Playing Peekaboo with a Master Manipulator: Metagenetic Detection and Phylogenetic Analysis of Wolbachia Supergroups in Freshwater Invertebrates
Abstract
:1. Introduction
2. Results
Phylum | Species/Genus (Isolate ID) | Sequence Count | No of Observed OTUs | ||
---|---|---|---|---|---|
Result with Commercial 341F/785R Primers (NCBI SubmissionID, Source) | Result with Our Designed WOLBSR/WOLBSL Primers (NCBI SubmissionID, Source) | Result with Commercial 341F/785R Primers | Result with Our Designed WOLBSR/WOLBSL Primers | ||
ARTHROPODA | Artemia salina (AS) | 219060 (SUB10812623, our study) | 274882 (SUB10815753, our study) * | 690 | 270 |
Artemia parthenogenetica (AP) | 229518 (SUB10812623, our study) | 212122 (SUB10815753, our study) * | 679 | 671 | |
Branchipus schaefferi (PA) | 247184 (SUB10812623, our study) | 16S rRNA obtained by Sanger sequencing (GenBank: MH447361, [32]) ** | 945 | NA | |
Branchipus schaefferi (SRB1) | 212948 (SUB10812623, our study) | 122 (SUB10815753, our study) * | 946 | 40 | |
Chydorus sp. (ALTAJ2) | 125306 (SUB10812623, our study) | 566 (SUB10815753, our study) * | 395 | 92 | |
Eulimnadia sp. (CON) | 215478 (SUB10812623, our study) | 265656 (SUB10815753, our study) *, 16S rRNA obtained by Sanger sequencing (GenBank: MZ901361) *** | 1171 | 1427 | |
Streptocephalus cafer (SC) | 220824 (SAMN13134284, [34]) | 16S rRNA obtained by Sanger sequencing (GenBank: MH447357, [32]) ** | 400 | NA | |
Triops cancriformis (TCO) | 129736 (SUB10812623, our study) | 290 (SUB10815753, our study) * | 1311 | 44 | |
MOLLUSCA | Unio crassus (C3Nf) | 94269 (SUB10812623, our study) | 120 (SUB10815753, our study) * | 53 | 50 |
Unio crassus (P3Nf) | 117498 (SUB10812623, our study) | 76 (SUB10815753, our study) * | 87 | 34 | |
Dreissena polymorpha (RAC) | 220716 (SUB10812623, our study) | 289746 (SUB10815753, our study) * | 2141 | 1253 | |
TARDIGRADA | Paramacrobiotus experimentalis (MAD-TAR9) | 213744 (PRJNA530068, [45]) | 14 (SUB10815753, our study) * | 359 | 7 |
Paramacrobiotus experimentalis (MAD-TAR11) | 185330 (PRJNA530068, [45]) | 38 (SUB10815753, our study) * | 351 | 15 | |
Macrobiotus basiatus (8aUSA) | 199186 (SUB10812623, our study) | 130 (SUB10815753, our study) * | 610 | 57 |
- Unio crassus (isolate ID: C3Nf);
- Chydorus sp. (isolate ID: ALTAJ2).
- Artemia salina (isolate ID: AS)—four groups of sequences (A1, A6, A7, and A8);
- A. parthenogenetica (isolate ID: AP)—four groups of sequences (A1, A3, A8, and A10);
- Branchipus schaefferi (isolate ID: SRB1)—two groups of sequences (A1, and A2);
- Eulimnadia sp. (isolate ID: CON)—seven groups of sequences (A1, A2, A3, A5, A6, A9, and A10);
- Triops cancriformis (isolate ID: TCO)—three groups of sequences (A1, A2, and A4);
- Dreissena polymorpha (isolate ID: RAC)—four groups of sequences (A1, A2, A3, and A7);
- Paramacrobiotus experimentalis (isolate ID: MAD-TAR9)—two groups of sequences (A1, and A2);
- Pam. experimentalis (isolate ID: MAD-TAR9)—four groups of sequences (A1, A2, A4, and A5);
- Macrobiotus basiatus (isolate ID: 8aUSA)—two groups of sequences (A1, and A2).
- B. schaefferi (isolate ID: PA);
- Streptocephalus cafer (isolate ID: SC).
- Eulimnadia sp. (isolate ID: CON)—the E supergroup;
- U. crassus (isolate ID: C3Nf)—the V supergroup.
