Genome-Wide Identification and Analysis of R2R3-MYB Genes Response to Saline–Alkali Stress in Quinoa
Abstract
:1. Introduction
2. Results
2.1. Genome-Wide Identification of R2R3-MYB Family Genes in Quinoa
2.2. Phylogenetic Analysis of CqR2R3-MYB Family Members
2.3. Primary Structures of Genes and Proteins of CqR2R3-MYBs
2.4. Cis-Acting Elements in Promoters of CqR2R3-MYB Genes
2.5. Expression Pattern of CqR2R3-MYB Family Genes in Quinoa Leaves under Saline–alkali Stress
2.6. GO Enrichment Analysis of Differentially Expressed CqR2R3-MYB Genes
2.7. Subcellular Localization and Transcriptional Activation Activities of Four CqR2R3-MYBs
3. Discussion
3.1. Identification and Evolution of the Quinoa R2R3-MYB Gene Family
3.2. Putative Functions of CqR2R3-MYB Transcription Factors
3.3. CqR2R3-MYB Genes in Cell Wall Biosynthesis
4. Materials and Methods
4.1. Plant Materials, Growth Conditions, and Stress Treatments
4.2. Genome-Wide Identification of R2R3-MYB Family Members in Quinoa (Chenopodium quinoa Willd.)
4.3. Bioinformatics Analysis of Quinoa R2R3-MYB Family Genes
4.3.1. Phylogenetic Analysis
4.3.2. The Physicochemical Properties, Conserved Motif Analysis
4.3.3. Gene Structure and Cis-Acting Element Analysis
4.4. RT-qPCR Validation
4.5. Subcellular Localization of CqR2R3-MYBs
4.6. Transcriptional Activation Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaiwen, G.; Zisong, X.; Yuze, H.; Qi, S.; Yue, W.; Yanhui, C.; Jiechen, W.; Wei, L.; Huihui, Z. Effects of salt concentration, pH, and their interaction on plant growth, nutrient uptake, and photochemistry of alfalfa (Medicago sativa) leaves. Plant Signal. Behav. 2020, 15, 1832373. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Seki, K.; Miyazaki, T.; Ishihama, Y. The causes of soil alkalinization in the Songnen Plain of Northeast China. Paddy Water Environ. 2009, 7, 259–270. [Google Scholar] [CrossRef]
- Cao, Y.; Song, H.; Zhang, L. New Insight into Plant Saline-Alkali Tolerance Mechanisms and Application to Breeding. Int. J. Mol. Sci. 2022, 23, 16048. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.; Wang, M.; Wang, X.; Liu, K.; Li, Y.; Bu, Y.; Li, L. Integrated Transcriptome and Metabolome Analysis of Rice Leaves Response to High Saline-Alkali Stress. Int. J. Mol. Sci. 2023, 24, 4062. [Google Scholar] [CrossRef] [PubMed]
- Dhaka, M. A comprehensive study on core enzymes involved in starch metabolism in the model nutricereal, foxtail millet (Setaria italica L.). J. Cereal Sci. 2021, 97, 103153. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Huang, Y.; Zhu, P.; Qian, G.; Zhang, Y.; Liu, Y.; Zhou, J.; Li, L. Genome-Wide Identification and Analysis of Stress Response of Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase Genes in Quinoa. Int. J. Mol. Sci. 2023, 24, 6950. [Google Scholar] [CrossRef]
- Wang, X.; Niu, Y.; Zheng, Y. Multiple Functions of MYB Transcription Factors in Abiotic Stress Responses. Int. J. Mol. Sci. 2021, 22, 6125. [Google Scholar] [CrossRef]
