An Improved Genome-Wide Association Procedure Explores Gene–Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population
Abstract
:1. Introduction
2. Results
2.1. Identification of Gene–Allele Systems of DSF and DFM in Global Soybeans
2.2. Identification of Gene–Allele Systems of ADL and AAT Required for DSF and DFM in Global Soybeans
2.3. Differential Contributions of ADL and AAT to DSF and DFM in Global Soybeans
2.4. Differentiated Evolutionary Motivators in Geographic Adaptation and MG Expansion for Growth Period Traits of Global Soybeans
2.5. Genetic Recombination Potential of DSF and DFM and Their Required ADL and AAT in Global Soybeans
2.6. Gene Functions of DSF and DFM and Their Required ADL and AAT in Global Soybeans
3. Discussion
3.1. Advantages of GASM-RTM-GWAS in Exploring the Gene–Allele System and Gene Network
3.2. Comparison of Gene–Allele Matrices between Ancestral and Filial Subpopulations as a New but Simple Approach in Exploring Evolutionary Drives
3.3. Gene Interaction Network and Important Gene–Alleles of the Growth Period Eco-Traits of Global Soybeans
4. Materials and Methods
4.1. Plant Materials and Field Experiments
4.2. Measurement of Growth Period Traits and Their Required ADL and AAT
4.3. Statistical Analysis
4.4. SNP Genotyping and GASM Assembly
4.5. Identification of Gene–Alleles of DSF and DFM and Their Required ADL and AAT Using GASM-RTM-GWAS
4.6. Analysis of Genetic Motivators in Geographic Adaptation and MG-Set Expansion of Global Soybeans
4.7. Prediction of Genetic Recombination Potentials of DSF and DFM and Their Required ADL and AAT in Global Soybeans
4.8. Gene Functional Annotation and Gene Network Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hymowitz, T.; Newell, C.A. Taxonomy of the genus Glycine, domestication and uses of soybeans. Econ. Bot. 1981, 35, 272–288. [Google Scholar] [CrossRef]
- Wen, Z.X.; Zhao, T.J.; Ding, Y.L.; Gai, J.Y. Genetic diversity, geographic differentiation and evolutionary relationship among ecotypes of Glycine max and G. soja in China. Sci. Bull. 2009, 54, 4393–4403. [Google Scholar] [CrossRef]
- Gai, J.Y.; Xu, D.H.; Gao, Z.; Shimamoto, Y.; Abe, J.; Fukushi, H.; Kitajima, S. Studies on the evolutionary relationship among eco-types of G. max and G. soja in China. Acta Agron. Sin. 2000, 26, 513–520. [Google Scholar]
- Liu, X.; He, J.; Wang, Y.; Xing, G.; Li, Y.; Yang, S.; Zhao, T.; Gai, J. Geographic differentiation and phylogeographic relationships among world soybean populations. Crop J. 2020, 8, 260–272. [Google Scholar] [CrossRef]
- Gaynor, L.G.; Lawn, R.J.; James, A.T. Agronomic studies on irrigated soybean in southern new south wales. I. Phenological adaptation of genotypes to sowing date. Crop Pasture Sci. 2012, 62, 1056–1066. [Google Scholar] [CrossRef]
- Garner, W.W.; Allard, H.A. Further studies in photoperiodism.The response of the plant to relative length of day and night. J. Agric. Res. 1923, 23, 871–920. [Google Scholar] [CrossRef]
- Garner, W.W.; Allard, H.A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J. Agric. Res. 1920, 18, 553–606. [Google Scholar] [CrossRef]
