Membrane Proteomics to Understand Enhancement Effects of Millimeter-Wave Irradiation on Wheat Root under Flooding Stress
Abstract
:1. Introduction
2. Results
2.1. Membrane Purification and Purity Check of Wheat Root
2.2. Membrane Proteomics of Wheat Irradiated with MMW
2.3. Protein Abundance in Plasma Membrane, Vacuole Membrane, and Endoplasmic Reticulum Membrane Modified with MMW Irradiation under Flooding Stress
2.4. Expression of Gene That Encoded Protein in Mitochondrial Membrane Modified with MMW Irradiation under Flooding Stress
2.5. ATP Contents of Wheat Irradiated with MMW under Flooding Stress
2.6. Morphological Effect of Wheat Irradiated with MMW under Flooding Stress
3. Discussion
3.1. The Role of Plasma Membrane in Wheat, the Seeds of Which Were Irradiated with MMW, under Flooding Stress
3.2. The Role of Vacuolar Membrane in Wheat, the Seeds of Which Were Irradiated with MMW, under Flooding Stress
3.3. The Role of Endoplasmic Reticulum Membrane in Wheat, the Seeds of Which Were Irradiated with MMW, under Flooding Stress
3.4. The Role of Mitochondrial Membrane in Wheat, the Seeds of Which Were Irradiated with MMW, under Flooding Stress
4. Materials and Methods
4.1. Plant Material, MMW Irradiation, and FloodingTreatment
4.2. Isolation of Membrane Fractions
4.3. Protein Concentration Measurement
4.4. Protein Preparation for Proteomic Analysis
4.5. Protein Identification Using Nano-Liquid Chromatography Mass Spectrometry
4.6. Analysis of MS Data
4.7. Differential Analysis of Proteins Using MS Data
4.8. Immunoblot Analysis
4.9. Measurement of ATP Contents
4.10. RNA Extraction and Polymerase Chain Reaction Analysis
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewandowski, J. Electromagnetic radiation for plant protection. In Physical Control Methods in Plant Protection; Springer: Berlin/Heidelberg, Germany, 2001; pp. 111–113. [Google Scholar]
- Zhong, Z.; Wang, X.; Yin, X.; Tian, J.; Komatsu, S. Morphophysiological and proteomic responses on plants of irradiation with electromagnetic waves. Int. J. Mol. Sci. 2021, 22, 12239. [Google Scholar] [CrossRef] [PubMed]
- Abbey, L.; Udenigwe, C.; Mohan, A.; Anom, E. Microwave irradiation effects on vermicasts potency, and plant growth and antioxidant activity in seedlings of Chinese cabbage (Brassica rapa subsp. pekinensis). J. Radiat. Res. Appl. Sci. 2017, 10, 110–116. [Google Scholar] [CrossRef]
- Farid, M.; Ali, S.; Rizwan, M.; Saeed, R.; Tauqeer, H.M.; Sallah-Ud-Din, R.; Azam, A.; Raza, N. Microwave irradiation and citric acid assisted seed germination and phytoextraction of nickel (Ni) by Brassica napus L.: Morpho-physiological and biochemical alterations under Ni stress. Environ. Sci. Pollut. Res. Int. 2017, 24, 21050–21064. [Google Scholar] [CrossRef]
- Farid, M.; Abubakar, M.; Asam, Z.U.Z.; Sarfraz, W.; Abbas, M.; Shakoor, M.B.; Ali, S.; Ahmad, S.R.; Jilani, A.; Iqbal, J.; et al. Microwave irradiation and glutamic acid-assisted phytotreatment of tannery and surgical industrial wastewater by sorghum. Molecules 2022, 27, 4004. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Jia, J.F.; Han, X.L. Weak microwave can alleviate water deficit induced by osmotic stress in wheat seedlings. Planta 2009, 229, 291–298. [Google Scholar] [CrossRef]
