The Mechanism of DNA Methylation and miRNA in Breast Cancer
Abstract
:1. Introduction
2. The Dysregulation of DNA Methylation in Breast Cancer
2.1. DNA Hypermethylation in Breast Cancer
2.2. DNA Hypomethylation in Breast Cancer
3. Aberrant Methylation Associated with Drug Resistance in Breast Cancer
3.1. Hypermethylation of Genes Associated with Drug Resistance in Breast Cancer
3.2. Hypomethylation of Genes Associated with Drug Resistance in Breast Cancer
4. MiRNA and DNA Methylation
5. The Relationship between miRNA and DNA Methylation
5.1. Aberrant Methylation of Tumor Suppressor miRNA Promoter in Breast Cancer
5.2. The DNMTs Targeted by Tumor Suppressor miRNA to Deregulate DNA Methylation
5.3. Hypomethylation of miRNA in Breast Cancer
6. Aberrant Methylation of miRNAs Leads to Drug Resistance in Breast Cancer
6.1. Hypermethylation of miRNAs Leads to Drug Resistance in Breast Cancer
6.2. Hypomethylation of miRNAs Leads to Drug Resistance in Breast Cancer
7. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular Portraits of Human Breast Tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast Cancer. Nat. Rev. Dis. Primer 2019, 5, 1–31. [Google Scholar] [CrossRef]
- Waks, A.G.; Winer, E.P. Breast Cancer Treatment: A Review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef]
- Early Breast Cancer Trialists’ Collaborative Group. Effects of Chemotherapy and Hormonal Therapy for Early Breast Cancer on Recurrence and 15-Year Survival: An Overview of the Randomised Trials. Lancet 2005, 365, 1687–1717. [Google Scholar] [CrossRef]
- Masoud, V.; Pagès, G. Targeted Therapies in Breast Cancer: New Challenges to Fight against Resistance. World J. Clin. Oncol. 2017, 8, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Barok, M.; Tanner, M.; Köninki, K.; Isola, J. Trastuzumab-DM1 Causes Tumour Growth Inhibition by Mitotic Catastrophe in Trastuzumab-Resistant Breast Cancer Cells in Vivo. Breast Cancer Res. BCR 2011, 13, R46. [Google Scholar] [CrossRef]
- Yang, R.; Li, Y.; Wang, H.; Qin, T.; Yin, X.; Ma, X. Therapeutic Progress and Challenges for Triple Negative Breast Cancer: Targeted Therapy and Immunotherapy. Mol. Biomed. 2022, 3, 8. [Google Scholar] [CrossRef]
- Kohler, B.A.; Sherman, R.L.; Howlader, N.; Jemal, A.; Ryerson, A.B.; Henry, K.A.; Boscoe, F.P.; Cronin, K.A.; Lake, A.; Noone, A.-M.; et al. Annual Report to the Nation on the Status of Cancer, 1975–2011, Featuring Incidence of Breast Cancer Subtypes by Race/Ethnicity, Poverty, and State. Jnci-J. Natl. Cancer Inst. 2015, 107, Djv048. [Google Scholar] [CrossRef]
- Zhao, B.; Xu, Y.; Zhao, Y.; Shen, S.; Sun, Q. Identification of Potential Key Genes Associated with the Pathogenesis, Metastasis, and Prognosis of Triple-Negative Breast Cancer on the Basis of Integrated Bioinformatics Analysis. Front. Oncol. 2020, 10, 856. [Google Scholar] [CrossRef]
- Holliday, R. Epigenetics: An Overview. Dev. Genet. 1994, 15, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Dawson, M.A.; Kouzarides, T. Cancer Epigenetics: From Mechanism to Therapy. Cell 2012, 150, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Zafon, C.; Gil, J.; Perez-Gonzalez, B.; Jorda, M. DNA Methylation in Thyroid Cancer. Endocr. Relat. Cancer 2019, 26, R415–R439. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Kim, W.J. DNA Methylation Markers in Lung Cancer. Curr. Genom. 2021, 22, 79–87. [Google Scholar] [CrossRef]
- Bévant, K.; Desoteux, M.; Abdel Wahab, A.H.A.; Abdel Wahab, S.A.; Metwally, A.M.; Coulouarn, C. DNA Methylation of TGFβ Target Genes: Epigenetic Control of TGFβ Functional Duality in Liver Cancer. Cells 2021, 10, 2207. [Google Scholar] [CrossRef]
- Dai, J.; Nishi, A.; Li, Z.X.; Zhang, Y.; Zhou, T.; You, W.C.; Li, W.Q.; Pan, K.F. DNA Methylation Signatures Associated with Prognosis of Gastric Cancer. BMC Cancer 2021, 21, 610. [Google Scholar] [CrossRef]
- Zhao, S.G.; Chen, W.S.; Li, H.; Foye, A.; Zhang, M.; Sjostrom, M.; Aggarwal, R.; Playdle, D.; Liao, A.; Alumkal, J.J.; et al. The DNA Methylation Landscape of Advanced Prostate Cancer. Nat. Genet. 2020, 52, 778–789. [Google Scholar] [CrossRef]
- Nunes, S.P.; Henrique, R.; Jeronimo, C.; Paramio, J.M. DNA Methylation as a Therapeutic Target for Bladder Cancer. Cells 2020, 9, 1850. [Google Scholar] [CrossRef]
- Chiappinelli, K.B.; Baylin, S.B. Inhibiting DNA Methylation Improves Antitumor Immunity in Ovarian Cancer. J. Clin. Investig. 2022, 132, e160186. [Google Scholar] [CrossRef]