- Song, Y.; Ito, S.; Imaizumi, T. Flowering time regulation: Photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 2013, 18, 575–583. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Hao, X.; Pan, Y.; Zong, C.; Zeng, W.; Wang, W.; Xing, G.; He, J.; Gai, J. Evolutionary variation of accumulative day length and accumulative active temperature required for growth periods in global soybeans. Agronomy 2022, 12, 962. [Google Scholar] [CrossRef]
- Liu, X.; Li, C.; Cao, J.; Zhang, X.; Wang, C.; He, J.; Xing, G.; Wang, W.; Zhao, J.; Gai, J. Growth period QTL-allele constitution of global soybeans and its differential evolution changes in geographic adaptation versus maturity group extension. Plant J. 2021, 108, 1624–1643. [Google Scholar] [CrossRef]
- Liu, X.Q.; Wu, J.A.; Ren, H.X.; Qi, Y.X.; Li, C.Y.; Cao, J.Q.; Zhang, X.Y.; Zhang, Z.P.; Cai, Z.Y.; Gai, J.Y. Genetic variation of world soybean maturity date and geographic distribution of maturity groups. Breed. Sci. 2017, 67, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, Z.; Liu, Y.; Liu, T.; Li, Q.; Ji, Y.; Li, C.; Fang, C.; Wang, M.; Wu, M.; et al. Functional evolution of phosphatidylethanolamine binding proteins in soybean and Arabidopsis. Plant Cell 2015, 27, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Sedivy, E.J.; Price, W.B.; Haider, W.; Hanzawa, Y. Evolutionary trajectories of duplicated FT homologues and their roles in soybean domestication. Plant J. 2017, 90, 941–953. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Xu, K.; Zhang, X.; Zhu, J.; Lu, M.; Chen, F.; Liu, L.; Xi, Z.Y.; Bachmair, A.; Chen, Q.; et al. Extensive analysis of GmFTL and GmCOL expression in northern soybean cultivars in field conditions. PLoS ONE 2015, 10, e0136601. [Google Scholar] [CrossRef]
- Xu, M.; Yamagishi, N.; Zhao, C.; Takeshima, R.; Kasai, M.; Watanabe, S.; Kanazawa, A.; Yoshikawa, N.; Liu, B. Soybean-specific E1 family of floral repressors controls night-break responses through down-regulation of FLOWERING LOCUS T orthologs. Plant Physiol. 2015, 168, 1735–1746. [Google Scholar] [CrossRef]
- Lu, S.; Zhao, X.; Hu, Y.; Liu, S.; Nan, H.; Li, X.; Fang, C.; Cao, D.; Shi, X.; Kong, L.; et al. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat. Genet. 2017, 49, 773–779. [Google Scholar] [CrossRef]
- Liu, B.; Watanabe, S.; Uchiyama, T.; Kong, F.; Kanazawa, A.; Xia, Z.J.; Nagamatsu, A.; Arai, M.; Yamada, T.; Kitamura, K. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol. 2010, 153, 198–210. [Google Scholar] [CrossRef]
- Johansson, H.; Jones, H.J.; Foreman, J.; Hemsted, J.R.; Halliday, K.J. Arabidopsis cell expansion is controlled by a photothermal switch. Nat. Commun. 2014, 5, 4848. [Google Scholar] [CrossRef]
- Bai, M.; Shang, J.; Oh, E.; Fan, M.; Bai, Y.; Zentella, R.; Sun, T.; Wang, Z. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat. Cell Biol. 2012, 14, 810–817. [Google Scholar] [CrossRef]
- Stavang, J.A.; Gallego-Bartolomé, J.; Gómez, M.D.; Yoshida, S.; Asami, T.; Olsen, J.E.; García-Martínez, J.L.; Alabadí, D.; Blázquez, M.A. Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J. 2009, 60, 589–601. [Google Scholar] [CrossRef]