- Pi, Z.; Khan, F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 2011, 49, 101–107. [Google Scholar] [CrossRef]
- Qingling, Z.; Li, J. Rain attenuation in millimeter wave ranges. In Proceedings of the 2006 7th International Symposium on Antennas, Propagation & EM Theory, Guilin, China, 26–29 October 2006; p. 4. [Google Scholar]
- Sulyman, A.I.; Nassar, A.T.; Samimi, M.K.; Maccartney, G.R.; Rappaport, T.S.; Alsanie, A. Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. IEEE Commun. Mag. 2014, 52, 78–86. [Google Scholar] [CrossRef]
- Samimi, M.K.; Rappaport, T.S.; MacCartney, G.R. Probabilistic omnidirectional path loss models for millimeter-wave outdoor communications. IEEE Wirel. Commun. Lett. 2015, 4, 357–360. [Google Scholar] [CrossRef]
- Seo, D.H.; Kim, M.S.; Choi, H.W.; Sung, J.M.; Park, J.D.; Kum, J.S. Effects of millimeter wave treatment on the germination rate and antioxidant potentials and gamma-aminobutyric acid of the germinated brown rice. Food Sci. Biotechnol. 2016, 25, 111–114. [Google Scholar] [CrossRef]
- Sukiasyan, A.; Mikaelyan, Y.; Ayrapetyan, S. Comparative study of non-ionizing and ionizing radiation effect on hydration of winter wheat seeds in metabolic active and inactive states. Environmentalist 2012, 32, 188–192. [Google Scholar] [CrossRef]
- Poghosyan, G.H.; Mukhaelyan, Z.H. The influence of low-intensity EMI treatment on seed germination and early growth of theat. Proc. Yerevan State Univ. Chem. Biol. 2018, 52, 110–115. [Google Scholar]
- Mukhaelyan, Z.H.; Shahinyan, M.A.; Poghosyan, G.H.; Vardevanyan, P.O. Wheat seedlings growth and antioxidant system activity changes as responses to extremely high frequency electromagnetic irradiation. Am. J. Plant Biol. 2016, 2, 1–10. [Google Scholar]
- Mukhaelyan, Z.H. EMI EHF-induced changes of free-radical oxidation processes in Triticum aestivum L. seedlings. Proc. Yerevan State Univ. Chem. Biol. 2017, 51, 31–37. [Google Scholar]
- Zhong, Z.; Furuya, T.; Ueno, K.; Yamaguchi, H.; Hitachi, K.; Tsuchida, K.; Tani, M.; Tian, J.; Komatsu, S. Proteomic analysis of irradiation with millimeter waves on soybean growth under flooding conditions. Int. J. Mol. Sci. 2020, 21, 486. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, S.; Maruyama, J.; Furuya, T.; Yin, X.; Yamaguchi, H.; Hitachi, K.; Miyashita, N.; Tsuchida, K.; Tani, M. Proteomic and biological analyses reveal the effect on growth under flooding stress of chickpea irradiated with millimeter waves. J. Proteome Res. 2021, 20, 4718–4727. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, S.; Tsutsui, Y.; Furuya, T.; Yamaguchi, H.; Hitachi, K.; Tsuchida, K.; Tani, M. Proteomic and biochemical approaches elucidate the role of millimeter-wave irradiation in wheat growth under flooding stress. Int. J. Mol. Sci. 2022, 23, 10360. [Google Scholar] [CrossRef]
- Ramundo-Orlando, A. Effects of millimeter waves radiation on cell membrane-a brief review. J. Infrared Millim. Terahertz Waves 2010, 31, 1400–1411. [Google Scholar] [CrossRef]
- Bar-On, Y.M.; Phillips, R.; Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 2018, 115, 6506–6511. [Google Scholar] [CrossRef]
- Kesten, C.; Menna, A.; Sánchez-Rodríguez, C. Regulation of cellulose synthesis in response to stress. Curr. Opin. Plant Biol. 2017, 40, 106–113. [Google Scholar] [CrossRef]