- Diao, P.; Chen, C.; Zhang, Y.; Meng, Q.; Lv, W.; Ma, N. The role of NAC transcription factor in plant cold response. Plant Signal. Behav. 2020, 15, 1785668. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, S.; Ye, N.; Jiang, M.; Cao, J.; Zhang, J. WRKY transcription factors in plant responses to stresses. J. Integr. Plant Biol. 2017, 59, 86–101. [Google Scholar] [CrossRef]
- Ogata, K.; Kanei-Ishii, C.; Sasaki, M.; Hatanaka, H.; Nagadoi, A.; Enari, M.; Nakamura, H.; Nishimura, Y.; Ishii, S.; Sarai, A. The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Nat. Struct. Biol. 1996, 3, 178–187. [Google Scholar] [CrossRef]
- Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010, 15, 573–581. [Google Scholar] [CrossRef]
- Roy, S. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signal. Behav. 2016, 11, e1117723. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, R.; Yang, X.; Ju, Q.; Li, W.; Lü, S.; Tran, L.P.; Xu, J. The R2R3-MYB transcription factor AtMYB49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defence. Plant Cell. Environ. 2020, 43, 1925–1943. [Google Scholar] [CrossRef]
- Wilkins, O.; Nahal, H.; Foong, J.; Provart, N.J.; Campbell, M.M. Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol. 2009, 149, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Seo, P.J.; Lee, S.B.; Suh, M.C.; Park, M.J.; Go, Y.S.; Park, C.M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell. 2011, 23, 1138–1152. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Dai, X.; Zhang, W.H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J. Exp. Bot. 2012, 63, 2541–2556. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.H.; Cheong, J.J. AtMYB44 interacts with TOPLESS-RELATED corepressors to suppress protein phosphatase 2C gene transcription. Biochem. Biophys. Res. Commun. 2018, 507, 437–442. [Google Scholar] [CrossRef]
- Zheng, H.; Gao, Y.; Sui, Y.; Dang, Y.; Wu, F.; Wang, X.; Zhang, F.; Du, X.; Sui, N. R2R3 MYB transcription factor SbMYBHv33 negatively regulates sorghum biomass accumulation and salt tolerance. Theor. Appl. Genet. 2023, 136, 5. [Google Scholar] [CrossRef]
- Liu, J.; Osbourn, A.; Ma, P. MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in Plants. Mol. Plant 2015, 8, 689–708. [Google Scholar] [CrossRef]
- Xiao, R.; Zhang, C.; Guo, X.; Li, H.; Lu, H. MYB Transcription Factors and Its Regulation in Secondary Cell Wall Formation and Lignin Biosynthesis during Xylem Development. Int. J. Mol. Sci. 2021, 22, 3560. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, G.; Tang, Q.; Song, W.; Gao, Q.; Xiang, G.; Li, X.; Liu, G.; Fan, W.; Li, X.; et al. EbMYBP1, a R2R3-MYB transcription factor, promotes flavonoid biosynthesis in Erigeron breviscapus. Front. Plant Sci. 2022, 13, 946827. [Google Scholar] [CrossRef]
- Wang, X.C.; Wu, J.; Guan, M.L.; Zhao, C.H.; Geng, P.; Zhao, Q. Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. Plant J. 2020, 101, 637–652. [Google Scholar] [CrossRef]
- Wang, L.; Lu, W.; Ran, L.; Dou, L.; Yao, S.; Hu, J.; Fan, D.; Li, C.; Luo, K. R2R3-MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa. Plant J. 2019, 99, 733–751. [Google Scholar] [CrossRef] [PubMed]