- Deal, R.B.; Topp, C.N.; Mckinney, E.C.; Meagher, R.B. Repression of flowering in arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z. Plant Cell 2007, 19, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Sidaway-Lee, K.; Costa, M.J.; Rand, D.A.; Finkenstadt, B.; Penfield, S. Direct measurement of transcription rates reveals multiple mechanisms for configuration of the Arabidopsis ambient temperature response. Genome Biol. 2014, 15, R45. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.V.; Wigge, P.A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 2010, 140, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Rosenberg, N.A.; Donnelly, P. Association mapping in structured populations. Am. J. Hum. Genet. 2000, 67, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
- Yu, J.M.; Pressoir, G.; Briggs, W.H.; Bi, I.V.; Yamasaki, M.; Doebley, J.F.; Mcmullen, M.D.; Gaut, B.S.; Nielsen, D.M.; Holland, J.B. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006, 38, 203–208. [Google Scholar] [CrossRef]
- Segura, V.; Vilhjálmsson, B.J.; Platt, A.; Korte, A.; Seren, Ü.; Long, Q.; Nordborg, M. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 2013, 44, 825–830. [Google Scholar] [CrossRef]
- Wang, S.B.; Feng, J.Y.; Ren, W.L.; Huang, B.; Zhou, L.; Wen, Y.J.; Zhang, J.; Dunwell, J.M.; Xu, S.; Zhang, Y.M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci. Rep. 2016, 6, 19444. [Google Scholar] [CrossRef]
- He, J.; Gai, J. QTL-allele matrix detected from RTM-GWAS is a powerful tool for studies in genetics, evolution, and breeding by design of crops. J. Integr. Agric. 2020, 19, 1407–1410. [Google Scholar] [CrossRef]
- He, J.; Meng, S.; Zhao, T.; Xing, G.; Yang, S.; Li, Y.; Guan, R.; Lu, J.; Wang, Y.; Xia, Q.; et al. An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theor. Appl. Genet. 2017, 130, 2327–2343. [Google Scholar] [CrossRef]
- Zhang, Y.; He, J.; Wang, Y.; Xing, G.; Zhao, J.; Li, Y.; Yang, S.; Palmer, R.G.; Zhao, T.; Gai, J. Establishment of a 100-seed weight quantitative trait locus-allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. J. Exp. Bot. 2015, 66, 6311–6325. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; He, J.; Zhao, T.; Xing, G.; Li, Y.; Yang, S.; Lu, J.; Wang, Y.; Gai, J. Detecting the QTL-allele system of seed isoflavone content in Chinese soybean landrace population for optimal cross design and gene system exploration. Theor. Appl. Genet. 2016, 129, 1557–1576. [Google Scholar] [CrossRef]
- Li, S.; Cao, Y.; He, J.; Zhao, T.; Gai, J. Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure. Theor. Appl. Genet. 2017, 130, 2297–2314. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; He, J.; Zhao, T.; Xing, G.; Wang, Y.; Yu, D.; Chen, S.; Gai, J. Efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two-stage multi-locus GWAS procedure. Theor. Appl. Genet. 2018, 131, 2581–2599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, J.; Li, Y.; Yang, S.; Wang, H.; Meng, S.; Xing, G.; Zhao, J.; Zhao, T.; Gai, J. Detecting the QTL-allele system of seed oil traits using multi-locus genome-wide association analysis for population characterization and optimal cross prediction in soybean. Front. Plant Sci. 2018, 9, 1793. [Google Scholar] [CrossRef]
- Li, S.; Xu, H.; Yang, J.; Zhao, T. Dissecting the genetic architecture of seed protein and oil content in soybean from the Yangtze and Huaihe River Valleys using multi-locus genome-wide association studies. Int. J. Mol. Sci. 2019, 20, 3041. [Google Scholar] [CrossRef]
- Liu, F.; He, J.; Wang, W.; Xing, G.; Zhao, J.; Li, Y.; Junyi, G. Genetic dynamics of flowering date evolved from later to earlier in annual wild and cultivated soybean in China. Crop Sci. 2021, 61, 2336–2354. [Google Scholar] [CrossRef]