3. Discussion
3.1. General Remarks
3.2. Wolbachia in Freshwater Arthropods with Special Emphasis on Crustacea
3.3. Wolbachia in Freshwater Bivalvia
3.4. Wolbachia in Tardigrada
3.5. Future Research Prospects: Losing or Winning with the Master Manipulator?
4. Materials and Methods
4.1. Sample Collection, Species Identification and DNA Extraction
Phylum | Taxa (Isolate ID; GenBank Accession Number of Barcode Sequences, and Source) | Sources of Samples (Locality) |
---|---|---|
ARTHROPODA | Artemia salina (AS; GenBank: OL872292, our study) | the adults of Artemia salina acquired from IchthyoTrophic company (Poland) |
Artemia parthenogenetica (AP; GenBank: OL872290, our study) | the cysts of Artemia parthenogenetica acquired from Artemia Koral Gmbh company (Germany) | |
Branchipus schaefferi (PA; GenBank: MK465076, [105]) | provided by Lukić et al. [105] (Poland; Pila) | |
Branchipus schaefferi (SRB1; GenBank: MK564494, [105]) | provided by Lukiclet al. [105] (Serbia; Northern Banat) | |
Chydorus sp. (ALTAJ2; GenBank: OL889759, our study) | provided by the project INERACT 730,938 H2020 attributed to T. Namiotko and S. Iepure (Russia; Altai Mts.) | |
Eulimnadia sp. (CON; GenBank: OL889761, our study) | provided by the project of Univ. Gdansk 530-L155-D249-17/18 attributed to T. Namiotko (Mauritius; Rodrigues Island) | |
Streptocephalus cafer (SC; GenBank: OL872295, our study) | provided by Mioduchowska et al. [32] (South Africa; locality described in paper as “Station 2”) | |
Triops cancriformis (TCO; GenBank: OL872296, our study) | provided by Mioduchowska et al. [32] (Poland; locality described in paper as “Station 4”) | |
MOLLUSCA | Unio crassus (C3Gf; GenBank: OL872298, our study) | provided by Mioduchowska et al. [95] (Poland; Czarna Hańcza River) |
Unio crassus (P3Nf; GenBank: OL872299, our study) | provided by Mioduchowska et al. [95] (Poland; Pilica River) | |
Dreissena polymorpha (RAC; GenBank: OL913806, our study) | collected from the Vistula drainage (52°37′04′′N, 19°19′42′′E) | |
TARDIGRADA | Paramacrobiotus experimentalis (MAD-TAR9; GenBank: MN097836, Kaczmarek et al. [45]) | provided by Kaczmarek et al. [45] (the Toamasina and Antananarivo Provinces in Madagascar) |
Paramacrobiotus experimentalis (MAD-TAR11; GenBank: MN097837, Kaczmarek et al. [45]) | provided by Kaczmarek el.al. [45] (the Toamasina and Antananarivo Provinces in Madagascar) | |
Macrobiotus basiatus (8aUSA; GenBank: OL943796, our study) | provided by Nelson et al. [96] (the campus of East Tennessee State University, Johnson City, Tennessee) |
4.2. Sanger Sequencing Approach
4.3. Designed vs. Commercial NGS Primers—Amplification of the Bacterial 16S rRNA Gene Fragment
4.4. Generation of the 16S rRNA Amplicon Library and Taxonomic Classification
4.5. Python Script to Identify the Target Wolbachia Infection in the Microbiome Community
4.6. Phylogeny of Identified Wolbachia Strains
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shin, S.C.; Kim, S.-H.; You, H.; Kim, B.; Kim, A.C.; Lee, K.-A. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 2011, 334, 670–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wangkeeree, J.; Tewaruxsa, P.; Roddee, J.; Hanboonsong, Y. Wolbachia (Rickettsiales: Alphaproteobacteria) infection in the leafhopper vector of sugarcane white leaf disease. J. Insect Sci. 2020, 20, 20. [Google Scholar] [CrossRef]
- Hertig, M.; Wolbach, S.B. Studies on rickettsia-like microorganisms in insects. J. Med. Res. 1924, 44, 329–374. [Google Scholar]
- Li, S.J.; Ahmed, M.Z.; Lv, N.; Shi, P.-Q.; Wang, X.-M.; Huang, J.-L.; Qiu, B.-L. Plantmediated horizontal transmission of Wolbachia between whiteflies. ISME J. 2017, 11, 1019–1028. [Google Scholar] [CrossRef] [Green Version]
- Jeyaprakash, A.; Hoy, M.A. Long PCR improves Wolbachia DNA amplification: Wsp sequences found in 76% of sixty-three arthropod species. Insect Mol. Biol. 2000, 9, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Makepeace, B.L.; Gill, A.C. Rickettsiales: Biology, Molecular Biology, Epidemiology, and Vaccine Development; Thomas, S., Ed.; Springer International Publishing AG: Cham, Switzerland, 2016; pp. 465–512. [Google Scholar]
- Bouchon, D.; Rigaud, T.; Juchault, P. Evidence for widespread Wolbachia infection in isopod crustaceans: Molecular identification and host feminization. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1998, 265, 1081–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, Y.; Lei, C.; Peng, Y.; Liu, F.; Chen, J.; Chen, L. Wolbachia strains typing in different geographic population spider, Hylyphantes graminicola (Linyphiidae). Curr. Microbiol. 2011, 62, 139–145. [Google Scholar] [CrossRef]
- Zimmermann, B.L.; Bouchon, D.; Almerão, M.P.; Araujo, P.B. Wolbachia in Neotropical terrestrial isopods. FEMS Microbiol. Ecol. 2015, 91, fiv025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerth, M. Classification of Wolbachia (Alphaproteobacteria, Rickettsiales): No evidence for a distinct supergroup in cave spiders. Infect. Genet. Evol. 2016, 43, 378–380. [Google Scholar] [CrossRef]