- Li, B.; Pan, R.; Zhou, C.; Dai, J.; Mao, Y.; Chen, M.; Huang, T.; Ying, X.; Hu, H.; Zhao, J.; et al. SMYD3 Promoter Hypomethylation Is Associated with the Risk of Colorectal Cancer. Future Oncol. 2018, 14, 1825–1834. [Google Scholar] [CrossRef]
- Prajzendanc, K.; Domagala, P.; Hybiak, J.; Rys, J.; Huzarski, T.; Szwiec, M.; Tomiczek-Szwiec, J.; Redelbach, W.; Sejda, A.; Gronwald, J.; et al. BRCA1 Promoter Methylation in Peripheral Blood Is Associated with the Risk of Triple-Negative Breast Cancer. Int. J. Cancer 2020, 146, 1293–1298. [Google Scholar] [CrossRef] [PubMed]
- Okano, M.; Bell, D.W.; Haber, D.A.; Li, E. DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development. Cell 1999, 99, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Lou, J. DNA Methylation Analysis. Methods Mol. Biol. 2019, 1894, 181–227. [Google Scholar]
- Kanwal, R.; Gupta, S. Epigenetic Modifications in Cancer. Clin. Genet. 2012, 81, 303–311. [Google Scholar] [CrossRef]
- Cao, W.; Lee, H.; Wu, W.; Zaman, A.; McCorkle, S.; Yan, M.; Chen, J.; Xing, Q.; Sinnott-Armstrong, N.; Xu, H.; et al. Multi-Faceted Epigenetic Dysregulation of Gene Expression Promotes Esophageal Squamous Cell Carcinoma. Nat. Commun. 2020, 11, 3675. [Google Scholar] [CrossRef]
- Tang, Q.; Cheng, J.; Cao, X.; Surowy, H.; Burwinkel, B. Blood-Based DNA Methylation as Biomarker for Breast Cancer: A Systematic Review. Clin. Epigenetics 2016, 8, 115. [Google Scholar] [CrossRef]
- Lu, A.; Wang, W.; Wang-Renault, S.-F.; Ring, B.Z.; Tanaka, Y.; Weng, J.; Su, L. 5-Aza-2′-Deoxycytidine Advances the Epithelial–Mesenchymal Transition of Breast Cancer Cells by Demethylating Sipa1 Promoter-Proximal Elements. J. Cell Sci. 2020, 133, jcs236125. [Google Scholar] [CrossRef]
- Deaton, A.M.; Bird, A. CpG Islands and the Regulation of Transcription. Genes Dev. 2011, 25, 1010–1022. [Google Scholar] [CrossRef]
- Bogdanovic, O.; Veenstra, G.J.C. DNA Methylation and Methyl-CpG Binding Proteins: Developmental Requirements and Function. Chromosoma 2009, 118, 549–565. [Google Scholar] [CrossRef]
- Hon, G.C.; Hawkins, R.D.; Caballero, O.L.; Lo, C.; Lister, R.; Pelizzola, M.; Valsesia, A.; Ye, Z.; Kuan, S.; Edsall, L.E.; et al. Global DNA Hypomethylation Coupled to Repressive Chromatin Domain Formation and Gene Silencing in Breast Cancer. Genome Res. 2012, 22, 246–258. [Google Scholar] [CrossRef]
- Esteve-Puig, R.; Bueno-Costa, A.; Esteller, M. Writers, Readers and Erasers of RNA Modifications in Cancer. Cancer Lett. 2020, 474, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Baylin, S.B.; Jones, P.A. A Decade of Exploring the Cancer Epigenome—Biological and Translational Implications. Nat. Rev. Cancer 2011, 11, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Kresovich, J.K.; Gann, P.H.; Erdal, S.; Chen, H.Y.; Argos, M.; Rauscher, G.H. Candidate Gene DNA Methylation Associations with Breast Cancer Characteristics and Tumor Progression. Epigenomics 2018, 10, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Griess, B.; Klinkebiel, D.; Kueh, A.; Desler, M.; Cowan, K.; Fitzgerald, M.; Teoh-Fitzgerald, M. Association OfSOD3promoter DNA Methylation with Its Down-Regulation in Breast Carcinomas. Epigenetics 2020, 15, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Veeck, J.; Esteller, M. Breast Cancer Epigenetics: From DNA Methylation to MicroRNAs. J. Mammary Gland Biol. Neoplasia 2010, 15, 5–17. [Google Scholar] [CrossRef]
- Pfeifer, G.P. Defining Driver DNA Methylation Changes in Human Cancer. Int. J. Mol. Sci. 2018, 19, 1166. [Google Scholar] [CrossRef]
- Switzer, C.H.; Cho, H.-J.; Eykyn, T.R.; Lavender, P.; Eaton, P. NOS2 and S-Nitrosothiol Signaling Induces DNA Hypomethylation and LINE-1 Retrotransposon Expression. Proc. Natl. Acad. Sci. USA 2022, 119, e2200022119. [Google Scholar] [CrossRef]
- Atalay, C. Epigenetics in Breast Cancer. Exp. Oncol. 2013, 35, 246–249. [Google Scholar]
- Ye, D.; Jiang, D.; Li, Y.; Jin, M.; Chen, K. The Role of LINE-1 Methylation in Predicting Survival among Colorectal Cancer Patients: A Meta-Analysis. Int. J. Clin. Oncol. 2017, 22, 749–757. [Google Scholar] [CrossRef]
- Szyf, M.; Pakneshan, P.; Rabbani, S.A. DNA Methylation and Breast Cancer. Biochem. Pharmacol. 2004, 68, 1187–1197. [Google Scholar] [CrossRef]
- Ito, S.; Shen, L.; Dai, Q.; Wu, S.C.; Collins, L.B.; Swenberg, J.A.; He, C.; Zhang, Y. Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science 2011, 333, 1300–1303. [Google Scholar] [CrossRef] [PubMed]