- Lee, S.A.; Chan, C.H.; Tsai, C.H.; Lai, J.M.; Wang, F.S.; Kao, C.Y.; Huang, C.Y.F. Ortholog-based protein-protein interaction prediction and its application to inter-species interactions. BMC Bioinform. 2008, 9, S11. [Google Scholar] [CrossRef]
- Valencia, A.; Pazos, F. Computational methods for the prediction of protein interactions. Curr. Opin. Struct. Biol. 2002, 12, 368–373. [Google Scholar] [CrossRef]
- Ding, Z.; Kihara, D. Computational identification of protein-protein interactions in model plant proteomes. Sci. Rep. 2019, 9, 8740. [Google Scholar] [CrossRef]
- Li, P.; Zang, W.; Li, Y.; Xu, F.; Wang, J.; Shi, T. AtPID: The overall hierarchical functional protein interaction network interface and analytic platform for Arabidopsis. Nucleic Acids Res. 2011, 39, D1130–D1133. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Gu, H.; Jiao, Y.; Huang, D.; Chen, M. Computational identification of protein-protein interactions in rice based on the predicted rice interactome network. Genom. Proteom. Bioinform. 2011, 9, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Watanabe, S.; Yamada, T.; Tsubokura, Y.; Nakashima, H.; Zhaia, H.; Anai, T.; Sato, S.; Yamazaki, T.; Lü, S.; et al. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc. Natl. Acad. Sci. USA 2012, 109, E2155–E2164. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Kanazawa, A.; Matsumura, H.; Takahashi, R.; Harada, K.; Abe, J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 2008, 180, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Fang, C.; Cheng, Q.; Su, T.; Kou, K.; Kong, L.; Zhang, C.; Li, H.; Hou, Z.; Zhang, Y.; et al. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nat. Commun. 2021, 12, 5445. [Google Scholar] [CrossRef]
- Watanabe, S.; Xia, Z.; Hideshima, R.; Tsubokura, Y.; Sato, S.; Yamanaka, N.; Takahashi, R.; Anai, T.; Tabata, S.; Kitamura, K.; et al. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 2011, 188, 395–407. [Google Scholar] [CrossRef]
- Lu, S.; Dong, L.; Fang, C.; Liu, S.; Kong, L.; Cheng, Q.; Chen, L.; Su, T.; Nan, H.; Zhang, D.; et al. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat. Genet. 2020, 52, 428–436. [Google Scholar] [CrossRef]
- Zhao, C.; Takeshima, R.; Zhu, J.; Xu, M.; Sato, M.; Watanabe, S.; Kanazawa, A.; Liu, B.; Kong, F.; Yamada, T.; et al. A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biol. 2016, 16, 20. [Google Scholar] [CrossRef]
- Han, T.; Gai, J. Post-flowering photoperiod response of soybean varieties with similar flowering dates and different maturity dates. Soybean Genet. Newsl. 1998, 25, 48–49. [Google Scholar]
- Wang, W.; Zhou, B.; He, J.; Zhao, J.; Liu, C.; Chen, X.; Xing, G.; Chen, S.; Xing, H.; Junyi, G. Comprehensive identification of drought tolerance QTL-allele and candidate gene systems in Chinese Cultivated Soybean Population. Int. J. Mol. Sci. 2020, 21, 4830. [Google Scholar] [CrossRef]
- Fu, M.; Wang, Y.; Ren, H.; Du, W.; Yang, X.; Wang, D.; Cheng, Y.; Zhao, J.; Gai, J. Exploring the qtl–allele constitution of main stem node number and its differentiation among maturity groups in a northeast china soybean population. Crop Sci. 2020, 60, 1223–1238. [Google Scholar] [CrossRef]