- Scholz, M.; Albanese, D.; Tuohy, K.; Donati, C.; Segata, N.; Rota-Stabelli, O. Large scale genome reconstructions illuminate Wolbachia evolution. Nat. Commun. 2020, 11, 5235. [Google Scholar] [CrossRef]
- Lefoulon, E.; Bain, O.; Makepeace, B.L.; d’Haese, C.; Uni, S.; Martin, C.; Gavotte, L. Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts. PeerJ 2016, 4, e1840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satjawongvanit, H.; Phumee, A.; Tiawsirisup, S.; Sungpradit, S.; Brownell, N.; Siriyasatien, P.; Preativatanyou, K. Molecular analysis of canine filaria and its Wolbachia endosymbionts in domestic dogs collected from two animal university hospitals in Bangkok Metropolitan Region, Thailand. Pathogens 2019, 8, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, M.; Small, S.T.; Serre, D.; Zimmerman, P.A.; Dunning Hotopp, J.C. Draft genome sequence of the Wolbachia endosymbiont of Wuchereria bancrofti wWb. Pathog. Dis. 2017, 75, ftx115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Chen, W.-J.; Li, Z.-H.; Zhang, F.; Gao, Y.; Luan, Y.-X. Revisiting the phylogeny of Wolbachia in Collembola. Ecol. Evol. 2017, 7, 2009–2017. [Google Scholar] [CrossRef]
- Konecka, E.; Olszanowski, Z.; Koczura, R. Wolbachia of phylogenetic supergroup E identified in oribatid mite Gustavia microcephala (Acari: Oribatida). Mol. Phylogenet. Evol. 2019, 135, 230–235. [Google Scholar] [CrossRef]
- Konecka, E.; Olszanowski, Z. Phylogenetic analysis based on the 16S rDNA, gltA, gatB, and hcpA gene sequences of Wolbachia from the novel host Ceratozetes thienemanni (Acari: Oribatida). Infect. Genet. Evol. 2019, 70, 175–181. [Google Scholar] [CrossRef]
- Konecka, E.; Olszanowski, Z. Wolbachia supergroup E found in Hypochthonius rufulus (Acari: Oribatida) in Poland. Infect. Genet. Evol. 2021, 91, 104829. [Google Scholar] [CrossRef]
- Baldo, L.; Prendini, L.; Corthals, A.; Werren, J.H. Wolbachia are present in southern african scorpions and cluster with supergroup F. Curr. Microbiol. 2007, 55, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Covacin, C.; Barker, S.C. Supergroup F Wolbachia bacteria parasitise lice (Insecta: Phthiraptera). Parasitol. Res. 2007, 100, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Bordenstein, S.; Rosengaus, R.B. Discovery of a novel Wolbachia supergroup in Isoptera. Curr. Microbiol. 2005, 51, 393–398. [Google Scholar] [CrossRef]
- Gorham, C.H.; Fang, Q.Q.; Durden, L.A. Wolbachia endosymbionts in fleas (Siphonaptera). J. Parasitol. 2003, 89, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Ros, V.I.D.; Fleming, V.M.; Feil, E.J.; Breeuwer, J.A.J. How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Appl. Environ. Microbiol. 2009, 75, 1036–1043. [Google Scholar] [CrossRef] [Green Version]
- Haegeman, A.; Vanholmea, B.; Jacoba, J.; Vandekerckhovea, T.T.M.; Claeysb, M.; Borgonie, G.; Gheysen, G. An endosymbiotic bacterium in a plant-parasitic nematode: Member of a new Wolbachia supergroup. Int. J. Parasitol. 2009, 39, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Augustinos, A.A.; Santos-Garcia, D.; Dionyssopoulou, E.; Moreira, M.; Papapanagiotou, A.; Scarvelakis, M.; Doudoumis, V.; Ramos, S.; Aguiar, A.F.; Borges, P.A.V.; et al. Detection and characterization of Wolbachia infections in natural populations of aphids: Is the hidden diversity fully unraveled? PLoS ONE 2011, 6, e2869. [Google Scholar] [CrossRef] [Green Version]
- Gennadius, P. Disease of the tobacco plantations in the Trikonia. The aleurodid of tobacco. Ellenike Ga. 1889, 5, 1–3. [Google Scholar]
- Bing, X.L.; Xia, W.-Q.; Gui, J.-D.; Yan, G.-H.; Wang, X.-W.; Liu, S.-S. Diversity and evolution of the Wolbachia endosymbionts of Bemisia (Hemiptera: Aleyrodidae) whiteflies. Ecol. Evol. 2014, 4, 2714–2737. [Google Scholar] [CrossRef]
- Glowska, E.; Dragun-Damian, A.; Dabert, M.; Gerth, M. New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae). Infect. Genet. Evol. 2015, 30, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Fabricius, J.C. (Ed.) Systema Rhyngotorum: Secundum Ordines, Genera, Species: Adiectis Synonymis, Locis, Observationibus, Descriptionibus; Apud Carolum Reichard: Brunsvigae, Germany, 1803; pp. 1745–1808. [Google Scholar]
- Laidoudi, Y.; Levasseur, A.; Medkour, H.; Maaloum, M.; Khedher, M.B.; Sambou, M.; Bassene, H.; Davoust, B.; Fenollar, F.; Raoult, D.; et al. An earliest endosymbiont, Wolbachia massiliensis sp. nov., strain PL13 from the bed bug (Cimex hemipterus), type strain of a new supergroup T. Int. J. Mol. Sci. 2020, 21, 8064. [Google Scholar] [CrossRef]
- Olanratmanee, P.; Baimai, V.; Ahantarig, A.; Trinachartvanit, W. Novel supergroup U Wolbachia in bat mites of Thailand. Southeast Asian. J. Trop. Med. Public Health 2021, 52, 48–55. [Google Scholar]
