Nuclear Receptors in Health and Diseases
Funding
Conflicts of Interest
References
- Auwerx, J.; Baulieu, E.; Beato, M.; Becker-Andre, M.; Burbach, P.H.; Camerino, G.; Chambon, P.; Cooney, A.; Dejean, A.; Dreyer, C.; et al. A unified nomenclature system for the nuclear receptor superfamily. Cell 1999, 97, 161–163. [Google Scholar]
- Mangelsdorf, D.J.; Thummel, C.; Beato, M.; Herrlich, P.; Schütz, G.; Umesono, K.; Blumberg, B.; Kastner, P.; Mark, M.; Chambon, P.; et al. The nuclear receptor superfamily: The second decade. Cell 1995, 83, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Gronemeyer, H.; Gustafsson, J.Å.; Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 2004, 3, 950–964. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhai, Y.; Wang, J. The Role of PPAR and Its Cross-Talk with CAR and LXR in Obesity and Atherosclerosis. Int. J. Mol. Sci. 2018, 19, 1260. [Google Scholar] [CrossRef] [PubMed]
- Bain, D.L. Nuclear receptor structure: Implications for function. Annu. Rev. Physiol. 2007, 69, 201–220. [Google Scholar] [CrossRef]
- Echeverria, P.C.; Picard, D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim. Biophys. Acta 2010, 1803, 641–649. [Google Scholar] [CrossRef]
- Lazar, M.A. Maturing of the nuclear receptor family. J. Clin. Investig. 2017, 127, 1123–1125. [Google Scholar] [CrossRef]
- Hong, F.; Pan, S.; Guo, Y.; Xu, P.; Zhai, Y. PPARs as Nuclear Receptors for Nutrient and Energy Metabolism. Molecules 2019, 24, 2545. [Google Scholar] [CrossRef]
- Kinch, M.S.; Hoyer, D.; Patridge, E.; Plummer, M. Target selection for FDA-approved medicines. Drug Discov. Today 2015, 20, 784–789. [Google Scholar] [CrossRef]
- Sun, L.; Cai, J.; Gonzalez, F.J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 335–347. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, T.; Jiang, R.; Zhao, A.; Wu, Q.; Kuang, J.; Sun, D.; Ren, Z.; Li, M.; Zhao, M.; et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 2021, 33, 791–803.e7. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Xie, C.; Wang, G.; Wu, Y.; Wu, Q.; Wang, X.; Liu, J.; Deng, Y.; Xia, J.; Chen, B.; et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 2018, 24, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Talavera, O.; Tailleux, A.; Lefebvre, P.; Staels, B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology 2017, 152, 1679–1694.e3. [Google Scholar] [CrossRef]
- Yang, J.; van Dijk, T.H.; Koehorst, M.; Havinga, R.; de Boer, J.F.; Kuipers, F.; van Zutphen, T. Intestinal Farnesoid X Receptor Modulates Duodenal Surface Area but Does Not Control Glucose Absorption in Mice. Int. J. Mol. Sci. 2023, 24, 4132. [Google Scholar] [CrossRef]
- Kim, E.Y.; Lee, J.M. Transcriptional Control of Trpm6 by the Nuclear Receptor FXR. Int. J. Mol. Sci. 2022, 23, 1980. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ni, Z.; Song, T.; Lv, W.; Chen, Y.; Huang, D.; Xie, Y.; Huang, W.; Niu, Y. C-Terminal Truncated HBx Facilitates Oncogenesis by Modulating Cell Cycle and Glucose Metabolism in FXR-Deficient Hepatocellular Carcinoma. Int. J. Mol. Sci. 2023, 24, 5174. [Google Scholar] [CrossRef]
- Guo, Y.; Xie, G.; Zhang, X. Role of FXR in Renal Physiology and Kidney Diseases. Int. J. Mol. Sci. 2023, 24, 2408. [Google Scholar] [CrossRef] [PubMed]
- Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G.A.; Nicoletti, G.F.; Filosa, R.; Caraglia, M. Anti-Inflammatory Drugs as Anticancer Agents. Int. J. Mol. Sci. 2020, 21, 2605. [Google Scholar] [CrossRef]
- Kazberuk, A.; Chalecka, M.; Palka, J.; Surazynski, A. Nonsteroidal Anti-Inflammatory Drugs as PPARgamma Agonists Can Induce PRODH/POX-Dependent Apoptosis in Breast Cancer Cells: New Alternative Pathway in NSAID-Induced Apoptosis. Int. J. Mol. Sci. 2022, 23, 1510. [Google Scholar] [CrossRef]
- Pérez-Segura, I.; Santiago-Balmaseda, A.; Rodríguez-Hernández, L.D.; Morales-Martínez, A.; Martínez-Becerril, H.A.; Martínez-Gómez, P.A.; Delgado-Minjares, K.M.; Salinas-Lara, C.; Martínez-Dávila, I.A.; Guerra-Crespo, M.; et al. PPARs and Their Neuroprotective Effects in Parkinson’s Disease: A Novel Therapeutic Approach in alpha-Synucleinopathy? Int. J. Mol. Sci. 2023, 24, 3264. [Google Scholar] [CrossRef]
- Hong, F.; Xu, P.; Zhai, Y. The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development. Int. J. Mol. Sci. 2018, 19, 2189. [Google Scholar] [CrossRef] [PubMed]
- Cizkova, K.; Tauber, Z. Fibrates Affect Levels of Phosphorylated p38 in Intestinal Cells in a Differentiation-Dependent Manner. Int. J. Mol. Sci. 2023, 24, 7695. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Hong, F.; Wang, J.; Dai, S.; Wang, J.; Zhai, Y. The CAR agonist TCPOBOP inhibits lipogenesis and promotes fibrosis in the mammary gland of adolescent female mice. Toxicol. Lett. 2018, 290, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Pan, S. Environmental chemical TCPOBOP disrupts milk lipid homeostasis during pregnancy and lactation. Ecotoxicol. Environ. Saf. 2023, 249, 114463. [Google Scholar] [CrossRef]
- Pan, S.; Guo, Y.; Yu, W.; Zhang, J.; Qiao, X.; Li, L.; Xu, P.; Zhai, Y. Constitutive Androstane Receptor Agonist, TCPOBOP: Maternal Exposure Impairs the Growth and Development of Female Offspring in Mice. Int. J. Mol. Sci. 2023, 24, 2602. [Google Scholar] [CrossRef] [PubMed]
- Na, S.Y.; Kim, K.S.; Jung, Y.S.; Kim, D.K.; Kim, J.; Cho, S.J.; Lee, I.K.; Chung, J.; Kim, J.S.; Choi, H.S. An Inverse Agonist GSK5182 Increases Protein Stability of the Orphan Nuclear Receptor ERRgamma via Inhibition of Ubiquitination. Int. J. Mol. Sci. 2022, 24, 96. [Google Scholar] [CrossRef]
- Watanabe, M.; Sato, T.; Tsugeno, Y.; Higashide, M.; Furuhashi, M.; Umetsu, A.; Suzuki, S.; Ida, Y.; Hikage, F.; Ohguro, H. All-trans Retinoic Acids Synergistically and Beneficially Affect In Vitro Glaucomatous Trabecular Meshwork (TM) Models Using 2D and 3D Cell Cultures of Human TM Cells. Int. J. Mol. Sci. 2022, 23, 9912. [Google Scholar] [CrossRef]
- Pastori, V.; Pozzi, S.; Labedz, A.; Ahmed, S.; Ronchi, A.E. Role of Nuclear Receptors in Controlling Erythropoiesis. Int. J. Mol. Sci. 2022, 23, 2800. [Google Scholar] [CrossRef]
Subfamily | Number | Group | NRNC Symbol | Abbreviation | Name |
---|---|---|---|---|---|
1. Thyroid Hormone Receptor-like | 1.1 | Thyroid hormone receptor | NR1A1 | TRα | Thyroid hormone receptor-α |
NR1A2 | TRβ | Thyroid hormone receptor-β | |||