- Pathan, S.; Siddiqui, R.A. Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: A Review. Nutrients 2022, 14, 558. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Han, P.; Li, Y.; Wang, W.; Lai, D.; Zhou, L. Quinoa Secondary Metabolites and Their Biological Activities or Functions. Molecules 2019, 24, 2512. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Teng, C.; Fan, X.; Guo, S.; Zhao, G.; Zhang, L.; Liang, Z.; Qin, P. Nutrient composition, functional activity and industrial applications of quinoa (Chenopodium quinoa Willd.). Food Chem. 2023, 410, 135290. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.E.; Monteros, C.; Corcuera, L.J.; Bravo, L.A.; Christiansen, J.L.; Mujica, A. Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). Eur. J. Agron. 2007, 26, 471–475. [Google Scholar] [CrossRef]
- Schmöckel, S.M.; Lightfoot, D.J.; Razali, R.; Tester, M.; Jarvis, D.E. Identification of Putative Transmembrane Proteins Involved in Salinity Tolerance in Chenopodium quinoa by Integrating Physiological Data, RNAseq, and SNP Analyses. Front. Plant Sci. 2017, 8, 1023. [Google Scholar] [CrossRef]
- Jarvis, D.E.; Ho, Y.S.; Lightfoot, D.J.; Schmöckel, S.M.; Li, B.; Borm, T.J.; Ohyanagi, H.; Mineta, K.; Michell, C.T.; Saber, N.; et al. The genome of Chenopodium quinoa. Nature 2017, 542, 307–312. [Google Scholar] [CrossRef]
- Waqas, M.; Yaning, C.; Iqbal, H.; Shareef, M.; Rehman, H.U.; Bilal, H.M. Synergistic consequences of salinity and potassium deficiency in quinoa: Linking with stomatal patterning, ionic relations and oxidative metabolism. Plant Physiol. Biochem. 2021, 159, 17–27. [Google Scholar] [CrossRef]
- Wheeler, T.J.; Eddy, S.R. nhmmer: DNA homology search with profile HMMs. Bioinformatics 2013, 29, 2487–2489. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zeng, W.; Li, C.; Wang, J.; Shang, X.; Xiao, L.; Cao, S.; Zhang, Y.; Xu, S.; Yan, H. Genome-wide identification and expression pattern analysis of R2R3-MYB transcription factor gene family involved in puerarin biosynthesis and response to hormone in Pueraria lobata var. thomsonii. BMC Plant Biol. 2023, 23, 107. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M.; Dehais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouze, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleusc Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Nguyen, N.H.; Jeong, C.Y.; Nguyen, N.T.; Hong, S.W.; Lee, H. Loss of the R2R3 MYB, AtMyb73, causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis. J. Plant Physiol. 2013, 170, 1461–1465. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, J.; Li, X.; Li, Y. E2 conjugases UBC1 and UBC2 regulate MYB42-mediated SOS pathway in response to salt stress in Arabidopsis. New. Phytol. 2020, 227, 455–472. [Google Scholar] [CrossRef]