- Paredez, A.R.; Somerville, C.R.; Ehrhardt, D.W. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 2006, 312, 1491–1495. [Google Scholar] [CrossRef]
- Kesten, C.; García-Moreno, Á.; Amorim-Silva, V.; Menna, A.; Castillo, A.G.; Percio, F.; Armengot, L.; Ruiz-Lopez, N.; Jaillais, Y.; Sánchez-Rodríguez, C.; et al. Peripheral membrane proteins modulate stress tolerance by safeguarding cellulose synthases. Sci. Adv. 2022, 8, 6971. [Google Scholar] [CrossRef] [PubMed]
- Nanjo, Y.; Nakamura, T.; Komatsu, S. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics. J. Proteome Res. 2013, 12, 4785–4798. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Yan, J.; Ding, X.; Jin, H.; Zhang, H.; Cui, J.; Zhou, Q.; Yu, J. Integrated analysis of transcriptome and microRNAs associated with exogenous calcium-mediated enhancement of hypoxic tolerance in cucumber seedlings (Cucumis sativus L.). Front. Plant Sci. 2023, 13, 994268. [Google Scholar] [CrossRef] [PubMed]
- Shiratake, K.; Kanayama, Y.; Maeshima, M.; Yamaki, S. Changes in H(+)-pumps and a tonoplast intrinsic protein of vacuolar membranes during the development of pear fruit. Plant Cell Physiol. 1997, 38, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-T.; Tang, R.-J.; Zhang, Y.-J.; Xue, H.-W.; Ferjani, A.; Luan, S. Two tonoplast proton pumps function in Arabidopsis embryo development. New Phytol. 2020, 225, 1606–1617. [Google Scholar] [CrossRef]
- Li, W.; Luo, L.; Gu, L.; Li, H.; Zhang, Q.; Ye, Y.; Li, L. Vacuolar H+ -ATPase subunit VAB3 regulates cell growth and ion homeostasis in Arabidopsis. Plant J. 2022, 112, 664–676. [Google Scholar] [CrossRef]
- Seidel, T. The Plant V-ATPase. Front. Plant Sci. 2022, 13, 931777. [Google Scholar] [CrossRef]
- Liu, N.; Ni, Z.; Zhang, H.; Chen, Q.; Gao, W.; Cai, Y.; Li, M.; Sun, G.; Qu, Y.Y. The gene encoding subunit a of the vacuolar H+-ATPase From cotton plays an important role in conferring tolerance to water deficit. Front. Plant Sci. 2018, 9, 758. [Google Scholar] [CrossRef]
- Krebs, M.; Beyhl, D.; Goerlich, E.; Al-Rasheid, K.A.S.; Marten, I.; Stierhof, Y.-D. Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc. Natl. Acad. Sci. USA 2010, 107, 3251–3256. [Google Scholar] [CrossRef]
- Ward, J.M.; Sze, H. Subunit composition and organization of the vacuola H1-ATPase from oat roots. Plant Physiol. 1992, 99, 170–179. [Google Scholar] [CrossRef]
- Herman, E.M.; Li, X.; Su, R.T.; Larsen, P.; Hsu, H.; Sze, H. Vacuolar-type H+ -ATPases are associated with the endoplasmic reticulum and provacuoles of root tip cells. Plant Physiol. 1994, 106, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, S. From the archives: Evolution of angiosperm self-incompatibility, genomic imprinting in wheat, and function of calnexin in the ER. Plant Cell 2023, 35, 336–337. [Google Scholar] [CrossRef] [PubMed]
- Araki, K.; Nagata, K. Protein folding and quality control in the ER. Cold Spring Harb. Perspect. Biol. 2011, 3, a007526. [Google Scholar] [CrossRef] [PubMed]
- Healy, S.J.; Verfaillie, T.; Jäger, R.; Agostinis, P.; Samali, A. Biology of the endoplasmic reticulum. In Endoplasmic Reticulum Stress in Health and Disease; Agostinis, P., Samali, A., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 3–22. [Google Scholar]