1.2 | Retinoic acid receptor | NR1B1 | RARα | Retinoic acid receptor-α | |
NR1B2 | RARβ | Retinoic acid receptor-β | |||
NR1B3 | RARγ | Retinoic acid receptor-γ | |||
1.3 | Peroxisome proliferator-activated receptor | NR1C1 | PPARα | Peroxisome proliferator-activated receptor-α | |
NR1C2 | PPAR-β/δ | Peroxisome proliferator-activated receptor-β/δ | |||
NR1C3 | PPARγ | Peroxisome proliferator-activated receptor-γ | |||
1.4 | Rev-ErbA | NR1D1 | Rev-ErbAα | Rev-ErbAα | |
NR1D2 | Rev-ErbAβ | Rev-ErbAβ | |||
1.5 | RAR-related orphan receptor | NR1F1 | RORα | RAR-related orphan receptor-α | |
NR1F2 | RORβ | RAR-related orphan receptor-β | |||
NR1F3 | RORγ | RAR-related orphan receptor-γ | |||
1.6 | Liver X receptor-like | NR1H2 | LXRβ | Liver X receptor-β | |
NR1H3 | LXRα | Liver X receptor-α | |||
NR1H4 | FXR | Farnesoid X receptor | |||
1.7 | Vitamin D receptor-like | NR1I1 | VDR | Vitamin D receptor | |
NR1I2 | PXR | Pregnane X receptor | |||
NR1I3 | CAR | Constitutive androstane receptor | |||
2. Retinoid X Receptor-like | 2.1 | Hepatocyte nuclear factor-4 | NR2A1 | HNF4α | Hepatocyte nuclear factor-4-α |
NR2A2 | HNF4γ | Hepatocyte nuclear factor-4-γ | |||
2.2 | Retinoid X receptor | NR2B1 | RXRα | Retinoid X receptor-α | |
NR2B2 | RXRβ | Retinoid X receptor-β | |||
NR2B3 | RXRγ | Retinoid X receptor-γ | |||
2.3 | Testicular receptor | NR2C1 | TR2 | Testicular receptor 2 | |
NR2C2 | TR4 | Testicular receptor 4 | |||
2.4 | TLX/PNR | NR2E1 | TLX | Homologue of the Drosophila tailless gene | |
NR2E3 | PNR | Photoreceptor cell-specific nuclear receptor | |||
2.5 | COUP/EAR | NR2F6 | EAR-2 | V-erbA-related | |
3. Estrogen Receptor-like | 3.1 | Estrogen receptor | NR3A1 | ERα | Estrogen receptor-α |
NR3A2 | ERβ | Estrogen receptor-β | |||
3.2 | Estrogen related receptor | NR3B1 | ERRα | Estrogen-related receptor-α | |
NR3B2 | ERRβ | Estrogen-related receptor-β | |||
NR3B3 | ERRγ | Estrogen-related receptor-γ | |||
3.3 | 3-Ketosteroid receptors | NR3C1 | GR | Glucocorticoid receptor | |
NR3C2 | MR | Mineralocorticoid receptor | |||
NR3C3 | PR | Progesterone receptor | |||
NR3C4 | AR | Androgen receptor | |||
4. Nerve Growth Factor IB-like | 4.1 | NGFIB/NURR1/NOR1 | NR4A1 | NGFIB | Nerve Growth factor IB |
NR4A2 | NURR1 | Nuclear receptor related 1 | |||
NR4A3 | NOR1 | Neuron-derived orphan receptor 1 | |||
5. Steroidogenic Factor-like | 5.1 | SF1/LRH1 | NR5A1 | SF1 | Steroidogenic factor 1 |
NR5A2 | LRH-1 | Liver receptor homolog-1 | |||
6. Germ Cell Nuclear Factor-like | 6.1 | GCNF | NR6A1 | GCNF | Germ cell nuclear factor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P. Nuclear Receptors in Health and Diseases. Int. J. Mol. Sci. 2023, 24, 9153. https://doi.org/10.3390/ijms24119153
Xu P. Nuclear Receptors in Health and Diseases. International Journal of Molecular Sciences. 2023; 24(11):9153. https://doi.org/10.3390/ijms24119153
Chicago/Turabian StyleXu, Pengfei. 2023. "Nuclear Receptors in Health and Diseases" International Journal of Molecular Sciences 24, no. 11: 9153. https://doi.org/10.3390/ijms24119153
APA StyleXu, P. (2023). Nuclear Receptors in Health and Diseases. International Journal of Molecular Sciences, 24(11), 9153. https://doi.org/10.3390/ijms24119153