- Good, C.R.; Panjarian, S.; Kelly, A.D.; Madzo, J.; Patel, B.; Jelinek, J.; Issa, J.-P.J. TET1-Mediated Hypomethylation Activates Oncogenic Signaling in Triple-Negative Breast Cancer. Cancer Res. 2018, 78, 4126–4137. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, J.S.; Guimei, M.; Jayakumar, M.N.; Shafarin, J.; Janeeh, A.S.; AbuJabal, R.; Eladl, M.A.; Ranade, A.V.; Ali, A.; Hamad, M. Estrogen-Induced Hypomethylation and Overexpression of YAP1 Facilitate Breast Cancer Cell Growth and Survival. Neoplasia 2021, 23, 68–79. [Google Scholar] [CrossRef]
- Skaar, D.A.; Dietze, E.C.; Alva-Ornelas, J.A.; Ann, D.; Schones, D.E.; Hyslop, T.; Sistrunk, C.; Zalles, C.; Ambrose, A.; Kennedy, K.; et al. Epigenetic Dysregulation of KCNK9 Imprinting and Triple-Negative Breast Cancer. Cancers 2021, 13, 6031. [Google Scholar] [CrossRef] [PubMed]
- Mendaza, S.; Ulazia-Garmendia, A.; Monreal-Santesteban, I.; Cordoba, A.; Ruiz de Azua, Y.; Aguiar, B.; Beloqui, R.; Armendariz, P.; Arriola, M.; Martin-Sanchez, E.; et al. ADAM12 Is A Potential Therapeutic Target Regulated by Hypomethylation in Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2020, 21, 903. [Google Scholar] [CrossRef]
- Zeggar, H.R.; How-Kit, A.; Daunay, A.; Bettaieb, I.; Sahbatou, M.; Rahal, K.; Adouni, O.; Gammoudi, A.; Douik, H.; Deleuze, J.-F.; et al. Tumor DNA Hypomethylation of LINE-1 Is Associated with Low Tumor Grade of Breast Cancer in Tunisian Patients. Oncol. Lett. 2020, 20, 1999–2006. [Google Scholar] [CrossRef] [PubMed]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.-W. Cancer and Radiation Therapy: Current Advances and Future Directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef]
- Tufail, M.; Cui, J.; Wu, C. Breast Cancer: Molecular Mechanisms of Underlying Resistance and Therapeutic Approaches. Am. J. Cancer Res. 2022, 12, 2920–2949. [Google Scholar]
- Liu, J.; Zhang, X.; Liu, A.; Zhang, D.; Su, Y.; Liu, Y.; You, D.; Yuan, L.; Kong, X.; Wang, X.; et al. Altered Methylation of Glucosylceramide Synthase Promoter Regulates Its Expression and Associates with Acquired Multidrug Resistance in Invasive Ductal Breast Cancer. Oncotarget 2016, 7, 36755–36766. [Google Scholar] [CrossRef]
- Bos, M.K.; Deger, T.; Sleijfer, S.; Martens, J.W.M.; Wilting, S.M. ESR1 Methylation Measured in Cell-Free DNA to Evaluate Endocrine Resistance in Metastatic Breast Cancer Patients. Int. J. Mol. Sci. 2022, 23, 5631. [Google Scholar] [CrossRef]
- Ye, L.; Lin, C.; Wang, X.; Li, Q.; Li, Y.; Wang, M.; Zhao, Z.; Wu, X.; Shi, D.; Xiao, Y.; et al. Epigenetic Silencing of SALL2 Confers Tamoxifen Resistance in Breast Cancer. EMBO Mol. Med. 2019, 11, e10638. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Liu, Y.-J.; Lian, W.-J.; Zhao, Z.-W.; Yi, T.; Zhou, H.-Y. Reduced BMP6 Expression by DNA Methylation Contributes to EMT and Drug Resistance in Breast Cancer Cells. Oncol. Rep. 2014, 32, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Carter, P.; Presta, L.; Gorman, C.; Ridgway, J.; Henner, D.; Wong, W.; Rowland, A.; Kotts, C.; Carver, M.; Shepard, H. Humanization of an Anti-P185her2 Antibody for Human Cancer-Therapy. Proc. Natl. Acad. Sci. USA 1992, 89, 4285–4289. [Google Scholar] [CrossRef] [PubMed]
- Palomeras, S.; Diaz-Lagares, A.; Vinas, G.; Setien, F.; Ferreira, H.J.; Oliveras, G.; Crujeiras, A.B.; Hernandez, A.; Lum, D.H.; Welm, A.L.; et al. Epigenetic Silencing of TGFBI Confers Resistance to Trastuzumab in Human Breast Cancer. Breast Cancer Res. 2019, 21, 79. [Google Scholar] [CrossRef]
- Jahangiri, R.; Mosaffa, F.; Emami Razavi, A.; Teimoori-Toolabi, L.; Jamialahmadi, K. PAX2 Promoter Methylation and AIB1 Overexpression Promote Tamoxifen Resistance in Breast Carcinoma Patients. J. Oncol. Pharm. Pract. 2022, 28, 310–325. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Sun, T.; Guo, X.; Wang, Y.; Jing, M. Estrogen Receptor-α Promoter Methylation Is a Biomarker for Outcome Prediction of Cisplatin Resistance in Triple-Negative Breast Cancer. Oncol. Lett. 2018, 15, 2855–2862. [Google Scholar] [CrossRef]
- Dong, T.; Zhang, M.; Dong, Y.; Herman, J.G.; van Engeland, M.; Zhong, G.; Guo, M. Methylation of RASSF10 Promotes Cell Proliferation and Serves as a Docetaxel Resistant Marker in Human Breast Cancer. Discov. Med. 2015, 20, 261–271. [Google Scholar]
- Zhang, J.; Zhang, F.; Zhang, F.; Wu, H.; Zhang, B.; Wu, X. Correlation between Promoter Methylation of the LDH-C4 Gene and DNMT Expression in Breast Cancer and Their Prognostic Significance. Oncol. Lett. 2022, 23, 35. [Google Scholar] [CrossRef]