- Bergeron, J.J.; Brenner, M.B.; Thomas, D.Y.; Williams, D.B. Calnexin: A membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 1994, 19, 124–128. [Google Scholar] [CrossRef]
- Komatsu, S.; Yamaguchi, H.; Hitachi, K.; Tsuchida, K.; Kono, Y.; Nishimura, M. Proteomic and biochemical analyses of the mechanism of tolerance in mutant soybean responding to flooding stress. Int. J. Mol. Sci. 2021, 22, 9046. [Google Scholar] [CrossRef]
- Hashimoto, T.; Mustafa, G.; Nishiuchi, T.; Komatsu, S. Comparative analysis of the effect of inorganic and organic chemicals with silver nanoparticles on soybean under flooding stress. Int. J. Mol. Sci. 2020, 21, 1300. [Google Scholar] [CrossRef]
- Valdez, B.C.; Li, Y.; Murray, D.; Liu, Y.; Nieto, Y.; Bashir, Q.; Qazilbash, M.H.; Andersson, B.S. Panobinostat and venetoclax enhance the cytotoxicity of gemcitabine, busulfan, and melphalan in multiple myeloma cells. Exp. Hematol. 2020, 81, 32–41. [Google Scholar] [CrossRef]
- Sarwat, M.; Naqvi, A.R. Heterologous expression of rice calnexin (OsCNX) confers drought tolerance in Nicotiana tabacum. Mol. Biol. Rep. 2013, 40, 5451–5464. [Google Scholar] [CrossRef]
- Fan, Y.; Simmen, T. Mechanistic connections between endoplasmic reticulum (ER) redox control and mitochondrial metabolism. Cells 2019, 8, 1071. [Google Scholar] [CrossRef]
- Gutiérrez, T.; Qi, H.; Yap, M.C.; Tahbaz, N.; Milburn, L.A.; Lucchinetti, E.; Lou, P.H.; Zaugg, M.; LaPointe, P.G.; Mercier, P.; et al. The ER chaperone calnexin controls mitochondrial positioning and respiration. Sci. Signal 2020, 13, 6660. [Google Scholar] [CrossRef]
- Meyer, E.H.; Tomaz, T.; Carroll, A.J.; Estavillo, G.; Delannoy, E.; Tanz, S.K.; Small, I.D.; Pogson, B.J.; Millar, A.H. Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night. Plant Physiol. 2009, 151, 603–619. [Google Scholar] [CrossRef] [PubMed]
- Millar, A.H.; Whelan, J.; Soole, K.L.; Day, D.A. Organization and regulation of mitochondrial respiration in plants. In Annual Review of Plant Biology; Merchant, S.S., Briggs, W.R., Ort, D., Eds.; Annual Reviews: Palo Alto, CA, USA, 2011; Volume 62, pp. 79–104. [Google Scholar]
- Affourtit, C.; Krab, K.; Moore, A.L. Control of plant mitochondrial respiration. Biochim. Biophys. Acta-Bioenerg. 2001, 1504, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.H.; Komatsu, S. Involvement of reactive oxygen species and mitochondrial proteins in biophoton emission in roots of soybean plants under flooding stress. J. Proteome Res. 2015, 14, 2219–2236. [Google Scholar] [CrossRef] [PubMed]
- Murashita, Y.; Nishiuchi, T.; Rehman, S.U.; Komatsu, S. Subcellular proteomics to understand promotive effect of plant-derived smoke solution on soybean root. Proteomes 2021, 9, 39. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, S.; Han, C.; Nanjo, Y.; Altaf-Un-Nahar, M.; Wang, K.; He, D.; Yang, P. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J. Proteome Res. 2013, 12, 4769–4784. [Google Scholar] [CrossRef] [PubMed]
- Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Nouri, M.Z.; Hiraga, S.; Yanagawa, Y.; Sunohara, Y.; Matsumoto, H.; Komatsu, S. Characterization of calnexin in soybean roots and hypocotyls under osmotic stress. Phytochemistry 2012, 74, 20–29. [Google Scholar] [CrossRef]