- Mioduchowska, M.; Czyż, M.J.; Gołdyn, B.; Kilikowska, A.; Namiotko, T.; Pinceel, T.; Łaciak, M.; Sell, J. Detection of bacterial endosymbionts in freshwater crustaceans: The applicability of non-degenerate primers to amplify the bacterial 16S rRNA gene. PeerJ 2018, 6, e6039. [Google Scholar] [CrossRef] [Green Version]
- Sironi, M.; Bandi, C.; Sacchi, L.; Di Sacco, B.; Damiani, G.; Genchi, C. Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Mol. Biochem. Parasitol. 1995, 74, 223–227. [Google Scholar] [CrossRef]
- Mioduchowska, M.; Nitkiewicz, B.; Roszkowska, M.; Kačarević, U.; Madanecki, P.; Pinceel, T.; Namiotko, T.; Gołdyn, B.; Kaczmarek, Ł. Taxonomic classification of the bacterial endosymbiont Wolbachia based on next-generation sequencing: Is the molecular evidence for its presence in tardigrades? Genome 2021, 64, 951–958. [Google Scholar] [CrossRef]
- Mioduchowska, M.; Zając, K.; Zając, T.; Sell, J. Wolbachia and Cardinium infection found in threatened unionid species: A new concern for conservation of freshwater mussels? Conserv. Genet. 2020, 21, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Tibbs-Cortes, L.E.; Tibbs-Cortes, B.W.; Schmitz-Esser, S. Tardigrade community microbiomes in North American Orchards include putative endosymbionts and plant pathogens. Front. Microbiol. 2022, 13, 866930. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Carballa, M.O.; Torres-Cambas, Y.; Heaton, K.; Hurst, G.D.D.; Charlat, S.; Sherratt, T.N.; Van Gossum, H.; Cordero-Rivera, A.; Beatty, C.D. Widespread Wolbachia infection in an insular radiation of damselflies (Odonata, Coenagrionidae). Sci. Rep. 2019, 9, 11933. [Google Scholar] [CrossRef] [Green Version]
- Conceição, C.C.; Nascimento da Silva, J.; Arcanjo, A.; Lopes Nogueira, C.; Araujo de Abreu, L.; Lagerblad de Oliveira, P.; Katia, C.; Moraes, G.B.; Serafim de Carvalho, S.; Martins da Silva, R.; et al. Aedes fluviatilis cell lines as new tools to study metabolic and immune interactions in mosquito-Wolbachia symbiosis. Sci. Rep. 2021, 11, 19202. [Google Scholar] [CrossRef] [PubMed]
- Shapoval, N.A.; Nokkala, S.; Nokkala, C.; Kuftina, G.N.; Kuznetsova, V.G. The incidence of Wolbachia bacterial endosymbiont in bisexual and parthenogenetic populations of the psyllid genus Cacopsylla (Hemiptera, Psylloidea). Insects 2021, 12, 853. [Google Scholar] [CrossRef] [PubMed]
- Cordaux, R.; Gilbert, C. Evolutionary significance of Wolbachia-to-animal horizontal gene transfer: Female sex determination and the f element in the isopod Armadillidium vulgare. Genes 2017, 8, 186. [Google Scholar] [CrossRef] [Green Version]
- Flatau, R.; Segoli, M.; Hawlena, H. Wolbachia endosymbionts of fleas occur in all females but rarely in males and do not show evidence of obligatory relationships, fitness effects, or sex-distorting manipulations. Front. Microbiol. 2021, 12, 649248. [Google Scholar] [CrossRef]
- Martins, C.; Ramalho, M.d.O.; Silva, L.M.R.; Souza, R.F.d.; Bueno, O.C. New strains of Wolbachia unveiling the complexity of this symbiotic interaction in Solenopsis (Hymenoptera: Formicidae). Microbiol. Res. 2021, 12, 567–579. [Google Scholar] [CrossRef]
- Gonçalves, D.d.S.; Cassimiro, A.P.A.; Dantas de Oliveira, C.; Rodrigues, N.B.; Moreira, L.M. Wolbachia detection in insects through LAMP: Loop mediated isothermal amplification. Parasites Vectors 2014, 7, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.T.; Kumar, J.; Thomas, A.; Ramamurthy, V.V.; Rajagopal, R. Detection and localization of Rickettsia sp. in mealybug. Environ. Entomol. 2013, 42, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, Ł.; Roszkowska, M.; Poprawa, I.; Janelt, K.; Kmita, H.; Gawlak, M.; Fiałkowska, E.; Mioduchowska, M. Integrative description of bisexual Paramacrobiotus experimentalis sp. nov. (Macrobiotidae) from republic of Madagascar (Africa) with microbiome analysis. Mol. Phylogenet. Evol. 2020, 145, 106730. [Google Scholar] [CrossRef]
- Wang, C.; Li, S. New species of the spider genus Telema (Araneae, Telemidae) from caves in Guangxi, China. Zootaxa 2010, 2632, 1–45. [Google Scholar] [CrossRef]
- Cleland, J.B.; Johnston, T.H. Notes on worm nests in Australian cattle due to Filaria (Onchocerca) gibsoni and on similar structures in Camels. Comm. of Australia Govt. J. Proc.-R. Soc. N. S. W. 1910, 44, 156–171. [Google Scholar]
- Paraskevopoulos, C.; Bordenstein, S.R.; Wernegreen, J.J.; Werren, J.H.; Bourtzis, K. Toward a Wolbachia multilocus sequence typing system: Discrimination of Wolbachia strains present in Drosophila species. Curr. Microbiol. 2006, 53, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Nyiro, G.; Oravecz, O.; Marialigeti, K. Detection of Wolbachia pipientis infection in arthropods in Hungary. Eur. J. Soil Biol. 2002, 38, 63–66. [Google Scholar]
