The Impact of Serum Levels of Reactive Oxygen and Nitrogen Species on the Disease Severity of COVID-19
Abstract
:1. Introduction
2. Results
2.1. Demographic Features and Laboratory Test Results
2.2. Serum Levels of Individual Reactive Oxygen and Nitrogen Species
2.3. Correlations of Individual ROS and RNS Serum Levels with Biochemical Markers in COVID-19 Patients
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Sample Collection and Analysis
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebadi, M.; Montano-Loza, A.J. Perspective: Improving vitamin D status in the management of COVID-19. Eur. J. Clin. Nutr. 2020, 74, 856–859. [Google Scholar] [CrossRef] [PubMed]
- Westblade, L.F.; Brar, G.; Pinheiro, L.C.; Paidoussis, D.; Rajan, M.; Martin, P.; Goyal, P.; Sepulveda, J.L.; Zhang, L.; George, G.; et al. SARS-CoV-2 Viral Load Predicts Mortality in Patients with and without Cancer Who Are Hospitalized with COVID-19. Cancer Cell 2020, 38, 661–671.e2. [Google Scholar] [CrossRef] [PubMed]
- Smits, S.L.; de Lang, A.; van den Brand, J.M.A.; Leijten, L.M.; van IJcken, W.F.; Eijkemans, M.J.C.; van Amerongen, G.; Kuiken, T.; Andeweg, A.C.; Osterhaus, A.D.M.E.; et al. Exacerbated Innate Host Response to SARS-CoV in Aged Non-Human Primates. PLoS Pathog. 2010, 6, e1000756. [Google Scholar] [CrossRef] [PubMed]
- V’Kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021, 19, 155–170. [Google Scholar] [CrossRef]
- Parlakpinar, H.; Gunata, M. SARS-COV-2 (COVID-19): Cellular and biochemical properties and pharmacological insights into new therapeutic developments. Cell Biochem. Funct. 2020, 39, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Sindona, C.; Schepici, G.; Contestabile, V.; Bramanti, P.; Mazzon, E. NOX2 Activation in COVID-19: Possible Implications for Neurodegenerative Diseases. Medicina 2021, 57, 604. [Google Scholar] [CrossRef]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.-H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef]
- Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.-C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020, 181, 1036–1045.e9. [Google Scholar] [CrossRef]
- Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194, 7–15. [Google Scholar] [CrossRef]
- Barciszewska, A.-M. Elucidating of oxidative distress in COVID-19 and methods of its prevention. Chem. Interact. 2021, 344, 109501. [Google Scholar] [CrossRef]
- Ntyonga-Pono, M.-P. COVID-19 Infection and Oxidative Stress: An under-Explored Approach for Prevention and Treatment? Pan Afr. Med. J. 2020, 35, 12. [Google Scholar] [CrossRef]
- Camini, F.C.; da Silva Caetano, C.C.; Almeida, L.T.; de Brito Magalhães, C.L. Implications of oxidative stress on viral pathogenesis. Arch. Virol. 2016, 162, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Konyalilar, N.; Kayalar, Ö.; Mortazavi, D.; Rajabi, H.; Korkunç, S.; Erkan, S.; Aksoy, T.; Gönenli, M.G.; Akyıl, F.T.; Altın, S.; et al. The role of reactive nitrogen species as biomarkers of disease severity in COVID-19. Eur. Respir. J. 2022, 60, 1247. [Google Scholar] [CrossRef]