- Gong, Q.; Li, S.; Zheng, Y.; Duan, H.; Xiao, F.; Zhuang, Y.; He, J.; Wu, G.; Zhao, S.; Zhou, H.; et al. SUMOylation of MYB30 enhances salt tolerance by elevating alternative respiration via transcriptionally upregulating AOX1a in Arabidopsis. Plant J. 2020, 102, 1157–1171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, H.; Chen, Y.; Huang, M.; Zhu, S. Comprehensive Genome-Wide Analyses of Poplar R2R3-MYB Transcription Factors and Tissue-Specific Expression Patterns under Drought Stress. Int. J. Mol. Sci. 2023, 24, 5389. [Google Scholar] [CrossRef]
- Yanhui, C.; Xiaoyuan, Y.; Kun, H.; Meihua, L.; Jigang, L.; Zhaofeng, G.; Zhiqiang, L.; Yunfei, Z.; Xiaoxiao, W.; Xiaoming, Q.; et al. The MYB transcription factor superfamily of Arabidopsis: Expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol. Biol. 2006, 60, 107–1024. [Google Scholar] [CrossRef]
- Du, H.; Yang, S.S.; Liang, Z.; Feng, B.R.; Liu, L.; Huang, Y.B.; Tang, Y.X. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol. 2012, 12, 106. [Google Scholar] [CrossRef]
- Du, H.; Feng, B.R.; Yang, S.S.; Huang, Y.B.; Tang, Y.X. The R2R3-MYB transcription factor gene family in maize. PLoS ONE 2012, 7, e37463. [Google Scholar] [CrossRef]
- Katiyar, A.; Smita, S.; Lenka, S.K.; Rajwanshi, R.; Chinnusamy, V.; Bansal, K.C. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genom. 2012, 13, 544. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wen, J.; Xia, Y.; Zhang, L.; Du, H. Evolution and functional diversification of R2R3-MYB transcription factors in plants. Hortic. Res. 2022, 9, uhac058. [Google Scholar] [CrossRef]
- Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408, 796–815. [Google Scholar] [CrossRef] [PubMed]
- Millard, P.S.; Kragelund, B.B.; Burow, M. R2R3 MYB Transcription Factors—Functions outside the DNA-Binding Domain. Trends Plant Sci. 2019, 24, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Bewg, W.P.; Harding, S.A.; Engle, N.L.; Vaidya, B.N.; Zhou, R.; Reeves, J.; Horn, T.W.; Joshee, N.; Jenkins, J.W.; Shu, S.; et al. Multiplex knockout of trichome-regulating MYB duplicates in hybrid poplar using a single gRNA. Plant Physiol. 2022, 189, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Jiang, N.; Zhou, X.; Hou, X.; Yang, G.; Meng, J.; Luan, Y. Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress. Planta 2018, 248, 1487–1503. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Constabel, C.P. MYB Repressors as Regulators of Phenylpropanoid Metabolism in Plants. Trends Plant Sci. 2019, 24, 275–289. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, Y.; Du, J.; Li, H.; Wei, B.; Wang, Y.; Li, Y.; Yu, G.; Liu, H.; Zhang, J.; et al. ZmMYB14 is an important transcription factor involved in the regulation of the activity of the ZmBT1 promoter in starch biosynthesis in maize. FEBS J. 2017, 284, 3079–3099. [Google Scholar] [CrossRef]
- Sun, C.; Wang, C.; Zhang, W.; Liu, S.; Wang, W.; Yu, X.; Song, T.; Yu, M.; Yu, W.; Qu, S. The R2R3-type MYB transcription factor MdMYB90-like is responsible for the enhanced skin color of an apple bud sport mutant. Hortic. Res. 2021, 8, 156. [Google Scholar] [CrossRef]
