Presence, Location and Conservation of Putative G-Quadruplex Forming Sequences in Arboviruses Infecting Humans
Abstract
:1. Introduction
2. Results
2.1. Prediction of PQSs in Human Arboviruses
2.2. Conservation of Predicted PQSs and Genomic Location of Highly Conserved PQSs
3. Discussion
4. Materials and Methods
4.1. Viral Genomes Selection
4.2. Bioinformatic Prediction of Putative G4-Forming Sequences and Conservation Analysis
4.2.1. Prediction of PQS
4.2.2. Shuffling and Statistical Analyses
4.2.3. Conservation of PQS
4.2.4. Annotation of Conserved PQS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vector-Borne Diseases. Available online: https://www.ecdc.europa.eu/en/climate-change/climate-change-europe/vector-borne-diseases (accessed on 1 February 2023).
- Vector-Borne Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 1 February 2023).
- Chala, B.; Hamde, F. Emerging and Re-Emerging Vector-Borne Infectious Diseases and the Challenges for Control: A Review. Front. Public Health 2021, 9, 715759. [Google Scholar] [CrossRef] [PubMed]
- Sigfrid, L.; Reusken, C.; Eckerle, I.; Nussenblatt, V.; Lipworth, S.; Messina, J.; Kraemer, M.; Ergonul, O.; Papa, A.; Koopmans, M.; et al. Preparing Clinicians for (Re-)Emerging Arbovirus Infectious Diseases in Europe. Clin. Microbiol. Infect. 2018, 24, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Rocklöv, J.; Dubrow, R. Climate Change: An Enduring Challenge for Vector-Borne Disease Prevention and Control. Nat. Immunol. 2020, 21, 479–483. [Google Scholar] [CrossRef] [PubMed]
- LaBeaud, A.D.; Bashir, F.; King, C.H. Measuring the Burden of Arboviral Diseases: The Spectrum of Morbidity and Mortality from Four Prevalent Infections. Popul. Health Metr. 2011, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Mangat, R.; Louie, T. Arbovirus Encephalitides. In StatPearls; Internet, Updated 2023 Feb 19; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Launch of the Global Arbovirus Initiative. Available online: https://www.who.int/news-room/events/detail/2022/03/31/default-calendar/global-arbovirus-initiative (accessed on 1 February 2023).
- Varshney, D.; Spiegel, J.; Zyner, K.; Tannahill, D.; Balasubramanian, S. The Regulation and Functions of DNA and RNA G-Quadruplexes. Nat. Rev. Mol. Cell Biol. 2020, 21, 459–474. [Google Scholar] [CrossRef]
- Maizels, N. G4-Associated Human Diseases. EMBO Rep. 2015, 16, 910–922. [Google Scholar] [CrossRef]
- Frasson, I.; Pirota, V.; Richter, S.N.; Doria, F. Multimeric G-Quadruplexes: A Review on Their Biological Roles and Targeting. Int. J. Biol. Macromol. 2022, 204, 89–102. [Google Scholar] [CrossRef]
- Ruggiero, E.; Richter, S.N. Targeting G-Quadruplexes to Achieve Antiviral Activity. Bioorganic Med. Chem. Lett. 2023, 79, 129085. [Google Scholar] [CrossRef]
- Ruggiero, E.; Zanin, I.; Terreri, M.; Richter, S.N. G-Quadruplex Targeting in the Fight against Viruses: An Update. Int. J. Mol. Sci. 2021, 22, 10984. [Google Scholar] [CrossRef]
- Ruggiero, E.; Richter, S.N. Viral G-Quadruplexes: New Frontiers in Virus Pathogenesis and Antiviral Therapy. Annu. Rep. Med. Chem. 2020, 54, 101–131. [Google Scholar] [CrossRef]
- Métifiot, M.; Amrane, S.; Litvak, S.; Andreola, M.-L. G-Quadruplexes in Viruses: Function and Potential Therapeutic Applications. Nucleic Acids Res. 2014, 42, 12352–12366. [Google Scholar] [CrossRef] [PubMed]
- Bochman, M.L.; Paeschke, K.; Zakian, V.A. DNA Secondary Structures: Stability and Function of G-Quadruplex Structures. Nat. Rev. Genet. 2012, 13, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Saranathan, N.; Vivekanandan, P. G-Quadruplexes: More Than Just a Kink in Microbial Genomes. Trends Microbiol. 2019, 27, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Puig Lombardi, E.; Londoño-Vallejo, A. A Guide to Computational Methods for G-Quadruplex Prediction. Nucleic Acids Res. 2020, 48, 1603. [Google Scholar] [CrossRef]