- Kaiser, W.; Huguet, E.; Casas, J.; Commin, C.; Giron, D. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc. R. Soc. B Biol. Sci. 2010, 277, 2311–2319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stouthamer, R.; Breeuwert, J.A.; Luck, R.F.; Werren, J.H. Molecular identification of microorganisms associated with parthenogenesis. Nature 1993, 361, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Casiraghi, M.; Anderson, T.J.; Bandi, C.; Bazzocchi, C.; Genchi, C. A phylogenetic analysis of filarial nematodes: Comparison with the phylogeny of Wolbachia endosymbionts. Parasitology 2001, 122, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Bandi, C.; Anderson, T.J.; Genchi, C.; Blaxter, M.L. Phylogeny of Wolbachia in filarial nematodes. Proc. R. Soc. B Biol. Sci. 1998, 265, 2407–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumler, J.S.; Chen, S.M.; Asanovich, K.; Trigiani, E.; Popov, V.L.; Walker, D.H. Isolation and characterization of a new strain of Ehrlichia chaffeensis from a patient with nearly fatal monocytic ehrlichiosis. J. Clin. Microbiol. 1995, 33, 1704–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valette, V.; Bitome Essono, P.-Y.; Le Clec’h, W.; Johnson, M.; Bech, N.; Grandjean, F. Multi-infections of feminizing Wolbachia strains in natural populations of the terrestrial isopod Armadillidium vulgare. PLoS ONE 2013, 8, e82633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar-Zepeda, A.; Ernestina Godoy-Lozano, E.; Raggi, L.; Segovia, L.; Merino, E.; Gutiérrez-Rios, R.M.; Juarez, K.; Licea-Navarro, A.F.; Pardo-Lopez, L.; Sanchez-Flores, A. Analysis of sequencing strategies and tools for taxonomic annotation: Defining standards for progressive metagenomics. Sci. Rep. 2018, 8, 12034. [Google Scholar] [CrossRef] [Green Version]
- Sazama, E.J.; Bosch, M.J.; Shouldis, C.S.; Ouellette, S.P.; Wesner, J.S. Incidence of Wolbachia in aquatic insects. Ecol. Evol. 2017, 7, 1165–1169. [Google Scholar] [CrossRef]
- Sazama, E.J.; Ouellette, S.P.; Wesner, J.S. Bacterial endosymbionts are common among, but not necessarily within, insect species. Environ. Entomol. 2019, 48, 127–133. [Google Scholar] [CrossRef]
- Wiwatanaratanabutr, I. Distribution, diversity and density of Wolbachia infections in cladocerans and copepods from Thailand. J. Invertebr. Pathol. 2013, 114, 341–345. [Google Scholar] [CrossRef]
- Zeng, Z.; Fu, Y.; Guo, D.; Wu, Y.; Ajayi, O.E.; Wu, Q. Bacterial endosymbiont Cardinium cSfur genome sequence provides insights for understanding the symbiotic relationship in Sogatella furcifera host. BMC Genom. 2018, 19, 688. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.J.; Schwander, T. Patterns and mechanisms in instances of endosymbiont induced parthenogenesis. J. Evol. Biol. 2017, 30, 868–888. [Google Scholar] [CrossRef] [Green Version]
- Gulka, G.; Chang, P.W.; Marti, K.A. Prokaryotic infection associated with a mass mortality of the sea scallop, Placopecten magellanicus. J. Fish Dis. 1983, 6, 355–364. [Google Scholar] [CrossRef]
- Cruz-Flores, R.; Cáceres-Martínez, J. Rickettsiales-like organisms in bivalves and marine gastropods: A review. Rev. Aquac. 2020, 12, 2010–2026. [Google Scholar] [CrossRef]
- Elston, R. Occurrence of branchial rickettsiales-like infections in two bivalve molluscs, Tapes japonica and Patinopecten yessoensis, with comments on their significance. J. Fish Dis. 1986, 9, 69–71. [Google Scholar] [CrossRef]
- Kellner-Cousin, K.; Le Gall-Reculé, G.; Despres, B.; Kaghad, M.; Legoux, P.; Shire, D.; Mialhe, E. Genomic DNA cloning of rickettsia-like organisms (RLO) of Saint-Jacques scallop Pecten maximus: Evaluation of prokaryote diagnosis by hybridization with a non-isotopically labelled probe and by polymerase chain reaction. Dis. Aquat. Org. 1993, 15, 145–152. [Google Scholar] [CrossRef]
- Schilthuizen, M.; Gittenberger, E. Screening mollusks for Wolbachia infection. J. Invertebr. Pathol. 1998, 71, 268–270. [Google Scholar] [CrossRef] [PubMed]
- Lis, A.; Maryańska-Nadachowska, A.; Kajtoch, Ł. Relations of Wolbachia infection with phylogeography of Philaenus spumarius (Hemiptera: Aphrophoridae) populations within and beyond the Carpathian Contact Zone. Microb. Ecol. 2015, 70, 509–521. [Google Scholar] [CrossRef] [Green Version]
- Correa, C.C.; Ballard, J.W.O. Wolbachia associations with Insects: Winning or losing against a master manipulator. Front. Ecol. Evol. 2016, 3, 153. [Google Scholar] [CrossRef] [Green Version]
- Vecchi, M.; Newton, I.L.G.; Cesar, M.; Rebecchi, L.; Guidetti, R. The microbial community of tardigrades: Environmental influence and species specificity of microbiome structure and composition. Microb. Ecol. 2018, 76, 467–481. [Google Scholar] [CrossRef]
- Cuénot, L. Tardigrades; de France, F., Ed.; Paul Lechevalier: Paris, France, 1932; Volume 24, pp. 1–96. [Google Scholar]