- Sharma, G.; Mirza, S.; Parshad, R.; Srivastava, A.; Gupta, S.D.; Pandya, P.; Ralhan, R. CpG Hypomethylation of MDR1 Gene in Tumor and Serum of Invasive Ductal Breast Carcinoma Patients. Clin. Biochem. 2010, 43, 373–379. [Google Scholar] [CrossRef]
- Kim, H.W.; Park, J.E.; Baek, M.; Kim, H.; Ji, H.W.; Yun, S.H.; Jeong, D.; Ham, J.; Park, S.; Lu, X.; et al. Matrix Metalloproteinase-1 (MMP1) Upregulation through Promoter Hypomethylation Enhances Tamoxifen Resistance in Breast Cancer. Cancers 2022, 14, 1232. [Google Scholar] [CrossRef]
- Islam, M.S.; Dasgupta, H.; Basu, M.; Roy, A.; Alam, N.; Roychoudhury, S.; Panda, C.K. Reduction of Nuclear Y654-p-Beta-Catenin Expression through SH3GL2-Meditated Downregulation of EGFR in Chemotolerance TNBC: Clinical and Prognostic Importance. J. Cell. Physiol. 2020, 235, 8114–8128. [Google Scholar] [CrossRef]
- Treiber, T.; Treiber, N.; Meister, G. Regulation of MicroRNA Biogenesis and Its Crosstalk with Other Cellular Pathways. Nat. Rev. Mol. Cell Biol. 2019, 20, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Xiao, Q.; Zhao, L.; Ren, J.; Bai, X.; Sun, M.; Wu, H.; Liu, X.; Song, Z.; Yan, Y.; et al. DNA Methyltransferase 1/3a Overexpression in Sporadic Breast Cancer Is Associated with Reduced Expression of Estrogen Receptor-Alpha/Breast Cancer Susceptibility Gene 1 and Poor Prognosis. Mol. Carcinog. 2015, 54, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, M.; Han, J.; Yeom, K.-H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA Genes Are Transcribed by RNA Polymerase II. EMBO J. 2004, 23, 4051–4060. [Google Scholar] [CrossRef] [PubMed]
- Tellier, M.; Maudlin, I.; Murphy, S. Transcription and Splicing: A Two-Way Street. WIREs RNA 2020, 11, e1593. [Google Scholar] [CrossRef]
- Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; et al. Frequent Deletions and Down-Regulation of Micro- RNA Genes MiR15 and MiR16 at 13q14 in Chronic Lymphocytic Leukemia. Proc. Natl. Acad. Sci. USA 2002, 99, 15524–15529. [Google Scholar] [CrossRef]
- Le, M.T.N.; Teh, C.; Shyh-Chang, N.; Xie, H.; Zhou, B.; Korzh, V.; Lodish, H.F.; Lim, B. MicroRNA-125b Is a Novel Negative Regulator of P53. Genes Dev. 2009, 23, 862–876. [Google Scholar] [CrossRef]
- Chatterjee, B.; Ghosh, K.; Swain, A.; Nalla, K.K.; Ravula, H.; Pan, A.; Kanade, S.R. The Phytochemical Brazilin Suppress DNMT1 Expression by Recruiting P53 to Its Promoter Resulting in the Epigenetic Restoration of P21 in MCF7cells. Phytomedicine 2022, 95, 153885. [Google Scholar] [CrossRef]
- Arif, K.M.T.; Elliott, E.K.; Haupt, L.M.; Griffiths, L.R. Regulatory Mechanisms of Epigenetic MiRNA Relationships in Human Cancer and Potential as Therapeutic Targets. Cancers 2020, 12, 2922. [Google Scholar] [CrossRef]
- Starlard-Davenport, A.; Kutanzi, K.; Tryndyak, V.; Word, B.; Lyn-Cook, B. Restoration of the Methylation Status of Hypermethylated Gene Promoters by MicroRNA-29b in Human Breast Cancer: A Novel Epigenetic Therapeutic Approach. J. Carcinog. 2013, 12, 15. [Google Scholar] [CrossRef]
- Sankrityayan, H.; Kulkarni, Y.A.; Gaikwad, A.B. Diabetic Nephropathy: The Regulatory Interplay between Epigenetics and MicroRNAs. Pharmacol. Res. 2019, 141, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Singh, H.; Rajapakshe, K.; Tachibana, K.; Ganesan, N.; Pan, Y.; Gunaratne, P.H.; Coarfa, C.; Bedrosian, I. Regulation of MiRNA-29c and Its Downstream Pathways in Preneoplastic Progression of Triple-Negative Breast Cancer. Oncotarget 2017, 8, 19645–19660. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Qu, X.; Zhao, C.; Xu, L.; Hou, K.; Liu, Y.; Zhang, N.; Feng, J.; Shi, S.; Zhang, L.; et al. FEN1 Mediates MiR-200a Methylation and Promotes Breast Cancer Cell Growth via MET and EGFR Signaling. FASEB J. 2019, 33, 10717–10730. [Google Scholar] [CrossRef] [PubMed]
- Neves, R.; Scheel, C.; Weinhold, S.; Honisch, E.; Iwaniuk, K.M.; Trompeter, H.-I.; Niederacher, D.; Wernet, P.; Santourlidis, S.; Uhrberg, M. Role of DNA Methylation in MiR-200c/141 Cluster Silencing in Invasive Breast Cancer Cells. BMC Res. Notes 2010, 3, 219. [Google Scholar] [CrossRef]
- Piperigkou, Z.; Karamanos, N.K. Dynamic Interplay between MiRNAs and the Extracellular Matrix Influences the Tumor Microenvironment. Trends Biochem. Sci. 2019, 44, 1076–1088. [Google Scholar] [CrossRef]