- Bedrat, A.; Lacroix, L.; Mergny, J.-L. Re-Evaluation of G-Quadruplex Propensity with G4Hunter. Nucleic Acids Res. 2016, 44, 1746–1759. [Google Scholar] [CrossRef]
- Bartas, M.; Brázda, V.; Bohálová, N.; Cantara, A.; Volná, A.; Stachurová, T.; Malachová, K.; Jagelská, E.B.; Porubiaková, O.; Červeň, J.; et al. In-Depth Bioinformatic Analyses of Nidovirales Including Human SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-Canonical Nucleic Acid Structures in Their Lifecycles. Front. Microbiol. 2020, 11, 1583. [Google Scholar] [CrossRef]
- Bohálová, N.; Cantara, A.; Bartas, M.; Kaura, P.; Šťastný, J.; Pečinka, P.; Fojta, M.; Mergny, J.-L.; Brázda, V. Analyses of Viral Genomes for G-Quadruplex Forming Sequences Reveal Their Correlation with the Type of Infection. Biochimie 2021, 186, 13–27. [Google Scholar] [CrossRef]
- Kabbara, A.; Vialet, B.; Marquevielle, J.; Bonnafous, P.; Mackereth, C.D.; Amrane, S. RNA G-Quadruplex Forming Regions from SARS-2, SARS-1 and MERS Coronoviruses. Front. Chem. 2022, 10, 1014663. [Google Scholar] [CrossRef]
- BBrázda, V.; Porubiaková, O.; Cantara, A.; Bohálová, N.; Coufal, J.; Bartas, M.; Fojta, M.; Mergny, J.-L. G-Quadruplexes in H1N1 Influenza Genomes. BMC Genom. 2021, 22, 77. [Google Scholar] [CrossRef]
- Brázda, V.; Kolomazník, J.; Lýsek, J.; Bartas, M.; Fojta, M.; Šťastný, J.; Mergny, J.-L. G4Hunter Web Application: A Web Server for G-Quadruplex Prediction. Bioinformatics 2019, 35, 3493–3495. [Google Scholar] [CrossRef]
- Kikin, O.; D’Antonio, L.; Bagga, P.S. QGRS Mapper: A Web-Based Server for Predicting G-Quadruplexes in Nucleotide Sequences. Nucleic Acids Res. 2006, 34, W676–W682. [Google Scholar] [CrossRef]
- Butovskaya, E.; Heddi, B.; Bakalar, B.; Richter, S.N.; Phan, A.T. Major G-Quadruplex Form of HIV-1 LTR Reveals a (3 + 1) Folding Topology Containing a Stem-Loop. J. Am. Chem. Soc. 2018, 140, 13654–13662. [Google Scholar] [CrossRef] [PubMed]
- Frasson, I.; Nadai, M.; Richter, S.N. Conserved G-Quadruplexes Regulate the Immediate Early Promoters of Human Alphaherpesviruses. Molecules 2019, 24, 2375. [Google Scholar] [CrossRef] [PubMed]
- Hon, J.; Martínek, T.; Zendulka, J.; Lexa, M. Pqsfinder: An Exhaustive and Imperfection-Tolerant Search Tool for Potential Quadruplex-Forming Sequences in R. Bioinformatics 2017, 33, 3373–3379. [Google Scholar] [CrossRef] [PubMed]
- ViralZone. Available online: https://viralzone.expasy.org/ (accessed on 28 February 2023).
- Home—Taxonomy—NCBI. Available online: https://www.ncbi.nlm.nih.gov/taxonomy (accessed on 1 February 2023).
- Jaafar, F.M.; Attoui, H.; Bahar, M.W.; Siebold, C.; Sutton, G.; Mertens, P.P.C.; De Micco, P.; Stuart, D.I.; Grimes, J.M.; De Lamballerie, X. The Structure and Function of the Outer Coat Protein VP9 of Banna Virus. Structure 2005, 13, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Rampersad, S.; Tennant, P. Replication and Expression Strategies of Viruses. Viruses 2018, 55–82. [Google Scholar] [CrossRef]
- J Woolhouse, M.E.; Adair, K.; Brierley, L. RNA Viruses: A Case Study of the Biology of Emerging Infectious Diseases. Microbiol. Spectr. 2013, 1. [Google Scholar] [CrossRef]
- Te Velthuis, A.J.W.; Grimes, J.M.; Fodor, E. Structural Insights into RNA Polymerases of Negative-Sense RNA Viruses. Nat. Rev. Microbiol. 2021, 19, 303–318. [Google Scholar] [CrossRef]
- General Linear Model-an Overview | ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/mathematics/general-linear-model (accessed on 15 February 2023).