- Guidetti, R.; Vecchi, M.; Ferrari, A.; Newton, I.L.G.; Cesari, M.; Rebecchi, L. Further insights in the Tardigrada microbiome: Phylogenetic position and prevalence of infection of four new Alphaproteobacteria putative endosymbionts. Zool. J. Linn. Soc. 2020, 188, 925–937. [Google Scholar] [CrossRef]
- Diouf, M.; Miambi, E.; Mora, P.; Frechault, S.; Robert, A.; Rouland-Lefevre, C.; Herve, V. Variations in the relative abundance of Wolbachia in the gut of Nasutitermes arborum across life stages and castes. FEMS Microbiol. 2018, 365, fny046. 1. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Li, S.-J.; Ahmed, M.Z.; De Barro, P.J.; Ren, S.-X.; Qiu, B.-L. Inactivation of Wolbachia reveals its biological roles in whitefly host. PLoS ONE 2012, 7, e48148. [Google Scholar] [CrossRef] [Green Version]
- Zug, R.; Hammerstein, P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts: Wolbachia mutualisms in arthropods. Biol. Rev. 2015, 90, 89–111. [Google Scholar] [CrossRef]
- Moran, N.A.; Baumann, P. Bacterial endosymbionts in animals. Curr. Opin. Microbiol. 2000, 3, 270–275. [Google Scholar] [CrossRef]
- Guo, Y.; Hoffmann, A.A.; Xu, X.-Q.; Mo, P.-W.; Huang, H.-J.; Gong, J.-T. Vertical transmission of Wolbachia is associated with host vitellogenin in Laodelphax striatellus. Front. Microbiol. 2018, 9, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, C.L.; Pollock, S.W.; Smith, J.E.; Hughes, W.O.H. Wolbachia in the flesh: Symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes. PLoS ONE 2014, 9, e95122. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Zhu, J.; Hoffmann, A.A.; Cao, L.; Shen, L.; Fang, J. Horizontal transmission and recombination of Wolbachia in the butterfly tribe Aeromachini Tutt, 1906 (Lepidoptera: Hesperiidae). G3–Genes Genomes Genet. 2021, 11, jkab221. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.L.; Dodson, B.L.; Johnson, R.M.; Murdock, C.C.; Tsujimoto, H.; Suzuki, Y. Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proc. Natl. Acad. Sci. USA 2014, 111, 12498–12503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.Y.; Xiao, J.-H.; Niu, L.-M.; Ma, G.-C.; Cook, J.M.; Bian, S.-N. Chaos of Wolbachia sequences inside the compact fig syconia of Ficus benjamina (Ficus: Moraceae). PLoS ONE 2012, 7, e48882. [Google Scholar] [CrossRef] [Green Version]
- Maniatsi, S.; Bourtzis, K.; Abatzopoulos, T.J. May parthenogenesis in Artemia be attributed to Wolbachia? Hydrobiologia 2010, 651, 317–322. [Google Scholar] [CrossRef]
- Ju, J.F.; Bing, X.-L.; Zhao, D.-S.; Guo, Y.; Xi, Z.; Hoffmann, A.A.; Zhang, K.J.; Huang, H.J.; Gong, J.T.; Zhang, X.; et al. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 2020, 14, 676–687. [Google Scholar] [CrossRef]
- Mushegian, A.A.; Ebert, D. Rethinking “mutualism” in diverse host-symbiont communities. BioEssays 2016, 38, 100–108. [Google Scholar] [CrossRef]
- Faddeeva-Vakhrusheva, A.; Kraaijeveld, K.; Derks, M.F.L.; Anvar, S.Y.; Agamennone, V.; Suring, W.; Kampfraath, A.A.; Ellers, J.; Le Ngoc, G.; van Gestel, C.A.M.; et al. Coping with living in the soil: The genome of the parthenogenetic springtail Folsomia candida. BMC Genom. 2017, 18, 493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, S.J.; Rahman, M.S.; Ammerman, N.C.; Beier-Sexton, M.; Ceraul, S.M.; Gillespie, J.J.; Azada, A.F. TolC-dependent secretion of an ankyrin repeat-containing protein of Rickettsia typhi. J. Bacteriol. 2012, 194, 4920–4932. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.H.; Carrasco, A.M.; Frentiu, F.D.; Chenoweth, S.F.; Beebe, N.W.; van den Hurk, A.F. Wolbachia reduces the transmission potential of Dengue-infected Aedes aegypti. PLoS Negl. Trop. Dis. 2015, 9, e0003894. [Google Scholar] [CrossRef] [Green Version]
- Mioduchowska, M.; Czyż, M.J.; Gołdyn, B.; Kur, J.; Sell, J. Instances of erroneous DNA barcoding of metazoan invertebrates: Are universal cox1 gene primers too “universal”? PLoS ONE 2018, 13, e0199609. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G.W. Notice sur une nouvelle espece de Branchipus de Latreille. Bull. Société Impériale Nat. Moscou 1834, 7, 452–461. [Google Scholar]
- Lovén, T. Fyra nya Arter of Sotvatttens-Crustaceer fran Sodra Afrika. Kongliga Sven. Vetensk. Handl. Ar 1847, 3, 427–439. [Google Scholar]
- Linnaeus, C. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis; Editio Decima, Reformata, 10th Revised Edition; Impensis Laurentii Salvii, Holmiae: Stockholm, Sweden, 1758; Volume 1, p. 824. [Google Scholar]
- Baxevanis, A.D.; Kappas, I.; Abatzopoulos, T. Molecular phylogenetics and asexuality in the brine shrimp Artemia. Mol. Phylogenet. Evol. 2006, 40, 724–738. [Google Scholar] [CrossRef]
- Bosc, L.A.G. Histoire Naturelle des Crustacés; De Guilleminet: Paris, France, 1801. [Google Scholar]
- Retzius, A.J. Dissertatio Historico-Naturalis Sistens Nova Testaceorum Genera; Quam Præside, D.M., Retzio, A.J., Eds.; Publicum Examen Defert Laurentius Münter Philipsson: Berling, Lund, Sweden, 1788; pp. 4–23. [Google Scholar]