- Li, D.; Zhao, Y.; Liu, C.; Chen, X.; Qi, Y.; Jiang, Y.; Zou, C.; Zhang, X.; Liu, S.; Wang, X.; et al. Analysis of MiR-195 and MiR-497 Expression, Regulation and Role in Breast Cancer. Clin. Cancer Res. 2011, 17, 1722–1730. [Google Scholar] [CrossRef]
- Tao, S.; Li, H.; Ma, X.; Lian, B.; He, J.; Gao, Y.; Li, J. Methylation-Mediated Silencing of MicroRNA-497 Promotes Breast Cancer Progression Through Up-Regulation of Mucin1. Front. Oncol. 2020, 10, 552099. [Google Scholar] [CrossRef]
- Dinami, R.; Buemi, V.; Sestito, R.; Zappone, A.; Ciani, Y.; Mano, M.; Petti, E.; Sacconi, A.; Blandino, G.; Giacca, M.; et al. Epigenetic Silencing of MiR-296 and MiR-512 Ensures HTERT Dependent Apoptosis Protection and Telomere Maintenance in Basal-Type Breast Cancer Cells. Oncotarget 2017, 8, 95674–95691. [Google Scholar] [CrossRef]
- Sossey-Alaoui, K.; Downs-Kelly, E.; Das, M.; Izem, L.; Tubbs, R.; Plow, E.F. WAVE3, an Actin Remodeling Protein, Is Regulated by the Metastasis Suppressor MicroRNA, MiR-31, during the Invasion-Metastasis Cascade. Int. J. Cancer J. Int. Cancer 2011, 129, 1331–1343. [Google Scholar] [CrossRef]
- Augoff, K.; McCue, B.; Plow, E.F.; Sossey-Alaoui, K. MiR-31 and Its Host Gene LncRNA LOC554202 Are Regulated by Promoter Hypermethylation in Triple-Negative Breast Cancer. Mol. Cancer 2012, 11, 5. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Li, X.-Y.; Chen, W.-Q.; Hu, H.; Luo, B.; Shi, Y.-X.; Wu, T.-W.; Li, Y.; Kong, Q.-Z.; Lu, H.-D.; et al. Demethylation of the MIR145 Promoter Suppresses Migration and Invasion in Breast Cancer. Oncotarget 2017, 8, 61731–61741. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Tang, T.; Li, X.; Deng, S.; Li, R.; Wang, Y.; Wang, Y.; Xia, T.; Zhang, Y.; Zen, K.; et al. Methylation-Mediated Silencing of MiR-133a-3p Promotes Breast Cancer Cell Migration and Stemness via MiR-133a-3p/MAML1/DNMT3A Positive Feedback Loop. J. Exp. Clin. Cancer Res. 2019, 38, 429. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, J.; Guan, L.; Qi, L.; Tang, Y.; Ma, B.; Zhan, J.; Wang, Y.; Fang, W.; Zhang, H. Kindlin 2 Promotes Breast Cancer Invasion via Epigenetic Silencing of the MicroRNA200 Gene Family: Kindlin 2 Promotes Breast Cancer Invasion. Int. J. Cancer 2013, 133, 1368–1379. [Google Scholar] [CrossRef] [PubMed]
- Ben Gacem, R.; Ben Abdelkrim, O.; Ziadi, S.; Ben Dhiab, M.; Trimeche, M. Methylation of MiR-124a-1, MiR-124a-2, and MiR-124a-3 Genes Correlates with Aggressive and Advanced Breast Cancer Disease. Tumor Biol. 2014, 35, 4047–4056. [Google Scholar] [CrossRef] [PubMed]
- Loginov, V.I.; Burdennyy, A.M.; Pronina, I.V.; Khokonova, V.V.; Kurevljov, S.V.; Kazubskaya, T.P.; Kushlinskii, N.E.; Braga, E.A. Novel MiRNA Genes Hypermethylated in Breast Cancer. Mol. Biol. 2016, 50, 705–709. [Google Scholar] [CrossRef]
- Loginov, V.; Burdennyy, A.M.; Filippova, E.A.; Pronina, I.; Lukina, S.S.; Kazubskaya, T.P.; Karpukhin, A.; Khodyrev, D.S.; Braga, E.A. Aberrant Methylation of 21 MicroRNA Genes in Breast Cancer: Sets of Genes Associated with Progression and a System of Markers for Predicting Metastasis. Bull. Exp. Biol. Med. 2021, 172, 67–71. [Google Scholar] [CrossRef]
- Hasegawa, T.; Adachi, R.; Iwakata, H.; Takeno, T.; Sato, K.; Sakamaki, T. ErbB2 Signaling Epigenetically Suppresses MicroRNA-205 Transcription via Ras/Raf/MEK/ERK Pathway in Breast Cancer. FEBS Open Bio 2017, 7, 1154–1165. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y. Hsa_circ_0000078 Regulates MiR-205-5p/EREG Pathway to Inhibit Cervical Cancer Progression. Mol. Biotechnol. 2023. [Google Scholar] [CrossRef]
- Lehmann, U.; Hasemeier, B.; Römermann, D.; Müller, M.; Länger, F.; Kreipe, H. Epigenetic inactivation of microRNA genes in mammary carcinoma. Verh. Dtsch. Ges. Pathol. 2007, 91, 214–220. [Google Scholar]
- Xu, Q.-L.; Luo, Z.; Zhang, B.; Qin, G.-J.; Zhang, R.-Y.; Kong, X.-Y.; Tang, H.-Y.; Jiang, W. Methylation-Associated Silencing of MiR-9-1 Promotes Nasopharyngeal Carcinoma Progression and Glycolysis via HK2. Cancer Sci. 2021, 112, 4127–4138. [Google Scholar] [CrossRef]