- Duffy, S. Why Are RNA Virus Mutation Rates so Damn High? PLoS Biol. 2018, 16, e3000003. [Google Scholar] [CrossRef]
- Mattenberger, F.; Vila-Nistal, M.; Geller, R. Increased RNA Virus Population Diversity Improves Adaptability. Sci. Rep. 2021, 11, 6824. [Google Scholar] [CrossRef]
- Peck, K.M.; Lauring, A.S. Complexities of Viral Mutation Rates. J. Virol. 2018, 92, e01031-17. [Google Scholar] [CrossRef]
- Lavezzo, E.; Berselli, M.; Frasson, I.; Perrone, R.; Palù, G.; Brazzale, A.R.; Richter, S.N.; Toppo, S. G-Quadruplex Forming Sequences in the Genome of All Known Human Viruses: A Comprehensive Guide. PLoS Comput. Biol. 2018, 14, e1006675. [Google Scholar] [CrossRef] [PubMed]
- Bidula, S.; Brázda, V. Genomic Analysis of Non-B Nucleic Acids Structures in SARS-CoV-2: Potential Key Roles for These Structures in Mutability, Translation, and Replication? Genes 2023, 14, 157. [Google Scholar] [CrossRef]
- Selisko, B.; Papageorgiou, N.; Ferron, F.; Canard, B. Structural and Functional Basis of the Fidelity of Nucleotide Selection by Flavivirus RNA-Dependent RNA Polymerases. Viruses 2018, 10, 59. [Google Scholar] [CrossRef]
- Vannutelli, A.; Perreault, J.-P.; Ouangraoua, A. G-Quadruplex Occurrence and Conservation: More than Just a Question of Guanine-Cytosine Content. NAR Genom. Bioinform. 2022, 4, lqac010. [Google Scholar] [CrossRef] [PubMed]
- Payne, S. Introduction to RNA Viruses. Viruses 2017, 97–105. [Google Scholar] [CrossRef]
- Kaptein, S.J.F.; Goethals, O.; Kiemel, D.; Marchand, A.; Kesteleyn, B.; Bonfanti, J.-F.; Bardiot, D.; Stoops, B.; Jonckers, T.H.M.; Dallmeier, K.; et al. A Pan-Serotype Dengue Virus Inhibitor Targeting the NS3–NS4B Interaction. Nature 2021, 598, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Martinez, I.; Wertz, G.W. Biological Differences between Vesicular Stomatitis Virus Indiana and New Jersey Serotype Glycoproteins: Identification of Amino Acid Residues Modulating PH-Dependent Infectivity. J. Virol. 2005, 79, 3578–3585. [Google Scholar] [CrossRef]
- RefSeq: NCBI Reference Sequence Database. Available online: https://www.ncbi.nlm.nih.gov/refseq/ (accessed on 20 April 2023).
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef]
- Lawrence, M.; Huber, W.; Pagès, H.; Aboyoun, P.; Carlson, M.; Gentleman, R.; Morgan, M.T.; Carey, V.J. Software for Computing and Annotating Genomic Ranges. PLoS Comput. Biol. 2013, 9, e1003118. [Google Scholar] [CrossRef]
- Amezquita, R.A.; Lun, A.T.L.; Becht, E.; Carey, V.J.; Carpp, L.N.; Geistlinger, L.; Marini, F.; Rue-Albrecht, K.; Risso, D.; Soneson, C.; et al. Orchestrating Single-Cell Analysis with Bioconductor. Nat. Methods 2020, 17, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, B.J.-M.; Nystrom, S. Universalmotif: Import, Modify, and Export Motifs with R. Available online: https://bioconductor.org/packages/universalmotif/ (accessed on 22 March 2023).