- Pallas, P.S. Reise Durch Verschiedene Provinzen des Rußischen Reichs; Kayserlichen Academie der Wissenschaften: St. Petersburg, Russia, 1771; pp. 1773–1801. [Google Scholar]
- Mioduchowska, M.; Zając, K.; Bartoszek, K.; Madanecki, P.; Kur, J.; Zając, T. 16S rRNA-based metagenomic analysis of the gut microbial community associated with the DUI species Unio crassus (Bivalvia: Unionidae). J. Zool. Syst. Evol. Res. 2020, 58, 615–623. [Google Scholar] [CrossRef]
- Nelson, D.R.; Adkins Fletcher, R.; Guidetti, R.; Roszkowska, M.; Grobys, D.; Kaczmarek, Ł. Two new species of Tardigrada from moss cushions (Grimmia sp.) in a xerothermic habitat in northeast Tennessee (USA, North America), with the first identification of males in the genus Viridiscus. PeerJ 2020, 8, e10251. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Eisenhofer, R.; Minich, J.J.; Marotz, C.; Cooper, A.; Knight, R.; Weyrich, L.S. Contamination in low microbial biomass microbiome studies: Issues and recommendations. Trends Microbiol. 2018, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Kilikowska, A.; Mioduchowska, M.; Wysocka, A.; Kaczmarczyk-Ziemba, A.; Rychlińska, J.; Zając, K.; Zając, T.; Ivinskis, P.; Sell, J. The Patterns and puzzles of genetic diversity of endangered freshwater mussel Unio crassus Philipsson, 1788 populations from Vistula and Neman drainages (Eastern Central Europe). Life 2020, 10, 119. [Google Scholar] [CrossRef] [PubMed]
- Weekers, P.H.H.; Gast, R.J.; Fuerst, P.A.; Byers, T.J. Sequence variations in small-subunit ribosomal RNAs of Hartmannella vermiformis and their phylogenetic implications. Mol. Biol. Evol. 1994, 11, 684–690. [Google Scholar]
- Mioduchowska, M.; Gołdyn, B.; Czyż, J.M.; Namiotko, T.; Namiotko, L.; Kur, J.; Sell, J. Notes on genetic uniformity in the fairy shrimp Branchipus schaefferi Fischer, 1834 (Branchiopoda, Anostraca) from Poland. North-West J. Zool. 2018, 14, 127–129. [Google Scholar]
- Hall, T. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2011, 2, 60–61. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Perry, E.; Miller, W.R.; Kaczmarek, Ł. Recommended abbreviations for the names of genera of the phylum Tardigrada. Zootaxa 2019, 4608, 145–154. [Google Scholar] [CrossRef]
- Lukić, D.; Waterkeyn, A.; Rabet, N.; Mioduchowska, M.; Geudens, B.; Vanschoenwinkel, B.; Brendonck, L.; Pinceel, T. High genetic variation and phylogeographic relations among Palearctic fairy shrimp populations reflect persistence in multiple Southern refugia during Pleistocene ice ages and postglacial colonization. Freshw. Biol. 2019, 64, 1896–1907. [Google Scholar] [CrossRef] [Green Version]
- Eiler, A.; Heinrich, F.; Bertilsson, S. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J. 2012, 6, 330–342. [Google Scholar] [CrossRef] [Green Version]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Aronesty, E. Ea-utils: Command-Line Tools for Processing Biological Sequencing Data. 2011. Available online: http://code.google.com/p/ea-utils (accessed on 16 March 2018).
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 13 May 2020).
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Huson, H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [Green Version]
- Anderson, B.E.; Dawson, J.E.; Jones, D.C.; Wilson, K.H. Ehrlichia chaffeensis, a new species associated with human ehrlichiosis. J. Clin. Microbiol. 1991, 29, 2838–2842. [Google Scholar] [CrossRef] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Bah, T. Inkscape: Guide to a Vector Drawing Program; Prentice Hall Press; Prentice Hall Press: One Lake Street Upper Saddle River, NJ, USA, 2011; Volume 559, p. 473. [Google Scholar]
Wolbachia Supergroup | Host | Host–Wolbachia Association | Reference |
---|---|---|---|
A | Arthropods: - insects (Insecta): flies (Diptera), butterflies and moths (Lepidoptera), beetles (Coleoptera), wasps and bees (Hymenoptera), bugs, aphids, whiteflies and psyllids (Hemiptera) and other - spiders (Araneae), e.g., Nurscia sp. (Titanoecidae), Telema cave spiders (Telemidae) - isopods (Isopoda), e.g., Burmoniscus sp. (Oniscidea) | mutualism, reproductive parasitism | [8,9,10,11] |
B | Arthropods: - insects (Insecta): butterflies and moths (Lepidoptera), leafhoppers, whiteflies and aphids (Hemiptera), wasps (Hymenoptera), beetles (Coleoptera), flies and mosquitoes (Diptera) and other - spiders (Aranae), e.g., Hylyphantes sp. (Linyphiidae) - isopods (Isopoda), e.g., woodlouse (Oniscidea) - mites (Acari): spider mites (Tetranychidae) | mutualism, reproductive parasitism | [8,9,11] |
C | Filarial nematodes (Nematoda: Filariidae) | mutualism | [12,13] |
D | Filarial nematodes (Nematoda: Filariidae) | mutualism | [12,14] |
E | Arthropods: - springtails (Collembola) - mites (Acari): oribatid mites (Oribatida) | mutualism, reproductive parasitism or undetermined | [15,16,17,18] |