- Rajendran, R.; Chathambath, A.; Al-Sehemi, A.G.; Pannipara, M.; Unnikrishnan, M.K.; Aleya, L.; Raghavan, R.P.; Mathew, B. Critical role of nitric oxide in impeding COVID-19 transmission and prevention: A promising possibility. Environ. Sci. Pollut. Res. 2022, 29, 38657–38672. [Google Scholar] [CrossRef] [PubMed]
- Wieczfinska, J.; Kleniewska, P.; Pawliczak, R. Oxidative Stress-Related Mechanisms in SARS-CoV-2 Infections. Oxidative Med. Cell. Longev. 2022, 2022, 5589089. [Google Scholar] [CrossRef] [PubMed]
- Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020, 54, 62–75. [Google Scholar] [CrossRef]
- Gorham, J.; Moreau, A.; Corazza, F.; Peluso, L.; Ponthieux, F.; Talamonti, M.; Izzi, A.; Nagant, C.; Ndieugnou Djangang, N.; Garufi, A.; et al. Interleukine-6 in critically ill COVID-19 patients: A retrospective analysis. PLoS ONE 2020, 15, e0244628. [Google Scholar] [CrossRef]
- Akamatsu, M.A.; de Castro, J.T.; Takano, C.Y.; Ho, P.L. Off balance: Interferons in COVID-19 lung infections. Ebiomedicine 2021, 73, 103642. [Google Scholar] [CrossRef]
- Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 2020, 24, 422. [Google Scholar] [CrossRef]
- Chen, X.; Tian, X.; Shin, I.; Yoon, J. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem. Soc. Rev. 2011, 40, 4783–4804. [Google Scholar] [CrossRef]
- Khojah, H.M.; Ahmed, S.; Abdel-Rahman, M.S.; Hamza, A.-B. Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants. Free. Radic. Biol. Med. 2016, 97, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Khojah, H.M.; Ahmed, S. Comparative assessment of individual RONS in serum of smokers compared with non-smokers and their correlation with the lipid profile and antioxidant status. J. Int. Med. Res. 2019, 47, 6223–6234. [Google Scholar] [CrossRef] [PubMed]
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
- Suhail, S.; Zajac, J.; Fossum, C.; Lowater, H.; McCracken, C.; Severson, N.; Laatsch, B.; Narkiewicz-Jodko, A.; Johnson, B.; Liebau, J.; et al. Role of Oxidative Stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) Infection: A Review. Protein J. 2020, 39, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Gibson, P.G.; Qin, L.; Puah, S.H. COVID-19 acute respiratory distress syndrome (ARDS): Clinical features and differences from typical pre-COVID-19 ARDS. Med. J. Aust. 2020, 213, 54–56.e1. [Google Scholar] [CrossRef] [PubMed]
- Weidinger, A.; Kozlov, A.V. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction. Biomolecules 2015, 5, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Słomka, A.; Kowalewski, M.; Żekanowska, E. Coronavirus Disease 2019 (COVID–19): A Short Review on Hematological Manifestations. Pathogens 2020, 9, 493. [Google Scholar] [CrossRef]
- Khojah, H.M.J.; Ahmed, S.A.; Al-Thagfan, S.S.; Alahmadi, Y.M.; Abdou, Y.A. The Impact of Serum Levels of Vitamin D3 and Its Metabolites on the Prognosis and Disease Severity of COVID-19. Nutrients 2022, 14, 5329. [Google Scholar] [CrossRef]
- Mardani, R.; Alamdary, A.; Mousavi Nasab, S.; Gholami, R.; Ahmadi, N.; Gholami, A. Association of vitamin D with the modulation of the disease severity in COVID-19. Virus Res. 2020, 289, 198148. [Google Scholar] [CrossRef]