- Hahne, F.; Ivanek, R. Visualizing Genomic Data Using Gviz and Bioconductor. Methods Mol. Biol. 2016, 1418, 335–351. [Google Scholar] [CrossRef]
- Lawrence, M.; Gentleman, R.; Carey, V. Rtracklayer: An R Package for Interfacing with Genome Browsers. Bioinformatics 2009, 25, 1841–1842. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, R.G.; Sartor, M.A. Annotatr: Genomic Regions in Context. Bioinformatics 2017, 33, 2381–2383. [Google Scholar] [CrossRef] [PubMed]
Virus | Genus, Family | Genome | Genome Structure | Segments | Reference Genome | Total Analysed Genomes and Segments | Analysed Segments | % GC Reference Genomes | % GC All Analysed Genomes |
---|---|---|---|---|---|---|---|---|---|
Australian bat lyssavirus | Lyssavirus, Rhabdoviridae | (-)ssRNA | Single linear RNA | NC_003243.1 | 34 | 44 | 43 | ||
Banna virus | Seadornavirus, Reoviridae | dsRNA | 12 Segmented RNAs | Segment 1 | KC954611.1 | 128 | 7 | 38 | 39 |
Segment 2 | KC954612.1 | 7 | 40 | 40 | |||||
Segment 3 | KC954613.1 | 9 | 40 | 37 | |||||
Segment 4 | KC954614.1 | 8 | 40 | 39 | |||||
Segment 5 | KC954615.1 | 7 | 40 | 39 | |||||
Segment 6 | KC954616.1 | 10 | 42 | 40 | |||||
Segment 7 | KC954617.1 | 12 | 37 | 35 | |||||
Segment 8 | KC954618.1 | 8 | 43 | 42 | |||||
Segment 9 | KC954619.1 | 37 | 38 | 32 | |||||
Segment 10 | KC954621 | 8 | 38 | 37 | |||||
Segment 11 | KC954621.1 | 7 | 39 | 39 | |||||
Segment 12 | KC954622.1 | 8 | 38 | 38 | |||||
Barmah Forest virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | NC_001786.1 | 39 | 48 | 48 | ||
Bunyamwera virus | Orthobunyavirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | NC_001927.1 | 21 | 8 | 42 | 40 |
Segment M | NC_001926.1 | 7 | 37 | 36 | |||||
Segment L | NC_001925.1 | 6 | 33 | 33 | |||||
Bunyavirus La Crosse | Orthobunyavirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | NC_004111 | 100 | 39 | 41 | 40 |
Segment M | NC_004109.1 | 34 | 38 | 38 | |||||
Segment L | NC_004108.1 | 27 | 35 | 35 | |||||
Bunyavirus snowshoe hare | Orthobunyavirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | NC_055198.1 | 12 | 5 | 45 | 40 |
Segment M | NC_055197.1 | 4 | 39 | 38 | |||||
Segment L | NC_055196.1 | 3 | 35 | 35 | |||||
Chandipura virus | Vesiculovirus, Rhabdoviridae | (-)ssRNA | Single linear RNA | NC_020805.1 | 7 | 42 | 42 | ||
Chikungunya virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | NC_004162.2 | 899 | 36 | 36 | ||
Crimean-Congo hemorrhagic fever virus | Nairovirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | NC_005302.1 | 642 | 211 | 46 | 40 |
Segment M | NC_005302 | 196 | 43 | 34 | |||||
Segment L | NC_005301.3 | 235 | 41 | 38 | |||||
Dengue virus 1 | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | NC_001477.1 | 2095 | 47 | 44 | ||
Dengue virus 2 | (+)ssRNA | Single linear RNA | NC_001474.2 | 1764 | 46 | 43 | |||
Dengue virus 3 | (+)ssRNA | Single linear RNA | NC_001475.2 | 992 | 47 | 46 | |||
Dengue virus 4 | (+)ssRNA | Single linear RNA | NC_002641 | 257 | 47 | 46 | |||
Dhori virus | Thogotovirus, Orthomyxoviridae | (-)ssRNA | 6 Segmented RNAs | Segment 1 | NC_034261.1 | 39 | 6 | 45 | 45 |
Segment 2 | NC_034263.1 | 7 | 45 | 45 | |||||
Segment 3 | NC_034254.1 | 6 | 44 | 44 | |||||
Segment 4 | NC_034255.1 | 7 | 48 | 47 | |||||
Segment 5 | NC_034262.1 | 6 | 48 | 48 | |||||
Segment 6 | NC_034256.1 | 7 | 49 | 49 | |||||
