katona, G.; Moldovan, B.; Clichici, S.; et al. The Effects of Silver Nanoparticles on Behavior, Apoptosis and Nitro-Oxidative Stress in Offspring Wistar Rats. Nanomedicine 2017, 12, 1455–1473. [Google Scholar] [CrossRef]
- Sanati, M.; Khodagholi, F.; Aminyavari, S.; Ghasemi, F.; Gholami, M.; Kebriaeezadeh, A.; Sabzevari, O.; Hajipour, M.J.; Imani, M.; Mahmoudi, M.; et al. Impact of Gold Nanoparticles on Amyloid β-Induced Alzheimer’s Disease in a Rat Animal Model: Involvement of STIM Proteins. ACS Chem. Neurosci. 2019, 10, 2299–2309. [Google Scholar] [CrossRef]
- Muller, A.P.; Ferreira, G.K.; Pires, A.J.; de Bem Silveira, G.; de Souza, D.L.; Brandolfi, J.d.A.; de Souza, C.T.; Paula, M.M.S.; Silveira, P.C.L. Gold Nanoparticles Prevent Cognitive Deficits, Oxidative Stress and Inflammation in a Rat Model of Sporadic Dementia of Alzheimer’s Type. Mater. Sci. Eng. C 2017, 77, 476–483. [Google Scholar] [CrossRef]
- The European Parliament; The Council of The European Union. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes Text with EEA Relevance. Off. J. Eur. Union 2010, 53, 33–79. [Google Scholar]
- Lopatina, M.; Petritskaya, E.; Ivlieva, A. Dynamics of Body Weight of Laboratory Mice Depending on The Type of Feed and Feeding Regime. Lab. Zhivotnye Dlya Nauchnych Issled. Lab. Anim. Sci. 2019, 2. [Google Scholar] [CrossRef]
- Frontasyeva, M.V. Neutron Activation Analysis in the Life Sciences. Phys. Part. Nucl. 2011, 42, 332–378. [Google Scholar] [CrossRef]
- Walf, A.A.; Frye, C.A. The Use of the Elevated plus Maze as an Assay of Anxiety-Related Behavior in Rodents. Nat. Protoc. 2007, 2, 322–328. [Google Scholar] [CrossRef]
- OOO “HΠK Откpытая Hayкa”. Available online: https://www.openscience.ru/ (accessed on 13 May 2023).
- Ivlieva, A.L.; Petritskaya, E.N.; Lopatina, M.V.; Rogatkin, D.A.; Zinkovskaya, I. Evaluation of the Cognitive Abilities of Mice Exposed to Silver Nanoparticles during Prenatal Development and Lactation. In Cognitive Modeling, Proceedings of the Seventh International Forum on Cognitive Modeling, Retimno, Greece, 5–15 September 2019; Science and Studies Foundation: Rostov-on-Don, Russia, 2019; pp. 276–282. [Google Scholar]
- Ivlieva, A.L.; Petritskaya, E.N.; Rogatkin, D.A.; Demin, V.A. Methodological Characteristics of the Use of the Morris Water Maze for Assessment of Cognitive Functions in Animals. Neurosci. Behav. Physiol. 2017, 47, 484–493. [Google Scholar] [CrossRef]
- Nieto-Escámez, F.A.; Sánchez-Santed, F.; De Bruin, J.P.C. Pretraining or Previous Non-Spatial Experience Improves Spatial Learning in the Morris Water Maze of Nucleus Basalis Lesioned Rats. Behav. Brain Res. 2004, 148, 55–71. [Google Scholar] [CrossRef]
- Ivlieva, A.L.; Petritskaya, E.N.; Rogatkin, D.A.; Demin, V.A.; Glazkov, A.A.; Zinicovscaia, I.; Pavlov, S.S.; Frontasyeva, M.V. Impact of Chronic Oral Administration of Silver Nanoparticles on Cognitive Abilities of Mice. Phys. Part. Nucl. Lett. 2021, 18, 250–265. [Google Scholar] [CrossRef]
- Garthe, A.; Behr, J.; Kempermann, G. Adult-Generated Hippocampal Neurons Allow the Flexible Use of Spatially Precise Learning Strategies. PLoS ONE 2009, 4, e5464. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Ivlieva, A.L.; Petritskaya, E.N.; Rogatkin, D.A.; Yushin, N.; Grozdov, D.; Vergel, K.; Kutláková, K.M. Assessment of TiO2 Nanoparticles Accumulation in Organs and Their Effect on Cognitive Abilities of Mice. Phys. Part. Nucl. Lett. 2021, 18, 378–384. [Google Scholar] [CrossRef]
Sample | Organ or Tissue | Mean ± SD (μg/g Dry Weight) | Range (μg/g Dry Weight) |
---|---|---|---|
Females (5) | Blood | 0.012 ± 0.007 | 0.006–0.023 |
Liver | 0.239 ± 0.117 | 0.131–0.410 | |
Kidneys | 0.323 ± 0.128 | 0.182–0.516 | |
Lungs | 0.079 ± 0.049 | 0.038–0.145 | |
Offspring (10) | Blood | 0.007 ± 0.005 | 0.002–0.018 |
Liver | 0.028 ± 0.022 | 0.008–0.083 | |
Kidneys | 0.161 ± 0.116 | 0.053–0.418 | |
Lungs | 0.017 ± 0.010 | 0.005–0.036 |
Sample | Specific Mass in a Sample (ng) | Gold Content (ng/g Dry Weight) | |
---|---|---|---|
Mean ± SD | Range | ||
Females (5) | 0.25 ± 0.10 | 0.14–0.36 | 3.79 |
Offspring (10) | 0.08 ± 0.03 | 0.04–0.13 | 1.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivlieva, A.L.; Petritskaya, E.N.; Rogatkin, D.A.; Zinicovscaia, I.; Yushin, N.; Grozdov, D. Impact of Chronic Oral Administration of Gold Nanoparticles on Cognitive Abilities of Mice. Int. J. Mol. Sci. 2023, 24, 8962. https://doi.org/10.3390/ijms24108962
Ivlieva AL, Petritskaya EN, Rogatkin DA, Zinicovscaia I, Yushin N, Grozdov D. Impact of Chronic Oral Administration of Gold Nanoparticles on Cognitive Abilities of Mice. International Journal of Molecular Sciences. 2023; 24(10):8962. https://doi.org/10.3390/ijms24108962
Chicago/Turabian StyleIvlieva, Alexandra L., Elena N. Petritskaya, Dmitriy A. Rogatkin, Inga Zinicovscaia, Nikita Yushin, and Dmitrii Grozdov. 2023. "Impact of Chronic Oral Administration of Gold Nanoparticles on Cognitive Abilities of Mice" International Journal of Molecular Sciences 24, no. 10: 8962. https://doi.org/10.3390/ijms24108962
APA StyleIvlieva, A. L., Petritskaya, E. N., Rogatkin, D. A., Zinicovscaia, I., Yushin, N., & Grozdov, D. (2023). Impact of Chronic Oral Administration of Gold Nanoparticles on Cognitive Abilities of Mice. International Journal of Molecular Sciences, 24(10), 8962. https://doi.org/10.3390/ijms24108962