- Komatsu, S.; Yamamoto, A.; Nakamura, T.; Nouri, M.Z.; Nanjo, Y.; Nishizawa, K.; Furukawa, K. Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. J. Proteome Res. 2011, 10, 3993–4004. [Google Scholar] [CrossRef]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Vizcaíno, J.A.; Côté, R.G.; Csordas, A.; Dianes, J.A.; Fabregat, A.; Foster, J.M.; Griss, J.; Alpi, E.; Birim, M.; Contell, J.; et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: Status in 2013. Nucleic Acids Res. 2013, 41, D1063–D1069. [Google Scholar] [CrossRef] [PubMed]
- Okuda, S.; Watanabe, Y.; Moriya, Y.; Kawano, S.; Yamamoto, T.; Matsumoto, M.; Takami, T.; Kobayashi, D.; Araki, N.; Yoshizawa, A.C.; et al. jPOSTTrepo: An international standard data repository for proteomes. Nucleic Acids Res. 2017, 45, D1107–D1111. [Google Scholar] [CrossRef] [PubMed]
Accession | Description | Cov | MP | MW [kDa] | calc pI | Ratio | p-Value |
---|---|---|---|---|---|---|---|
A0A3B6IP18 | Uncharacterized protein | 35 | 14 | 55.3 | 7.18 | 0.010 | 0.0000 |
A0A3B6EEJ9 | NADH-cytochrome b5 reductase | 54 | 13 | 33.8 | 8.51 | 0.010 | 0.0000 |
A0A3B6TGU0 | Protein kinase domain-containing protein | 10 | 7 | 92.4 | 6.92 | 0.010 | 0.0000 |
A0A3B6HR67 | Transmembrane 9 superfamily member | 14 | 6 | 53.7 | 6.99 | 0.010 | 0.0000 |
A0A3B6THX1 | Phospholipid-transporting ATPase | 4 | 3 | 122.5 | 6.02 | 0.010 | 0.0000 |
A0A3B6PIJ7 | LEA_2 domain-containing protein | 20 | 3 | 22.1 | 8.97 | 0.010 | 0.0000 |
A0A3B6AS01 | S-acyltransferase | 8 | 2 | 35.5 | 7.62 | 0.010 | 0.0000 |
A0A3B5YXF8 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 3 | 22 | 4 | 19.2 | 9.01 | 0.226 | 0.0000 |
A0A3B6NKH5 | Uncharacterized protein | 49 | 20 | 50.0 | 5.69 | 0.234 | 0.0000 |
A0A341Q6B8 | Cytochrome b-c1 complex subunit Rieske | 26 | 6 | 26.5 | 8.90 | 0.290 | 0.0000 |
A0A3B6I2H7 | PHB domain-containing protein | 11 | 3 | 38.7 | 8.91 | 0.296 | 0.0000 |
A0A3B6TRE9 | L-ascorbate peroxidase | 40 | 11 | 31.7 | 7.97 | 0.310 | 0.0000 |
A0A3B5Y6E2 | MFS domain-containing protein | 3 | 2 | 53.9 | 9.23 | 0.328 | 0.0000 |
A0A3B6AV87 | Mitochondrial pyruvate carrier | 29 | 3 | 11.8 | 10.01 | 0.371 | 0.0008 |
A0A3B6LTV3 | Uncharacterized protein | 30 | 2 | 10.9 | 9.25 | 0.377 | 0.0001 |
A0A3B6RDH6 | Transmembrane 9 superfamily member | 11 | 6 | 74.4 | 6.28 | 0.389 | 0.0021 |
Q06I91 | Fasciclin-like protein FLA15 | 18 | 4 | 29.4 | 8.95 | 0.446 | 0.0026 |
A0A341VXI7 | Uncharacterized protein | 12 | 3 | 30.9 | 8.15 | 0.458 | 0.0031 |
A0A3B6JIV6 | Uncharacterized protein | 10 | 2 | 28.8 | 7.31 | 0.468 | 0.0213 |
A0A3B6FTI3 | Uncharacterized protein | 30 | 2 | 7.1 | 9.29 | 0.484 | 0.0007 |
A0A3B6IMV7 | Uncharacterized protein | 51 | 27 | 80.1 | 6.64 | 0.500 | 0.0037 |
A0A3B6MTW1 | DOMON domain-containing protein | 9 | 2 | 26.2 | 9.13 | 0.513 | 0.0039 |
A0A3B6PLV7 | AA_permease_C domain-containing protein | 4 | 2 | 64.0 | 8.27 | 0.514 | 0.0376 |
A0A1D5YJK2 | Signal peptidase complex subunit 3 | 19 | 3 | 18.8 | 8.18 | 0.532 | 0.0029 |
A0A3B6SMF7 | Nicalin | 25 | 13 | 60.7 | 6.77 | 0.552 | 0.0372 |
A0A3B6JK94 | Conserved oligomeric Golgi complex subunit 6 | 4 | 2 | 76.8 | 6.25 | 0.553 | 0.0350 |
Q2L9B8 | Vacuolar ATP synthase subunit E | 44 | 11 | 26.1 | 6.87 | 0.554 | 0.0051 |
A0A3B5YT45 | Uncharacterized protein | 13 | 6 | 74.7 | 6.32 | 0.554 | 0.0242 |