Dugbe virus | Nairovirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | NC_004157.1 | 14 | 7 | 43 | 18 |
Segment M | NC_004158.1 | 3 | 42 | 41 | |||||
Segment L | NC_004159.1 | 4 | 39 | 39 | |||||
Eastern equine encephalitis virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | NC_003899.1 | 455 | 49 | 49 | ||
Isfahan virus | Vesiculovirus, Rhabdoviridae | (-)ssRNA | Single linear RNA | NC_020806.1 | 2 | 42 | 42 | ||
Japanese encephalitis virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | NC_001437 | 328 | 51 | 51 | ||
Langat virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | NC_003690 | 3 | 54 | 54 | ||
Louping ill virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | NC_001809 | 28 | 55 | 55 | ||
Mayaro virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | NC_003417.1 | 41 | 50 | 49 | ||
Murray Valley encephalitis virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | NC_000943 | 17 | 49 | 49 | ||
O’nyong-nyong virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | NC_001512.1 | 7 | 48 | 48 | ||
Oropouche virus | Orthobunyavirus | (-)ssRNA | 3 Segmented RNAs | Segment S | NC_005777.1 | 174 | 59 | 47 | 41 |
Segment M | NC_005775.1 | 57 | 35 | 35 | |||||
Segment L | NC_005776.1 | 58 | 34 | 35 | |||||
Punta Toro phlebovirus | Phlebovirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | DQ363406.1 | 45 | 16 | 41 | 40 |
Segment M | DQ363407.1 | 15 | 40 | 39 | |||||
Segment L | MK896483.1 | 14 | 39 | 39 | |||||
Rift Valley fever virus | Phlebovirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | NC_014395.1 | 453 | 297 | 49 | 48 |
77 | 45 | 45 | |||||||
Segment M | NC_014396.1 | ||||||||
79 | 44 | 43 | |||||||
Segment L | |||||||||
NC_014397.1 | |||||||||
Ross River virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | NC_001544.1 | 23 | 51 | 51 | ||
Sagiyama virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | AB032553.1 | 2 | 52 | 52 | ||
Sandfly fever Sicilian virus | Phlebovirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | NC_015413.1 | 16 | 10 | 47 | 46 |
Segment M | NC_015411.1 | 3 | 44 | 43 | |||||
Segment L | NC_015412.1 | 3 | 43 | 43 | |||||
Sandfly fever Toscana virus | Phlebovirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | NC_006318.1 | 95 | 50 | 47 | 45 |
Segment M | NC_006321 | 28 | 45 | 44 | |||||
Segment L | NC_006319.1 | 17 | 44 | 44 | |||||
Semliki Forest virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | NC_003215.1 | 10 | 53 | 52 | ||
Sindbis virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | NC_001547.1 | 194 | 51 | 50 | ||
St. Louis encephalitis virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | NC_007580 | 14 | 50 | 49 | ||
Tick-borne encephalitis virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | NC_001672.1 | 190 | 54 | 53 | ||
Tick-borne powassan virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | NC_003687 | 2 | 53 | 53 | ||
Usutu virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | NC_006551.1 | 159 | 51 | 50 | ||
Uukuniemi virus | Phlebovirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | NC_005221.1 | 24 | 8 | 50 | 49 |
Segment M | NC_005221 | 10 | 48 | 47 | |||||
Segment L | NC_005214.1 | 6 | 47 | 46 | |||||
Venezuelan equine encephalitis virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | NC_001449.1 | 127 | 50 | 49 | ||
Vesicular stomatitis virus strain Indiana | Vesiculovirus, Rhabdoviridae | (-)ssRNA | Single linear RNA | NC_001561 | 39 | 42 | 41 | ||