- Feng, F.; Liu, H.; Chen, A.; Xia, Q.; Zhao, Y.; Jin, X.; Huang, J. MiR-148-3p and MiR-152-3p Synergistically Regulate Prostate Cancer Progression via Repressing KLF4. J. Cell. Biochem. 2019, 120, 17228–17239. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Xie, H.; Zhang, J.; Wang, D.; Song, Y.; Zhang, S.; Zheng, S.; Wang, J. MicroRNA-663 Suppresses the Proliferation and Invasion of Colorectal Cancer Cells by Directly Targeting FSCN1. Mol. Med. Rep. 2017, 16, 9707–9714. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, D.; Deb, M.; Rath, S.K.; Kar, S.; Parbin, S.; Pradhan, N.; Patra, S.K. DNA Methylation and Not H3K4 Trimethylation Dictates the Expression Status of MiR-152 Gene Which Inhibits Migration of Breast Cancer Cells via DNMT1/CDH1 Loop. Exp. Cell Res. 2016, 346, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chao, L.; Wang, J.; Sun, Y. MiRNA-148a Regulates the Expression of the Estrogen Receptor through DNMT1-Mediated DNA Methylation in Breast Cancer Cells. Oncol. Lett. 2017, 14, 4736–4740. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.K.O.; Li, R.; Shin, V.Y.; Siu, J.M.; Ma, E.S.K.; Kwong, A. MicroRNA-143 Is Downregulated in Breast Cancer and Regulates DNA Methyltransferases 3A in Breast Cancer Cells. Tumor Biol. 2014, 35, 2591–2598. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Pang, Y.; Wang, H.; Li, Y.; Sun, X.; Xu, F.; Ren, H.; Liu, D. miR-101 inhibits the proliferation and migration of breast cancer cells via downregulating the expression of DNA methyltransferase 3a. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi Chin. J. Cell. Mol. Immunol. 2016, 32, 299–303. [Google Scholar]
- Le, X.-F.; Spizzo, R.; Mao, M.; Wu, Y.; Calin, G.A.; Bast, R.C. Abstract 2051: DNA (Cytosine-5-)-Methyltransferases 3A (DNMT3A) Is a Direct Target of MiR-194 in Breast Cancer. Cancer Res. 2010, 70, 2051. [Google Scholar] [CrossRef]
- Noyan, S.; Andac Ozketen, A.; Gurdal, H.; Gur Dedeoglu, B. MiR-770-5p Regulates EMT and Invasion in TNBC Cells by Targeting DNMT3A. Cell. Signal. 2021, 83, 109996. [Google Scholar] [CrossRef]
- Aure, M.R.; Fleischer, T.; Bjorklund, S.; Ankill, J.; Castro-Mondragon, J.A.; Borresen-Dale, A.-L.; Tost, J.; Sahlberg, K.K.; Mathelier, A.; Tekpli, X.; et al. Crosstalk between MicroRNA Expression and DNA Methylation Drives the Hormone-Dependent Phenotype of Breast Cancer. Genome Med. 2021, 13, 72. [Google Scholar] [CrossRef]
- Li, W.; Yi, J.; Zheng, X.; Liu, S.; Fu, W.; Ren, L.; Li, L.; Hoon, D.S.B.; Wang, J.; Du, G. MiR-29c Plays a Suppressive Role in Breast Cancer by Targeting the TIMP3/STAT1/FOXO1 Pathway. Clin. Epigenetics 2018, 10, 64. [Google Scholar] [CrossRef]
- Sandhu, R.; Rivenbark, A.G.; Coleman, W.B. Loss of Post-Transcriptional Regulation of DNMT3b by MicroRNAs: A Possible Molecular Mechanism for the Hypermethylation Defect Observed in a Subset of Breast Cancer Cell Lines. Int. J. Oncol. 2012, 41, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Roscigno, G.; Quintavalle, C.; Donnarumma, E.; Puoti, I.; Diaz-Lagares, A.; Iaboni, M.; Fiore, D.; Russo, V.; Todaro, M.; Romano, G.; et al. MiR-221 Promotes Stemness of Breast Cancer Cells by Targeting DNMT3b. Oncotarget 2016, 7, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Zmetakova, I.; Kalinkova, L.; Smolkova, B.; Horvathova Kajabova, V.; Cierna, Z.; Danihel, L.; Bohac, M.; Sedlackova, T.; Minarik, G.; Karaba, M.; et al. A Disintegrin and Metalloprotease 23 Hypermethylation Predicts Decreased Disease-Free Survival in Low-Risk Breast Cancer Patients. Cancer Sci. 2019, 110, 1695–1704. [Google Scholar] [CrossRef]
- Huisman, C.; van der Wijst, M.G.P.; Schokker, M.; Blancafort, P.; Terpstra, M.M.; Kok, K.; van der Zee, A.G.J.; Schuuring, E.; Wisman, G.B.A.; Rots, M.G. Re-Expression of Selected Epigenetically Silenced Candidate Tumor Suppressor Genes in Cervical Cancer by TET2-Directed Demethylation. Mol. Ther. 2016, 24, 536–547. [Google Scholar] [CrossRef]
- Hung, C.-S.; Wang, S.-C.; Yen, Y.-T.; Lee, T.-H.; Wen, W.-C.; Lin, R.-K. Hypermethylation of CCND2 in Lung and Breast Cancer Is a Potential Biomarker and Drug Target. Int. J. Mol. Sci. 2018, 19, 3096. [Google Scholar] [CrossRef] [PubMed]
- Bücker, L.; Lehmann, U. CDH1 (E-Cadherin) Gene Methylation in Human Breast Cancer: Critical Appraisal of a Long and Twisted Story. Cancers 2022, 14, 4377. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Lin, X.; Cao, F.; Mok, H.; Chen, B.; Liao, N. CDKN1C as a Prognostic Biomarker Correlated with Immune Infiltrates and Therapeutic Responses in Breast Cancer Patients. J. Cell. Mol. Med. 2021, 25, 9390–9401. [Google Scholar] [CrossRef]
- He, G.-H.; Liu, S.-D.; Shi, X.-Q.; Chen, Y.; Su, L.; Shi, Q.-N.; Sun, C. Rs77283072 Influences Breast Cancer Susceptibility by Regulating CDKN2A Expression. Oncol. Lett. 2023, 25, 1–6. [Google Scholar] [CrossRef]
- Sun, X.; Qu, Q.; Lao, Y.; Zhang, M.; Yin, X.; Zhu, H.; Wang, Y.; Yang, J.; Yi, J.; Hao, M. Tumor Suppressor HIC1 Is Synergistically Compromised by Cancer-Associated Fibroblasts and Tumor Cells through the IL-6/PSTAT3 Axis in Breast Cancer. BMC Cancer 2019, 19, 1180. [Google Scholar] [CrossRef]