- Ali, M.J.; Xing, G.; He, J.; Zhao, T.; Gai, J. Detecting the QTL-allele system controlling seed-flooding tolerance in a nested association mapping population of soybean. Crop J. 2020, 8, 781–792. [Google Scholar] [CrossRef]
- Khan, M.A.; Tong, F.; Wang, W.; He, J.; Zhao, T.; Gai, J. Using the RTM-GWAS procedure to detect the drought tolerance QTL-allele system at the seedling stage under sand culture in a half-sib population of soybean [Glycine max (L.) Merr.]. Can. J. Plant Sci. 2019, 99, 801–814. [Google Scholar] [CrossRef]
- Khan, M.A.; Tong, F.; Wang, W.B.; He, J.B.; Zhao, T.J.; Gai, J.Y. Analysis of QTL-allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure. Planta 2018, 248, 947–962. [Google Scholar] [CrossRef]
- Wang, L.; Liu, F.; Hao, X.; Wang, W.; Gai, J. Identification of the QTL-allele System Underlying Two High-Throughput Physiological Traits in the Chinese Soybean Germplasm Population. Front. Genet. 2021, 12, 600444. [Google Scholar] [CrossRef]
- Feng, W.; Fu, L.; Fu, M.; Sang, Z.; Wang, Y.; Wang, L.; Ren, H.; Du, W.; Hao, X.; Sun, L.; et al. Transgressive Potential Prediction and Optimal Cross Design of Seed Protein Content in the Northeast China Soybean Population Based on Full Exploration of the QTL-Allele System. Front. Plant Sci. 2022, 13, 896549. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Hideshima, R.; Xia, Z.; Tsubokura, Y.; Sato, S.; Nakamoto, Y.; Yamanaka, N.; Takahashi, R.; Ishimoto, M.; Anai, T.; et al. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 2009, 182, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.J.; Nan, H.Y.; Cao, D.; Li, Y.; Wu, F.F.; Wang, J.L.; Lu, S.J.; Yuan, X.H.; Cober, E.R.; Abe, J.; et al. A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Sci. 2014, 54, 2529–2535. [Google Scholar] [CrossRef]
- Samanfar, B.; Molnar, S.J.; Charette, M.; Schoenrock, A.; Dehne, F.; Golshani, A.; Belzile, F.; Cober, E.R. Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor. Appl. Genet. 2017, 130, 377–390. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Prountzos, D.; Pingali, K. Betweenness centrality: Algorithms and implementations. ACM J. 2013, 48, 35–46. [Google Scholar] [CrossRef]
- Fehr, W.R.; Caviness, C.E. Stages of soybean development. In Special Report 80, Cooperative Extension Service, Agriculture and Home Economic Experiment Station; Iowa State University: Ames, IA, USA, 1977; pp. 1–11. [Google Scholar]
- Hansen, C.H.; Robinson, H.F.; Comstock, R.E. Biometrical studies of yield in segregating populations of korean lespedeza. Agron. J. 1956, 48, 267–282. [Google Scholar] [CrossRef]
- Nyquist, W.E.; Baker, R.J. Estimation of heritability and prediction of selection response in plant populations. Crit. Rev. Plant Sci. 1991, 10, 235–322. [Google Scholar] [CrossRef]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef]
- Damian, S.; Andrea, F.; Stefan, W.; Kristoffer, F.; Davide, H.; Jaime, H.C.; Milan, S.; Alexander, R.; Alberto, S.; Tsafou, K.P. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef]
- Von Mering, C.; Jensen, L.J.; Snel, B.; Hooper, S.D.; Krupp, M.; Foglierini, M.; Jouffre, N.; Huynen, M.A.; Bork, P. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005, 33, D433–D437. [Google Scholar] [CrossRef]