Vesicular stomatitis virus non-Indiana strains | Single linear RNA | MT094111.1 | 72 | 40 | 39 | ||||
West Nile virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | NC_009942.1/1 | 1840 | 51 | 48 | ||
Western equine encephalitis virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | NC_003908.1 | 38 | 49 | 49 | ||
Yellow fever virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | NC_002031 | 246 | 50 | 50 | ||
Zika virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | NC_012532 | 556 | 51 | 48 |
Virus | Genus, Family | Genome | Genome Structure | Segments | PQSs in Viral Genomes | Canonical PQSs in Viral Genomes | Bulged PQS | % Bulged PQSs | % Conserved Bulged PQSs | % Conserved Canonical PQSs | PQSs in Shuffled Genomes | p-Values PQSs Viral vs. Shuffled Genomes |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Australian bat lyssavirus | Lyssavirus, Rhabdoviridae | (-)ssRNA | Single linear RNA | 45 (↑) | 34 | 11 | 24 | 0 | 2.94 | 40 | 1.150 × 10−30 | |
Banna virus | Seadornavirus, Reoviridae | dsRNA | 12 Segmented RNAs | Segment 1 | 2 (↓) | 2 | 0 | 0 | 0 | 6 | 1.15 × 10−33 | |
Segment 2 | 4 (↓) | 3 | 1 | 25 | 0 | 0 | 6 | 1.66 × 10−13 | ||||
Segment 3 | 6 (↑) | 4 | 2 | 33 | 0 | 0 | 5 | 5.23 × 10−45 | ||||
Segment 4 | 1 (↓) | 1 | 0 | 0 | 0 | 4 | 3.12 × 10−37 | |||||
Segment 5 | 2 (↓) | 0 | 2 | 100 | 50 | 0 | 4 | 2.54 × 10−26 | ||||
Segment 6 | 3 (↓) | 3 | 0 | 0 | 0 | 5 | 1.90 × 10−37 | |||||
Segment 7 | 2 (=) | 2 | 0 | 0 | 0 | 2 | 1.13 × 10−4 | |||||
Segment 8 | 1 (↓) | 1 | 0 | 0 | 0 | 3 | 3.68 × 10−23 | |||||
Segment 9 | 0 (↓) | 0 | 0 | 0 | 0 | 1 | 6.77 × 10−24 | |||||
Segment 10 | 2 (↑) | 1 | 1 | 50 | 0 | 0 | 1 | 1.74 × 10−3 | ||||
Segment 11 | 3 (↑) | 3 | 0 | 0 | 0 | 1 | 2.73 × 10−3 | |||||
Segment 12 | 2 (↑) | 1 | 1 | 50 | 0 | 0 | 1 | 6.55 × 10−18 | ||||
Barmah Forest virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | 74 (↑) | 61 | 13 | 18 | 62 | 56 | 59 | 1.24 × 10−43 | |
Bunyamwera virus | Orthobunyavirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | 4 (↑) | 3 | 1 | 25 | 0 | 0 | 2 | 4.16 × 10−32 |
Segment M | 5 (=) | 3 | 2 | 40 | 0 | 0 | 5 | 0.65 | ||||
Segment L | 5 (↑) | 4 | 1 | 20 | 0 | 0 | 4 | 2.92 × 10−4 | ||||
Bunyavirus La Crosse | Orthobunyavirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | 4 (↑) | 3 | 1 | 25 | 0 | 67 | 2 | 4.95 × 10−22 |
Segment M | 6 (↓) | 3 | 3 | 50 | 0 | 33 | 7 | 3.01 × 10−5 | ||||
Segment L | 8 (↑) | 7 | 1 | 13 | 0 | 0 | 6 | 1.83 × 10−8 | ||||
Bunyavirus snowshoe hare | Orthobunyavirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | 3 (↓) | 2 | 1 | 33 | 0 | 50 | 4 | 3.54 × 10−4 |
Segment M | 9 (↑) | 7 | 2 | 22 | 50 | 0 | 7 | 3.72 × 10−10 | ||||
Segment L | 5 (↑) | 2 | 3 | 60 | 0 | 0 | 4 | 3.54 × 10−4 | ||||
Chandipura virus | Vesiculovirus, Rhabdoviridae | (-)ssRNA | Single linear RNA | 46 (↑) | 35 | 11 | 24 | 18 | 51 | 30 | 6.10 × 10−54 | |
Chikungunya virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | 65 (↓) | 54 | 11 | 17 | 27 | 28 | 69 | 4.81 × 10−9 | |
Crimean-Congo hemorrhagic fever virus | Nairovirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | 6 (=) | 4 | 2 | 33 | 0 | 0 | 6 | 0.96 |
Segment M | 23 (↑) | 18 | 5 | 22 | 0 | 0 | 16 | 1.53 × 10−41 | ||||
Segment L | 18 (↓) | 16 | 2 | 11 | 0 | 0 | 26 | 1.70 × 10−32 | ||||
Dengue virus 1 | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | 61 (↑) | 52 | 9 | 15 | 0 | 15 | 49 | 7.80 × 10−38 | |