- Aibel, C.; Coll De Peña, A.; Tripathi, A. An Optimized CoBRA Method for the Microfluidic Electrophoresis Detection of Breast Cancer Associated RASSF1 Methylation. BioTech 2023, 12, 7. [Google Scholar] [CrossRef]
- Li, P.; Lin, Z.; Liu, Q.; Chen, S.; Gao, X.; Guo, W.; Gong, F.; Wei, J.; Lin, H. Enhancer RNA SLIT2 Inhibits Bone Metastasis of Breast Cancer Through Regulating P38 MAPK/c-Fos Signaling Pathway. Front. Oncol. 2021, 11, 743840. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ren, S.; Howell, P.; Fodstad, O.; Riker, A.I. Identification of Novel Epigenetically Modified Genes in Human Melanoma via Promoter Methylation Gene Profiling. Pigment. Cell Melanoma Res. 2008, 21, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Wolfsberger, J.; Sakil, H.A.M.; Zhou, L.; van Bree, N.; Baldisseri, E.; de Souza Ferreira, S.; Zubillaga, V.; Stantic, M.; Fritz, N.; Hartman, J.; et al. TAp73 Represses NF-ΚB–Mediated Recruitment of Tumor-Associated Macrophages in Breast Cancer. Proc. Natl. Acad. Sci. USA 2021, 118, e2017089118. [Google Scholar] [CrossRef] [PubMed]
- Blasio, A.; Di Fiore, R.; Pratelli, G.; Drago-Ferrante, R.; Saliba, C.; Baldacchino, S.; Grech, G.; Scerri, C.; Vento, R.; Tesoriere, G. A Loop Involving NRF2, MiR-29b-1-5p and AKT, Regulates Cell Fate of MDA-MB-231 Triple-negative Breast Cancer Cells. J. Cell. Physiol. 2020, 235, 629–637. [Google Scholar] [CrossRef] [PubMed]
- de Souza Rocha Simonini, P.; Breiling, A.; Gupta, N.; Malekpour, M.; Youns, M.; Omranipour, R.; Malekpour, F.; Volinia, S.; Croce, C.M.; Najmabadi, H.; et al. Epigenetically Deregulated MicroRNA-375 Is Involved in a Positive Feedback Loop with Estrogen Receptor α in Breast Cancer Cells. Cancer Res. 2010, 70, 9175–9184. [Google Scholar] [CrossRef]
- Alvarado, S.; Wyglinski, J.; Suderman, M.; Andrews, S.A.; Szyf, M. Methylated DNA Binding Domain Protein 2 (MBD2) Coordinately Silences Gene Expression through Activation of the MicroRNA Hsa-Mir-496 Promoter in Breast Cancer Cell Line. PLoS ONE 2013, 8, e74009. [Google Scholar] [CrossRef]
- Lu, J.; Tan, T.; Zhu, L.; Dong, H.; Xian, R. Hypomethylation Causes MIR21 Overexpression in Tumors. Mol. Ther. Oncolytics 2020, 18, 47–57. [Google Scholar] [CrossRef]
- Oltra, S.S.; Peña-Chilet, M.; Vidal-Tomas, V.; Flower, K.; Martinez, M.T.; Alonso, E.; Burgues, O.; Lluch, A.; Flanagan, J.M.; Ribas, G. Methylation Deregulation of MiRNA Promoters Identifies MiR124-2 as a Survival Biomarker in Breast Cancer in Very Young Women. Sci. Rep. 2018, 8, 14373. [Google Scholar] [CrossRef]
- Kutanzi, K.R.; Yurchenko, O.V.; Beland, F.A.; Checkhun, V.F.; Pogribny, I.P. MicroRNA-Mediated Drug Resistance in Breast Cancer. Clin. Epigenetics 2011, 2, 171–185. [Google Scholar] [CrossRef]
- Li, X.; Wu, Y.; Liu, A.; Tang, X. MiR-27b Is Epigenetically Downregulated in Tamoxifen Resistant Breast Cancer Cells Due to Promoter Methylation and Regulates Tamoxifen Sensitivity by Targeting HMGB3. Biochem. Biophys. Res. Commun. 2016, 477, 768–773. [Google Scholar] [CrossRef]
- Chen, X.; Lu, P.; Wu, Y.; Wang, D.; Zhou, S.; Yang, S.; Shen, H.-Y.; Zhang, X.; Zhao, J.; Tang, J. MiRNAs-Mediated Cisplatin Resistance in Breast Cancer. Tumor Biol. 2016, 37, 12905–12913. [Google Scholar] [CrossRef]
- Manavalan, T.T.; Teng, Y.; Litchfield, L.M.; Muluhngwi, P.; Al-Rayyan, N.; Klinge, C.M. Reduced Expression of MiR-200 Family Members Contributes to Antiestrogen Resistance in LY2 Human Breast Cancer Cells. PLoS ONE 2013, 8, e62334. [Google Scholar] [CrossRef] [PubMed]
- He, D.-X.; Gu, X.-T.; Jiang, L.; Jin, J.; Ma, X. A Methylation-Based Regulatory Network for MicroRNA 320a in Chemoresistant Breast Cancer. Mol. Pharmacol. 2014, 86, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cheng, Y.; Wang, Y.; Fan, Y.; Li, C.; Zhang, Y.; Wang, Y.; Dong, Q.; Ma, Y.; Teng, Y.; et al. Tamoxifen Reverses Epithelial Mesenchymal Transition by Demethylating MiR-200c in Triple-Negative Breast Cancer Cells. BMC Cancer 2017, 17, 492. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Li, S.; Cui, X.; Lv, X.; Jiao, Y.; Yu, F.; Yao, H.; Song, E.; Chen, Y.; Wang, M.; et al. The Overexpression of Hypomethylated MiR-663 Induces Chemotherapy Resistance in Human Breast Cancer Cells by Targeting Heparin Sulfate Proteoglycan 2 (HSPG2). J. Biol. Chem. 2013, 288, 10973–10985. [Google Scholar] [CrossRef]