- Veenith, T.; Martin, H.; Le Breuilly, M.; Whitehouse, T.; Gao-Smith, F.; Duggal, N.; Lord, J.M.; Mian, R.; Sarphie, D.; Moss, P. High generation of reactive oxygen species from neutrophils in patients with severe COVID-19. Sci. Rep. 2022, 12, 10484. [Google Scholar] [CrossRef]
- Kamphuis, E.; Junt, T.; Waibler, Z.; Forster, R.; Kalinke, U. Type I interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia. Blood 2006, 108, 3253–3261. [Google Scholar] [CrossRef]
- Elshafei, A.; Khidr, E.G.; El-Husseiny, A.A.; Gomaa, M.H. RAAS, ACE2 and COVID-19; A mechanistic review. Saudi J. Biol. Sci. 2021, 28, 6465–6470. [Google Scholar] [CrossRef] [PubMed]
- Didion, S.P. Cellular and Oxidative Mechanisms Associated with Interleukin-6 Signaling in the Vasculature. Int. J. Mol. Sci. 2017, 18, 2563. [Google Scholar] [CrossRef]
- Lymperaki, E.; Kazeli, K.; Tsamesidis, I.; Nikza, P.; Poimenidou, I.; Vagdatli, E. A Preliminary Study about the Role of Reactive Oxygen Species and Inflammatory Process after COVID-19 Vaccination and COVID-19 Disease. Clin. Pract. 2022, 12, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Diwu, Z.; Panchuk-Voloshina, N.; Haugland, R.P. A Stable Nonfluorescent Derivative of Resorufin for the Fluorometric Determination of Trace Hydrogen Peroxide: Applications in Detecting the Activity of Phagocyte NADPH Oxidase and Other Oxidases. Anal. Biochem. 1997, 253, 162–168. [Google Scholar] [CrossRef]
- Manevich, Y.; Held, K.D.; Biaglow, J.E. Coumarin-3-Carboxylic Acid as a Detector for Hydroxyl Radicals Generated Chemically and by Gamma Radiation. Radiat. Res. 1997, 148, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Benov, L.; Sztejnberg, L.; Fridovich, I. Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free. Radic. Biol. Med. 1998, 25, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Gollmer, A.; Arnbjerg, J.; Blaikie, F.H.; Pedersen, B.W.; Breitenbach, T.; Daasbjerg, K.; Glasius, M.; Ogilby, P.R. Singlet Oxygen Sensor Green®: Photochemical Behavior in Solution and in a Mammalian Cell. Photochem. Photobiol. 2011, 87, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Kojima, H.; Nakatsubo, N.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi, H.; Hirata, Y.; Nagano, T. Detection and Imaging of Nitric Oxide with Novel Fluorescent Indicators: Diaminofluoresceins. Anal. Chem. 1998, 70, 2446–2453. [Google Scholar] [CrossRef] [PubMed]
- Nussler, A.K.; Glanemann, M.; Schirmeier, A.; Liu, L.; Nüssler, N.C. Fluorometric measurement of nitrite/nitrate by 2,3-diaminonaphthalene. Nat. Protoc. 2006, 1, 2223–2226. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Brooks/Cole Publishing Co.: Pacific Grove, CA, USA, 1996. [Google Scholar]
Demographic Features | COVID-19 Group (n = 110) | Control Group (n = 50) | p-Value |
---|---|---|---|
Age (years) a | 47.92 ± 12.38 | 49.26 ± 9.94 | NS |
Sex b | |||
Male | 83 (75.46%) | 37 (74.0%) | – |
Female | 27 (24.54%) | 13 (26.0%) | – |
Weight (kg) a | 73.56 ± 12.26 | 72.12 ±12.89 | NS |
Height (cm) a | 165.55 ± 9.60 | 165.06 ± 7.52 | NS |
BMI (kg/m2) a | 26.71 ± 3.28 | 26.47 ± 4.43 | NS |