Dengue virus 2 | (+)ssRNA | Single linear RNA | 64 (↑) | 53 | 11 | 17 | 9 | 15 | 44 | 6.40 × 10−55 | ||
Dengue virus 3 | (+)ssRNA | Single linear RNA | 69 (↑) | 54 | 15 | 22 | 7 | 20 | 49 | 6.05 × 10−59 | ||
Dengue virus 4 | (+)ssRNA | Single linear RNA | 77 (↑) | 64 | 13 | 17 | 31 | 19 | 52 | 4.29 × 10−70 | ||
Dhori virus | Thogotovirus, Orthomyxoviridae | (-)ssRNA | 6 Segmented RNAs | Segment 1 | 10 (↑) | 8 | 2 | 20 | 0 | 0 | 8 | 5.81 × 10−14 |
Segment 2 | 5 (↓) | 4 | 1 | 20 | 0 | 0 | 7 | 1.18 × 10−12 | ||||
Segment 3 | 7 (↑) | 7 | 0 | 0 | 0 | 6 | 3.73 × 10−6 | |||||
Segment 4 | 11 (↑) | 10 | 1 | 9 | 0 | 0 | 7 | 6.27 × 10−37 | ||||
Segment 5 | 4 (↓) | 4 | 0 | 0 | 0 | 7 | 1.10 × 10−20 | |||||
Segment 6 | 5 (=) | 2 | 3 | 60 | 0 | 0 | 5 | 0.22 | ||||
Dugbe virus | Nairovirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | 5 (=) | 4 | 1 | 20 | 0 | 0 | 5 | 0.45 |
Segment M | 12 (=) | 12 | 0 | 0 | 25 | 12 | 0.09 | |||||
Segment L | 18 (↑) | 15 | 3 | 17 | 0 | 40 | 5 | 0.45 | ||||
Eastern equine encephalitis virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | 59 (↓) | 47 | 12 | 20 | 58 | 68 | 61 | 1.93 × 10−3 | |
Isfahan virus | Vesiculovirus, Rhabdoviridae | (-)ssRNA | Single linear RNA | 33 (↑) | 22 | 11 | 33 | 100 | 100 | 27 | 4.34 × 10−22 | |
Japanese encephalitis virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | 101 (↑) | 82 | 19 | 19 | 0 | 11 | 73 | 8.61 × 10−53 | |
Langat virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | 125 (↑) | 98 | 27 | 22 | 33 | 43 | 113 | 2.22 × 10−34 | |
Louping ill virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | 130 (↑) | 106 | 24 | 18 | 33 | 37 | 114 | 4.51 × 10−42 | |
Mayaro virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | 66 (↓) | 52 | 14 | 21 | 7. | 0 | 70 | 2.49 × 10−12 | |
Murray Valley encephalitis virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | 87 (↑) | 79 | 8 | 9 | 0 | 14 | 66 | 4.61 × 10−55 | |
O’nyong-nyong virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | 53 (↓) | 42 | 11 | 21 | 36 | 45 | 59 | 4.84 × 10−17 | |
Oropouche virus | Orthobunyavirus | (-)ssRNA | 3 Segmented RNAs | Segment S | 4 (↑) | 4 | 0 | 0 | 0 | 16 | 3 | 4.99 × 10−10 |
Segment M | 2 (↓) | 2 | 0 | 0 | 50 | 4 | 1.40 × 10−15 | |||||
Segment L | 2 (↓) | 2 | 0 | 0 | 0 | 0 | 5 | 2.23 × 10−29 | ||||
Punta Toro phlebovirus | Phlebovirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | 4 (=) | 2 | 2 | 50 | 0 | 6 | 4 | 7.81 × 10−2 |
Segment M | 6 (↓) | 3 | 3 | 50 | 0 | 0 | 8 | 3.06 × 10−10 | ||||
Segment L | 12 (↓) | 11 | 1 | 8 | 60 | 50 | 13 | 0.11 | ||||
Rift Valley fever virus | Phlebovirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | 8 (↓) | 7 | 1 | 13 | 86 | 50 | 9 | 2.84 × 10−7 |
16 (=) | 11 | 5 | 31 | 0 | 17 | 16 | 0.64 | |||||
Segment M | ||||||||||||
Segment L | 24 (↑) | 17 | 7 | 29 | 0 | 0 | 21 | 4.57 × 10−12 | ||||
Ross River virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | 76 (↓) | 61 | 15 | 20 | 33 | 46 | 77 | 1.61 × 10−2 | |
Sagiyama virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | 71 (↓) | 55 | 16 | 23 | 100 | 98 | 86 | 2.46 × 10−43 | |
Sandfly fever Sicilian virus | Phlebovirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | 7 (↓) | 6 | 1 | 14 | 0 | 0 | 9 | 2.03 × 10−8 |
Segment M | 17 (↑) | 12 | 5 | 29 | 60 | 50 | 14 | 6.75 × 10−13 | ||||
Segment L | 23 (↑) | 16 | 7 | 30 | 86 | 50 | 20 | 5.13 × 10−13 | ||||