- Hu, J.; Yi, T.; Chu, S.; Zeng, H.; Xia, P.; Liu, G.; Chen, G.; Feng, S.; Zhou, H. DNA Methylation of MiR-93: An Important Event in Acquiring Drug Resistance in Breast Cancer Cells. Int. J. Clin. Exp. Med. 2019, 12, 4697–4706. [Google Scholar]
- Al-Yozbaki, M.; Jabre, I.; Syed, N.H.; Wilson, C.M. Targeting DNA Methyltransferases in Non-Small-Cell Lung Cancer. Semin. Cancer Biol. 2022, 83, 77–87. [Google Scholar] [CrossRef]
- Rupaimoole, R.; Slack, F.J. MicroRNA Therapeutics: Towards a New Era for the Management of Cancer and Other Diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef]
- Pang, Y.; Liu, J.; Li, X.; Xiao, G.; Wang, H.; Yang, G.; Li, Y.; Tang, S.-C.; Qin, S.; Du, N.; et al. MYC and DNMT3A-Mediated DNA Methylation Represses MicroRNA-200b in Triple Negative Breast Cancer. J. Cell. Mol. Med. 2018, 22, 6262–6274. [Google Scholar] [CrossRef]
Genes | Drug Resistance | Function | Reference |
---|---|---|---|
GFBI | Trastuzumab | EMT | [54] |
BMP6 | Doxorubicin | EMT | [52] |
RASSF10 | Docetaxel | Cell proliferation | [57] |
SALL2 | Tamoxifen | Induction of ERα and downregulation of PTEN and activation of Akt/mTOR signaling pathway | [51] |
GCS | Doxorubicin | Unknown | [49] |
PAX2 | Oftamoxifen | Unknown | [55] |
ESR1 | Endocrine, Cisplatin | Unknown | [50,56] |
Genes | Drug Resistance | Functions | Reference |
---|---|---|---|
SH3GL2 | Doxorubicin, Epirubicin, 5-flurouracile, Cyclophosphamide | Proliferation | [61] |
MDR1 | Multi-Drug | Tumor size and advanced tumor stage | [59] |
MMP1 | Tamoxifen | Apoptosis | [60] |
LDHB | Tamoxifen | Unknown | [58] |
Epigenetic miRNA in Breast Cancer | Function | Reference |
---|---|---|
miR-29c | Proliferation | [72] |
miR-200a | Proliferation | [73] |
miR-200c/141 | Invasion | [74] |
miR-203 | Invasion | [75] |
miR-195/497 | Proliferation, invasion | [76,77] |
miR-296-5p/-512-5p | Proliferation, cell apoptosis | [78] |
miR-31 | Migration, invasion | [79,80] |
miR-145 | Migration, invasion, angiogenesis | [81] |
miR-133a-3p | Proliferation, migration, invasion and stemness | [82] |
miR-200b | Migration, invasion, stemness | [83] |
miR-124a-1/2/3 | Clinical makers (tumor growth, lymph node metastasis) | [84] |
miR-1258 | Clinical makers (lymph nodes or distant organs metastasis) | [85,86] |
miR-9-3/339 | Clinical makers (lymph node metastasis, late (III–IV) clinical stages, tumor size) | [86] |
miR124-1/-34B/-34C | Clinical maker (late (III–IV) clinical stages) | [86] |
miR-127 | Clinical makers (lymph node metastasis, late (III–IV) clinical stages) | [86] |
miR-132/-137 | Clinical features (lymph node metastasis, tumor defferentiation, malignancy) | [85] |
miR-205 | Unknown | [87] |
miR-124a3/-148/-152/-9-1/633 | Unknown | [89] |
miRNAs | miRNA Target DNMTs | Function | Reference |
---|---|---|---|
miR-152 | DNMT1 | Migration | [93] |
miR-148a | DNMT1 | Unknown | [94] |
miR-143 | DNMT3A | Proliferation | [95] |
miR-101 | DNMT3A | Proliferation, migration | [96] |
miR-194 | DNMT3A | Cell cycle | [97] |
miR-770-5p | DNMT3A | Migration, invasion (EMT) | [98] |
miR-29c-5p | DNMT3A | Unknown | [99] |
miR-29c | DNMT3B | Proliferation, migration, invasion | [100,101] |
miR-221 | DNMT3B | Stemness | [102] |
miR-148b/-26b/-29c | DNMT3B | Unknown | [101] |
miR-29b | DNMT3A, DNMT3B | Proliferation | [70] |
miR-29B-1-5p | DNMT1, DNMT3A, DNMT3B | Proliferation | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Li, C.; Yin, H.; Huang, J.; Yu, S.; Zhao, J.; Tang, Y.; Yu, M.; Lin, J.; Ding, L.; et al. The Mechanism of DNA Methylation and miRNA in Breast Cancer. Int. J. Mol. Sci. 2023, 24, 9360. https://doi.org/10.3390/ijms24119360
Ma L, Li C, Yin H, Huang J, Yu S, Zhao J, Tang Y, Yu M, Lin J, Ding L, et al. The Mechanism of DNA Methylation and miRNA in Breast Cancer. International Journal of Molecular Sciences. 2023; 24(11):9360. https://doi.org/10.3390/ijms24119360
Chicago/Turabian StyleMa, Lingyuan, Chenyu Li, Hanlin Yin, Jiashu Huang, Shenghao Yu, Jin Zhao, Yongxu Tang, Min Yu, Jie Lin, Lei Ding, and et al. 2023. "The Mechanism of DNA Methylation and miRNA in Breast Cancer" International Journal of Molecular Sciences 24, no. 11: 9360. https://doi.org/10.3390/ijms24119360
APA StyleMa, L., Li, C., Yin, H., Huang, J., Yu, S., Zhao, J., Tang, Y., Yu, M., Lin, J., Ding, L., & Cui, Q. (2023). The Mechanism of DNA Methylation and miRNA in Breast Cancer. International Journal of Molecular Sciences, 24(11), 9360. https://doi.org/10.3390/ijms24119360