- Biłas, R.; Szafran, K.; Hnatuszko-Konka, K.; Kononowicz, A.K. Cis-regulatory elements used to control gene expression in plants. Plant Cell Tiss. Organ. Cult. 2016, 127, 269–287. [Google Scholar] [CrossRef]
- Alabd, A.; Cheng, H.; Ahmad, M.; Wu, X.; Peng, L.; Wang, L.; Yang, S.; Bai, S.; Ni, J.; Teng, Y. ABRE-BINDING FACTOR3-WRKY DNA-BINDING PROTEIN44 module promotes salinity-induced malate accumulation in pear. Plant Physiol. 2023, kiad168. [Google Scholar] [CrossRef] [PubMed]
- Delgado, C.; Mora-Poblete, F.; Ahmar, S.; Chen, J.T.; Figueroa, C.R. Jasmonates and Plant Salt Stress: Molecular Players, Physiological Effects, and Improving Tolerance by Using Genome-Associated Tools. Int. J. Mol. Sci. 2021, 22, 3082. [Google Scholar] [CrossRef] [PubMed]
- Wasternack, C.; Song, S. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot. 2017, 68, 1303–1321. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.; Xu, L.; Wang, J.; Qi, H.; Guo, J.; Zhang, L.; Shen, J.; Wang, H.; Zhang, F.; et al. The OsFTIP6-OsHB22-OsMYBR57 module regulates drought response in rice. Mol. Plant 2022, 15, 1227–1242. [Google Scholar] [CrossRef]
- Chen, L.M.; Yang, H.L.; Fang, Y.S.; Guo, W.; Chen, H.F.; Zhang, X.J.; Dai, W.J.; Chen, S.L.; Hao, Q.N.; Yuan, S.L.; et al. Overexpression of GmMYB14 improves high-density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway. Plant Biotechnol. J. 2021, 19, 702–716. [Google Scholar] [CrossRef]
- Xu, W.; Dubos, C.; Lepiniec, L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci. 2015, 20, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Geng, P.; Zhang, S.; Liu, J.; Zhao, C.; Wu, J.; Cao, Y.; Fu, C.; Han, X.; He, H.; Zhao, Q. MYB20, MYB42, MYB43, and MYB85 Regulate Phenylalanine and Lignin Biosynthesis during Secondary Cell Wall Formation. Plant Physiol. 2020, 182, 1272–1283. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Man, C.; Li, D.; Tan, H.; Xie, Y.; Huang, J. Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana. Mol. Plant 2016, 9, 1609–1619. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleusc Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef]
- Bailey, T.L.; Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1994, 2, 28–36; discussion 1553-0833, in Print. [Google Scholar] [PubMed]
- Xiaolin, Z.; Baoqiang, W.; Xian, W.; Xiaohong, W. Identification of the CIPK-CBL family gene and functional characterization of CqCIPK14 gene under drought stress in quinoa. BMC Genom. 2022, 23, 447. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Gene ID | Name | Length (aa) | Molecular Weight (KDa) | pI | Instability Index | Ali-Phatic Index | GRAVY | Localization Predictor |
---|---|---|---|---|---|---|---|---|
AUR62000115 | CqMYB2R01 | 306 | 33.72 | 5.4 | 50.02 | 61.5 | −0.606 | nucleus |
AUR62000244 | CqMYB2R02 | 556 | 60.79 | 5.18 | 57.53 | 65.43 | −0.619 | nucleus |
AUR62000484 | CqMYB2R03 | 979 | 110.49 | 5.11 | 49.31 | 70.91 | −0.921 | nucleus |
AUR62001688 | CqMYB2R04 | 308 | 34.54 | 6.72 | 45.02 | 62.08 | −0.776 | nucleus |
AUR62001998 | CqMYB2R05 | 341 | 38.48 | 6.3 | 44.53 | 78.97 | −0.633 | nucleus |