Sandfly fever Toscana virus | Phlebovirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | 7 (↓) | 6 | 1 | 14 | 0 | 17 | 8 | 1.04 × 10−6 |
Segment M | 17 (↑) | 12 | 5 | 29 | 0 | 0 | 15 | 7.39 × 10−10 | ||||
Segment L | 21 (↓) | 16 | 5 | 24 | 0 | 6.25 | 22 | 0.13 | ||||
Semliki Forest virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | 95 (↑) | 79 | 16 | 17 | 88 | 87 | 92 | 6.37 × 10−4 | |
Sindbis virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | 68 (↓) | 52 | 16 | 24 | 75 | 69 | 76 | 1.89 × 10−21 | |
St. Louis encephalitis virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | 85 (↑) | 72 | 13 | 15 | 23 | 10 | 70 | 1.27 × 10−37 | |
Tick-borne encephalitis virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | 120 (↑) | 99 | 21 | 18 | 0 | 1 | 111 | 2.26 × 10−23 | |
Tick-borne powassan virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | 123 (↑) | 101 | 22 | 18 | 100 | 100 | 102 | 4.25 × 10−49 | |
Usutu virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | 92 (↑) | 72 | 20 | 22 | 50 | 72 | 79 | 7.96 × 10−42 | |
Uukuniemi virus | Phlebovirus, Bunyaviridae | (-)ssRNA | 3 Segmented RNAs | Segment S | 8 (↓) | 6 | 2 | 25 | 0 | 0 | 10 | 4.64 × 10−14 |
Segment M | 16 (=) | 10 | 6 | 38 | 0 | 10 | 16 | 0.22 | ||||
Segment L | 30 (↑) | 29 | 1 | 3 | 100 | 66 | 28 | 1.85 × 10−6 | ||||
Venezuelan equine encephalitis virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | 63 (↓) | 49 | 14 | 22 | 0 | 2 | 69 | 1.17 × 10−18 | |
Vesicular stomatitis virus strain Indiana | Vesiculovirus, Rhabdoviridae | (-)ssRNA | Single linear RNA | 34 (↑) | 25 | 9 | 26 | 33 | 48 | 26 | 1.98 × 10−35 | |
Vesicular stomatitis virus non-Indiana strains | Single linear RNA | 29 (↑) | 22 | 7 | 24 | 86 | 95 | 20 | 5.57 × 10−40 | |||
West Nile virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | 88 (↑) | 75 | 13 | 15 | 38 | 40 | 81 | 5.40 × 10−17 | |
Western equine encephalitis virus | Alphavirus, Togaviridae | (+)ssRNA | Single linear RNA | 55 (↓) | 42 | 13 | 24 | 69 | 71 | 64 | 4.96 × 10−25 | |
Yellow fever virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | 94 (↑) | 78 | 16 | 17 | 0 | 5. | 73 | 1.77 × 10−52 | |
Zika virus | Flavivirus, Flaviviridae | (+)ssRNA | Single linear RNA | 101 (↑) | 84 | 17 | 17 | 18 | 12 | 79 | 2.12 × 10−56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicoletto, G.; Richter, S.N.; Frasson, I. Presence, Location and Conservation of Putative G-Quadruplex Forming Sequences in Arboviruses Infecting Humans. Int. J. Mol. Sci. 2023, 24, 9523. https://doi.org/10.3390/ijms24119523
Nicoletto G, Richter SN, Frasson I. Presence, Location and Conservation of Putative G-Quadruplex Forming Sequences in Arboviruses Infecting Humans. International Journal of Molecular Sciences. 2023; 24(11):9523. https://doi.org/10.3390/ijms24119523
Chicago/Turabian StyleNicoletto, Giulia, Sara N. Richter, and Ilaria Frasson. 2023. "Presence, Location and Conservation of Putative G-Quadruplex Forming Sequences in Arboviruses Infecting Humans" International Journal of Molecular Sciences 24, no. 11: 9523. https://doi.org/10.3390/ijms24119523
APA StyleNicoletto, G., Richter, S. N., & Frasson, I. (2023). Presence, Location and Conservation of Putative G-Quadruplex Forming Sequences in Arboviruses Infecting Humans. International Journal of Molecular Sciences, 24(11), 9523. https://doi.org/10.3390/ijms24119523