Test | COVID-19-Positive Group * (n = 110) | Control Group * (n = 50) | p-Value |
---|---|---|---|
ACE2 (U/L) | 72.01 ± 18.66 | 32.36 ± 11.27 | ≤0.001 (HS) |
IL-6 (pg/mL) | 96.62 ± 25.03 | 2.76 ± 0.62 | ≤0.001 (HS) |
TNF-α (pg/mL) | 7.43 ± 1.93 | 0.29 ± 0.07 | ≤0.001 (HS) |
Glucose (mg/dL) | 187.50 ± 36.83 | 125.75 ± 25.49 | ≤0.001 (HS) |
Total WBCs (×103/μL) | 7.67 ± 2.62 | 5.18 ± 0.76 | ≤0.001 (HS) |
Neutrophils (%) | 57.31 ± 3.13 | 47.81 ± 6.17 | ≤0.001 (HS) |
Eosinophils (%) | 5.10 ± 0.16 | 5.08 ± 0.17 | NS |
Lymphocytes (%) | 36.57 ± 5.95 | 45.02 ± 2.64 | ≤0.001 (HS) |
Platelets (×103/μL) | 263.11 ± 71.01 | 215.10 ± 25.38 | ≤0.001 (HS) |
NLR | 1.61 ± 0.29 | 1.07 ± 0.16 | ≤0.001 (HS) |
RBCs (×106/µL) | 4.51 ± 0.56 | 5.09 ± 0.64 | ≤0.05 (S) |
Hb (g/dL) | 10.91 ± 1.75 | 13.25 ± 0.9 | ≤0.05 (S) |
HCT (%) | 36.42 ± 4.77 | 40.92 ± 2.21 | ≤0.05 (S) |
MCV (fL) | 83.71 ± 5.30 | 81.35 ± 3.47 | NS |
MCH (pg) | 30.58 ± 3.47 | 27.21 ± 2.82 | ≤0.05 (S) |
MCHC (g/dL) | 33.95 ± 1.33 | 30.12 ± 1.75 | ≤0.05 (S) |
Reactive Species Levels | COVID-19-Positive Group * (n = 110) | Control Group * (n = 50) | p-Value |
---|---|---|---|
Hydrogen peroxide (nM) | 511.02 ± 218.07 | 377.90 ± 222.40 | ≤0.001 (HS) |
Hydroxyl radical (nM) | 210.15 ± 68.43 | 151.02 ± 68.71 | ≤0.001 (HS) |
Superoxide anion (nM) | 152.65 ± 62.63 | 109.68 ± 59.06 | ≤0.001 (HS) |
Singlet oxygen (nM) | 129.98 ± 57.74 | 99.40 ± 55.24 | ≤0.001 (HS) |
Nitric oxide (µM) | 27.70 ± 5.91 | 13.22 ± 3.92 | ≤0.001 (HS) |
Nitrogen dioxide (µM) | 5.69 ± 3.34 | 4.42 ± 1.42 | ≤0.001 (HS) |
Peroxynitrite (µM) | 4.56 ± 2.75 | 3.16 ± 1.31 | ≤0.001 (HS) |
Reactive Species | ACE2 (r) | IL-6 (r) | TNF-α (r) | NLR (r) |
---|---|---|---|---|
Hydrogen peroxide | 0.739 | 0.850 | 0.721 | 0.529 |
Hydroxyl radical | 0.733 | 0.863 | 0.734 | 0.448 |
Superoxide anion | 0.630 | 0.715 | 0.602 | 0.486 |
Singlet oxygen | 0.532 | 0.583 | 0.572 | 0.446 |
Nitric oxide | 0.638 | 0.659 | 0.532 | 0.535 |
Nitrogen dioxide | 0.552 | 0.574 | 0.451 | 0.461 |
Peroxynitrite | 0.595 | 0.629 | 0.501 | 0.341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.A.; Alahmadi, Y.M.; Abdou, Y.A. The Impact of Serum Levels of Reactive Oxygen and Nitrogen Species on the Disease Severity of COVID-19. Int. J. Mol. Sci. 2023, 24, 8973. https://doi.org/10.3390/ijms24108973
Ahmed SA, Alahmadi YM, Abdou YA. The Impact of Serum Levels of Reactive Oxygen and Nitrogen Species on the Disease Severity of COVID-19. International Journal of Molecular Sciences. 2023; 24(10):8973. https://doi.org/10.3390/ijms24108973
Chicago/Turabian StyleAhmed, Sameh A., Yaser M. Alahmadi, and Yasser A. Abdou. 2023. "The Impact of Serum Levels of Reactive Oxygen and Nitrogen Species on the Disease Severity of COVID-19" International Journal of Molecular Sciences 24, no. 10: 8973. https://doi.org/10.3390/ijms24108973
APA StyleAhmed, S. A., Alahmadi, Y. M., & Abdou, Y. A. (2023). The Impact of Serum Levels of Reactive Oxygen and Nitrogen Species on the Disease Severity of COVID-19. International Journal of Molecular Sciences, 24(10), 8973. https://doi.org/10.3390/ijms24108973