AUR62002080 | CqMYB2R06 | 360 | 39.79 | 6.86 | 46.36 | 77.83 | −0.506 | nucleus |
AUR62002136 | CqMYB2R07 | 235 | 26.62 | 4.23 | 60.72 | 65.53 | −0.586 | nucleus |
AUR62003804 | CqMYB2R08 | 338 | 38.12 | 6.23 | 43.85 | 77.93 | −0.626 | nucleus |
AUR62003939 | CqMYB2R09 | 302 | 32.84 | 8.27 | 55.99 | 65.23 | −0.526 | nucleus |
AUR62004043 | CqMYB2R10 | 322 | 36.11 | 6 | 53.7 | 67.61 | −0.635 | nucleus |
AUR62004326 | CqMYB2R11 | 299 | 33.91 | 6.27 | 58.66 | 67.22 | −0.709 | nucleus |
AUR62004628 | CqMYB2R12 | 324 | 35.11 | 8.7 | 39.71 | 67.47 | −0.594 | nucleus |
AUR62005744 | CqMYB2R13 | 461 | 51.94 | 7.14 | 54.91 | 73.64 | −0.691 | nucleus |
AUR62006590 | CqMYB2R14 | 551 | 60.21 | 5.15 | 59.05 | 65.5 | −0.602 | nucleus |
AUR62006826 | CqMYB2R15 | 979 | 110.30 | 5.18 | 49.52 | 71.71 | −0.889 | nucleus |
AUR62007454 | CqMYB2R16 | 304 | 34.04 | 4.94 | 50.21 | 73.78 | −0.701 | nucleus |
AUR62007558 | CqMYB2R17 | 322 | 36.26 | 6.01 | 55.41 | 64.57 | −0.692 | nucleus |
AUR62008199 | CqMYB2R18 | 456 | 51.25 | 5.78 | 42.26 | 69.47 | −0.693 | nucleus |
AUR62008324 | CqMYB2R19 | 361 | 40.00 | 5.94 | 50.63 | 61.39 | −0.711 | nucleus |
AUR62008966 | CqMYB2R20 | 255 | 29.02 | 5.23 | 65.49 | 61.22 | −0.687 | nucleus |
AUR62011751 | CqMYB2R21 | 287 | 33.03 | 5.7 | 54.07 | 67.28 | −0.771 | nucleus |
AUR62011870 | CqMYB2R22 | 286 | 32.26 | 5.61 | 53.48 | 63.11 | −0.772 | nucleus |
AUR62013046 | CqMYB2R23 | 88 | 10.10 | 9.1 | 53.32 | 77.73 | −0.716 | nucleus |
AUR62014537 | CqMYB2R24 | 199 | 22.83 | 4.58 | 63.06 | 61.26 | −0.632 | nucleus |
AUR62014700 | CqMYB2R25 | 361 | 40.99 | 5.56 | 46.85 | 61.61 | −0.739 | nucleus |
AUR62014701 | CqMYB2R26 | 389 | 43.66 | 5.85 | 45.88 | 74.24 | −0.713 | nucleus |
AUR62014702 | CqMYB2R27 | 289 | 32.55 | 6.96 | 50.96 | 80.66 | −0.55 | nucleus |
AUR62015573 | CqMYB2R28 | 240 | 27.08 | 4.24 | 59.92 | 70.29 | −0.588 | nucleus |
AUR62017171 | CqMYB2R29 | 316 | 35.16 | 6.76 | 37.49 | 69.49 | −0.618 | nucleus |
AUR62018324 | CqMYB2R30 | 275 | 31.21 | 6.45 | 47.97 | 71.64 | −0.737 | nucleus |
AUR62018693 | CqMYB2R31 | 244 | 27.54 | 6.23 | 36.97 | 79.18 | −0.609 | nucleus |
AUR62019989 | CqMYB2R32 | 154 | 17.67 | 10.18 | 55.73 | 70.26 | −0.929 | nucleus |
AUR62020094 | CqMYB2R33 | 308 | 34.54 | 6.72 | 46.45 | 63.34 | −0.783 | nucleus |
AUR62020426 | CqMYB2R34 | 123 | 13.26 | 9.51 | 30.03 | 85.61 | −0.354 | nucleus |
AUR62020972 | CqMYB2R35 | 321 | 35.24 | 8.89 | 44.35 | 72.02 | −0.539 | nucleus/cytoplasm |
AUR62021197 | CqMYB2R36 | 221 | 25.45 | 6.31 | 51.58 | 63.53 | −0.76 | nucleus |
AUR62021199 | CqMYB2R37 | 283 | 31.59 | 8.3 | 56.05 | 63.78 | −0.639 | nucleus |
AUR62022338 | CqMYB2R38 | 322 | 36.48 | 9.58 | 56.34 | 52.14 | −0.926 | nucleus |
AUR62022709 | CqMYB2R39 | 322 | 34.98 | 8.77 | 38.89 | 69.44 | −0.534 | nucleus |
AUR62022815 | CqMYB2R40 | 424 | 46.38 | 5.33 | 58.83 | 68.8 | −0.537 | nucleus |
AUR62022912 | CqMYB2R41 | 257 | 28.42 | 7.06 | 39.9 | 70.82 | −0.866 | nucleus |
AUR62023242 | CqMYB2R42 | 210 | 23.98 | 8.86 | 51.63 | 72.1 | −0.818 | nucleus |