F | Arthropods: - insects (Insecta): bugs (Hemiptera), parasitise lice (Phthiraptera), termites (Isoptera) and others - scorpions (Scorpiones): burrowing scorpions Opistophthalmus sp. (Scorpionidae) - isopods (Isopoda), e.g., the Neotropical isopod Neotroponiscus sp. (Oniscidea) Filarial nematodes (Nematoda: Filariidae) | mutualism, reproductive parasitism | [9,12,19,20] |
H | Arthropods - insects (Insecta): termites (Isoptera) | undetermined | [21] |
I | Arthropods - insects (Insecta): fleas (Siphonaptera) | undetermined | [22,23] |
J | Filarial nematodes | undetermined | [12] |
K | Arthropods - mites (Acari): spider mites (Tetranychidae) | undetermined | [23] |
L | Plant nematodes | undetermined | [24] |
M | Arthropods - insects (Insecta): aphids (Hemiptera) | undetermined | [25] |
N | Arthropods - insects (Insecta): aphids (Hemiptera) | undetermined | [25] |
O | Arthropods - insects (Insecta): Bemisia tabaci (Gennadius) [26] whiteflies (Hemiptera) | undetermined | [27] |
P | Arthropods - mites (Acari): syringophilid mites (Cheyletoidea) | undetermined | [28] |
Q | Arthropods - mites (Acari): syringophilid mites (Cheyletoidea) | undetermined | [28] |
S | Arthropods - pseudoscorpions | undetermined | [12] |
T | Arthropods - insects (Insecta): Cimex hemipterus (Fabricius) [29] (Hemiptera) | undetermined | [30] |
U | Arthropods - mites (Acari): bat mites Spinturnix sp. (Spinturnicidae) | undetermined | [31] |
Phylum | Species (Isolate ID) | The Number of Obtained Forward and Reverse Sequences of Wolbachia/the Number of Wolbachia OTUs (% of Wolbachia Sequences in Microbiome Community) | p-Distance Value between Our and the Most Similar Wolbachia Sequences Deposited in GenBank (Accession Numbers Provided in Brackets) Generated Using Our Python Script | |
---|---|---|---|---|
Result Obtained Using Commercial 341F/785R Primers | Result Obtained Using Our Designed WOLBSL/WOLBSR Primers | |||
ARTHROPODA | Artemia salina (AS) | NA | 31/2 (0.12) | p-distance: 0.00–0.14 (CP037426, GQ167636, DQ235279) |
Artemia parthenogenetica (AP) | NA | 28/4 (0.01) | p-distance: 0.01–0.14 (CP037426, JX182385, GQ167636, EF417899) | |
Branchipus schaefferi (PA) | NA | * [32] | * [32] | |
Branchipus schaefferi (SRB1) | NA | 32/3 (26.23) | p-distance: 0.01–0.04 (CP037426, MT588740) | |
Chydorus sp. (ALTAJ2) | 61/4 (0.05) | 2/2 (0.35) | p-distance: 0.01 (CP042445) | |
Eulimnadia sp. (CON) | NA | 56/6 * (present study) (0.02) | p-distance: 0.00–0.19 (MT588740, AJ306314, GQ167636, CP037426, KT319089), * (present study, MZ901361) | |
Streptocephalus cafer (SC) | NA | * [32] | * [32] | |
Triops cancriformis (TCO) | NA | 113/4 (38.97) | p-distance: 0.00–0.15 (CP037426, GU236947, EF417899) | |
MOLLUSCA | Unio crassus (population C3Gf) | NA | 10/2, * [35] (8.33) | p-distance: 0.00–0.02 (MT588740), * [35] |
Unio crassus (population P3Nf) | NA | NA | NA | |
Dreissena polymorpha (RAC) | NA | 40/4 (0.01) | p-distance: 0.00–0.09 (MT588740, DQ235279, CP042904, AY157501, KT319089) | |
TARDIGRADA | Paramacrobiotus experimentalis (population MAD-TAR9) | NA | 2/1 (14.29) | p-distance: 0.02 (MT588740) |
Paramacrobiotus experimentalis (population MAD-TAR11) | NA | 16/2 (42.11) | p-distance: 0.01–0.07 (MT588740) | |
Macrobiotus basiatus (8aUSA) | 2/1 (0.001) | 22/2 (16.92) | p-distance: 0.00–0.07 (CP042445) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mioduchowska, M.; Konecka, E.; Gołdyn, B.; Pinceel, T.; Brendonck, L.; Lukić, D.; Kaczmarek, Ł.; Namiotko, T.; Zając, K.; Zając, T.; et al. Playing Peekaboo with a Master Manipulator: Metagenetic Detection and Phylogenetic Analysis of Wolbachia Supergroups in Freshwater Invertebrates. Int. J. Mol. Sci. 2023, 24, 9400. https://doi.org/10.3390/ijms24119400
Mioduchowska M, Konecka E, Gołdyn B, Pinceel T, Brendonck L, Lukić D, Kaczmarek Ł, Namiotko T, Zając K, Zając T, et al. Playing Peekaboo with a Master Manipulator: Metagenetic Detection and Phylogenetic Analysis of Wolbachia Supergroups in Freshwater Invertebrates. International Journal of Molecular Sciences. 2023; 24(11):9400. https://doi.org/10.3390/ijms24119400
Chicago/Turabian StyleMioduchowska, Monika, Edyta Konecka, Bartłomiej Gołdyn, Tom Pinceel, Luc Brendonck, Dunja Lukić, Łukasz Kaczmarek, Tadeusz Namiotko, Katarzyna Zając, Tadeusz Zając, and et al. 2023. "Playing Peekaboo with a Master Manipulator: Metagenetic Detection and Phylogenetic Analysis of Wolbachia Supergroups in Freshwater Invertebrates" International Journal of Molecular Sciences 24, no. 11: 9400. https://doi.org/10.3390/ijms24119400
APA StyleMioduchowska, M., Konecka, E., Gołdyn, B., Pinceel, T., Brendonck, L., Lukić, D., Kaczmarek, Ł., Namiotko, T., Zając, K., Zając, T., Jastrzębski, J. P., & Bartoszek, K. (2023). Playing Peekaboo with a Master Manipulator: Metagenetic Detection and Phylogenetic Analysis of Wolbachia Supergroups in Freshwater Invertebrates. International Journal of Molecular Sciences, 24(11), 9400. https://doi.org/10.3390/ijms24119400