A0A3B6HW37 | UDP-glucose 6-dehydrogenase | 39 | 14 | 52.8 | 6.29 | 0.562 | 0.0022 |
A0A3B6MRT6 | TPT domain-containing protein | 9 | 2 | 42.6 | 10.15 | 0.572 | 0.0349 |
A0A3B5YXX9 | Uncharacterized protein | 7 | 4 | 68.6 | 6.77 | 0.580 | 0.0080 |
A0A3B6KP84 | Cytochrome b-c1 complex subunit 7 | 47 | 6 | 14.5 | 9.57 | 0.584 | 0.0070 |
A0A3B5Z0L3 | PRA1 family protein | 12 | 2 | 23.1 | 9.04 | 0.585 | 0.0458 |
A0A3B6MVJ2 | Transmembrane 9 superfamily member | 19 | 11 | 73.3 | 7.21 | 0.591 | 0.0144 |
A0A3B6IWB7 | Phytocyanin domain-containing protein | 18 | 4 | 21.1 | 6.51 | 0.606 | 0.0161 |
A0A2X0S7E3 | Prohibitin | 38 | 7 | 30.6 | 6.98 | 0.611 | 0.0208 |
A0A3B6AY90 | Phytocyanin domain-containing protein | 17 | 3 | 20.5 | 8.81 | 0.614 | 0.0269 |
A0A341W842 | Plug translocon domain-containing protein | 12 | 6 | 52.5 | 8.98 | 0.624 | 0.0229 |
A0A1D5V328 | Genome assembly, chromosome: II | 38 | 5 | 18.1 | 4.41 | 0.626 | 0.0300 |
A0A1D5XTG1 | ER membrane protein complex subunit 4 | 23 | 3 | 19.2 | 9.04 | 0.631 | 0.0398 |
A0A3B6U6Q6 | Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1 | 19 | 6 | 52.5 | 7.69 | 0.635 | 0.0421 |
A0A3B6IUL0 | Protein kinase domain-containing protein | 3 | 3 | 91.1 | 7.17 | 1.467 | 0.0159 |
A0A3B6QDR2 | Uncharacterized protein | 44 | 22 | 60.1 | 4.81 | 1.552 | 0.0463 |
A0A3B6IRG1 | Glucan endo-1,3-beta-D-glucosidase | 5 | 2 | 48.9 | 6.32 | 1.592 | 0.0290 |
A0A3B6TMJ9 | Protein kinase domain-containing protein | 2 | 2 | 111.5 | 5.90 | 1.785 | 0.0047 |
A0A3B5YYP9 | Uncharacterized protein | 30 | 2 | 13.2 | 8.94 | 1.916 | 0.0014 |
A0A3B5ZXA9 | CASP-like protein | 11 | 2 | 19.8 | 9.51 | 2.047 | 0.0312 |
A0A3B6JL36 | SHSP domain-containing protein | 11 | 2 | 24.1 | 5.40 | 2.456 | 0.0001 |
A0A3B6LI60 | 1-acylglycerol-3-phosphate O-acyltransferase | 8 | 2 | 38.8 | 9.88 | 3.664 | 0.0000 |
A0A3B6MMS9 | 1-acylglycerol-3-phosphate O-acyltransferase | 9 | 2 | 38.8 | 9.74 | 5.547 | 0.0000 |
A0A3B6AX46 | Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial | 31 | 13 | 68.0 | 6.68 | 10.736 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komatsu, S.; Hamada, K.; Furuya, T.; Nishiuchi, T.; Tani, M. Membrane Proteomics to Understand Enhancement Effects of Millimeter-Wave Irradiation on Wheat Root under Flooding Stress. Int. J. Mol. Sci. 2023, 24, 9014. https://doi.org/10.3390/ijms24109014
Komatsu S, Hamada K, Furuya T, Nishiuchi T, Tani M. Membrane Proteomics to Understand Enhancement Effects of Millimeter-Wave Irradiation on Wheat Root under Flooding Stress. International Journal of Molecular Sciences. 2023; 24(10):9014. https://doi.org/10.3390/ijms24109014
Chicago/Turabian StyleKomatsu, Setsuko, Kazuna Hamada, Takashi Furuya, Takumi Nishiuchi, and Masahiko Tani. 2023. "Membrane Proteomics to Understand Enhancement Effects of Millimeter-Wave Irradiation on Wheat Root under Flooding Stress" International Journal of Molecular Sciences 24, no. 10: 9014. https://doi.org/10.3390/ijms24109014
APA StyleKomatsu, S., Hamada, K., Furuya, T., Nishiuchi, T., & Tani, M. (2023). Membrane Proteomics to Understand Enhancement Effects of Millimeter-Wave Irradiation on Wheat Root under Flooding Stress. International Journal of Molecular Sciences, 24(10), 9014. https://doi.org/10.3390/ijms24109014