AUR62023549 | CqMYB2R43 | 329 | 36.94 | 6.46 | 45.5 | 70.82 | −0.696 | nucleus |
AUR62024595 | CqMYB2R44 | 311 | 35.52 | 6.86 | 53.94 | 76.17 | −0.496 | nucleus |
AUR62024713 | CqMYB2R45 | 295 | 33.23 | 6.22 | 51.23 | 63.83 | −0.745 | nucleus |
AUR62025096 | CqMYB2R46 | 601 | 68.36 | 8.94 | 37.19 | 77.24 | −0.598 | nucleus |
AUR62025146 | CqMYB2R47 | 241 | 27.83 | 5.55 | 42.42 | 78.13 | −0.532 | nucleus |
AUR62025185 | CqMYB2R48 | 290 | 33.13 | 9.15 | 60.24 | 77.97 | −0.746 | nucleus |
AUR62027278 | CqMYB2R49 | 306 | 34.27 | 4.8 | 49.3 | 73.63 | −0.705 | nucleus |
AUR62028989 | CqMYB2R50 | 289 | 32.96 | 9.05 | 61.29 | 81.97 | −0.697 | nucleus |
AUR62030563 | CqMYB2R51 | 328 | 36.76 | 6.15 | 48.05 | 74.6 | −0.608 | nucleus |
AUR62030594 | CqMYB2R52 | 322 | 36.27 | 6.05 | 42.53 | 65.47 | −0.641 | nucleus |
AUR62032801 | CqMYB2R53 | 300 | 33.56 | 8.75 | 76.97 | 55.67 | −0.755 | nucleus |
AUR62033319 | CqMYB2R54 | 299 | 33.76 | 6.1 | 60.77 | 67.26 | −0.671 | nucleus |
AUR62033340 | CqMYB2R55 | 299 | 33.76 | 6.1 | 60.77 | 67.26 | −0.671 | nucleus |
AUR62033728 | CqMYB2R56 | 287 | 33.21 | 6.18 | 47.29 | 71.67 | −0.752 | nucleus |
AUR62034368 | CqMYB2R57 | 282 | 32.15 | 9.49 | 56.86 | 55.39 | −0.983 | nucleus |
AUR62034976 | CqMYB2R58 | 362 | 40.68 | 6.72 | 55.92 | 72.98 | −0.707 | nucleus |
AUR62036035 | CqMYB2R59 | 206 | 22.93 | 9.17 | 31.01 | 69.71 | −0.568 | nucleus |
AUR62037317 | CqMYB2R60 | 351 | 40.10 | 5.16 | 60.18 | 70.57 | −0.778 | nucleus |
AUR62039339 | CqMYB2R61 | 373 | 41.99 | 6.41 | 49.48 | 76.81 | −0.659 | nucleus |
AUR62039812 | CqMYB2R62 | 355 | 40.16 | 6.73 | 62.19 | 56.34 | −0.946 | nucleus |
AUR62040017 | CqMYB2R63 | 333 | 37.29 | 6.75 | 47.8 | 65.86 | −0.803 | nucleus |
AUR62041016 | CqMYB2R64 | 468 | 52.18 | 8.29 | 52.9 | 65.66 | −0.709 | nucleus |
AUR62041339 | CqMYB2R65 | 369 | 42.09 | 9 | 64.54 | 71.17 | −0.801 | nucleus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, M.; Huang, Y.; Zhu, P.; Qian, G.; Zhang, Y.; Li, L. Genome-Wide Identification and Analysis of R2R3-MYB Genes Response to Saline–Alkali Stress in Quinoa. Int. J. Mol. Sci. 2023, 24, 9132. https://doi.org/10.3390/ijms24119132
Liu Y, Wang M, Huang Y, Zhu P, Qian G, Zhang Y, Li L. Genome-Wide Identification and Analysis of R2R3-MYB Genes Response to Saline–Alkali Stress in Quinoa. International Journal of Molecular Sciences. 2023; 24(11):9132. https://doi.org/10.3390/ijms24119132
Chicago/Turabian StyleLiu, Yuqi, Mingyu Wang, Yongshun Huang, Peng Zhu, Guangtao Qian, Yiming Zhang, and Lixin Li. 2023. "Genome-Wide Identification and Analysis of R2R3-MYB Genes Response to Saline–Alkali Stress in Quinoa" International Journal of Molecular Sciences 24, no. 11: 9132. https://doi.org/10.3390/ijms24119132
APA StyleLiu, Y., Wang, M., Huang, Y., Zhu, P., Qian, G., Zhang, Y., & Li, L. (2023). Genome-Wide Identification and Analysis of R2R3-MYB Genes Response to Saline–Alkali Stress in Quinoa. International Journal of Molecular Sciences, 24(11), 9132. https://doi.org/10.3390/ijms24119132