- Uddin, S.; Hossain, L.; Wigand, R.T. New direction in degree centrality measure: Towards a time-variant approach. Int. J. Inf. Technol. Decis. Mak. 2014, 13, 865–878. [Google Scholar] [CrossRef]
- Du, Y.; Gao, C.; Chen, X.; Hu, Y.; Sadiq, R.; Deng, Y. A new closeness centrality measure via effective distance in complex networks. Chaos 2015, 25, 440–442. [Google Scholar] [CrossRef]
- Ramos, P.; Arge, L.; Lima, N.; Fukutani, K.F.; Queiroz, A. Leveraging user-friendly network approaches to extract knowledge from high-throughput omics datasets. Front. Plant Sci. 2019, 10, 1120. [Google Scholar] [CrossRef]
Gene–Allele | DSF | ADLDSF | AATDSF | |||
---|---|---|---|---|---|---|
Main-Effect (R2 %) | Gene × Env. (R2 %) | Main-Effect (R2 %) | Gene × Env. (R2 %) | Main-Effect (R2 %) | Gene × Env. (R2 %) | |
Gene | 76.85 (141, 0.00–6.95) | 4.05 (11, 0.19–1.01) | 75.35 (130, 0.00–6.77) | 3.93 (4, 0.45–1.86) | 73.76 (130, 0.00–7.32) | 0.55 (3, 0.11–0.27) |
LC-major gene | 51.63 (17, 1.55–6.95) | 45.32 (14, 1.61–6.77) | 1.86 (1,1.86) | 58.24 (19, 1.59–7.32) | ||
SC-major gene | 25.22 (124, 0.00–1.42) | 4.05 (11, 0.19–1.01) | 30.03 (116, 0.00–1.39) | 20.7 (3, 0.45–1.10) | 15.52 (111, 0.00–1.16) | 0.55 (3, 0.11–0.27) |
Unmapped gene | 18.85 | 0.15 | 20.45 | 0.17 | 25.44 | 0.15 |
h2 | 95.7 | 4.2 | 95.8 | 4.1 | 99.2 | 0.7 |
Positive allele | 195 (0.04–20.83) | 11 (1.67–20.29) | 191 (0.21–239.12) | 4 (23.24–123.88) | 186 (1.56–473.94) | 3 (87.37–473.94) |
Negative allele | 211 (−21.69 to–0.02) | 21 (−20.29 to −1.12) | 199 (−187.33 to −0.32) | 5 (−123.88 to −3.21) | 198 (−405.98 to −0.23) | 5 (−289.27 to −34.43) |
Total | 406 (−21.69–20.83) | 32 (−20.29–20.29) | 390 (−187.33–239.12) | 9 (−123.88–123.88) | 384 (−405.98~473.94) | 8 (−289.27–473.94) |
Gene–allele | DFM | ADLDFM | AATDFM | |||
Main-effect (R2 %) | Gene × Env. (R2 %) | Main-effect (R2 %) | Gene × Env. (R2 %) | Main-effect (R2 %) | Gene × Env. (R2 %) | |
Gene | 55.03 (135, 0.00–7.20) | 18.11 (5, 1.34–7.36) | 50.24 (124, 0.01–7.18) | 20.36 (5, 1.46–8.32) | 41.54 (129, 0.01–5.71) | 28.86 (20, 0.41–6.71) |
LC-major gene | 22.40 (8, 1.59–7.20) | 16.77 (4, 2.12–7.36) | 16.29 (5, 1.56–7.18) | 18.90 (4, 1.51–8.32) | 10.34 (3, 1.56–5.71) | 18.55 (5, 2.37–6.71) |
SC-major gene | 32.63 (127, 0.00–1.44) | 1.34 (1, 1.34) | 33.95 (119, 0.01–1.45) | 1.46 (1, 1.46) | 31.20 (126, 0.01–1.34) | 10.31 (15, 0.41–1.43) |
Unmapped gene | 25.67 | 0.69 | 28.26 | 0.54 | 29.36 | 0.04 |
h2 | 80.7 | 18.8 | 78.5 | 20.9 | 70.9 | 29 |
Positive allele | 185 (0.01–17.94) | 11 (0.96–9.42) | 186 (0.13–354.47) | 11 (0.13–77.63) | 178 (0.14–609.99) | 33 (3.80–610.00) |
Negative allele | 199 (−24.63 to–0.01) | 9 (−9.68 to −1.08) | 178 (−261.34 to−0.38) | 9 (−143.00 to −10.50) | 184 (−596.44 to −0.61) | 34 (−596.44 to −17.12) |
Total | 384 (−24.63–17.94) | 20 (−9.68–9.42) | 364 (−261.34–354.47) | 20 (−143.00–77.63) | 362 (−596.44–609.99) | 67 (−596.44–610.00) |
Common Genes | Gene Code | R2 | Gene Code | R2 | Gene Code | R2 | Cloned Gene Reported |
---|---|---|---|---|---|---|---|
Glyma01g22830 | §g-DSF-01-2 | 3.05 | g-ADLDSF-01-3 | 2.90 | g-AATDSF-01-3 | 4.26 | |
Glyma02g04190 | g-DSF-02-3 | 2.98 | g-ADLDSF-02-2 | 1.39 | g-AATDSF-02-2 | 3.12 | |
Glyma06g23580 | g-DSF-06-5 | 4.25 | g-ADLDSF-06-3 | 4.24 | g-AATDSF-06-6 | 4.41 | E1 (696.3 kb) [43] |
Glyma08g03210 | g-DSF-08-1 | 6.07 | g-ADLDSF-08-1 | 6.04 | g-AATDSF-08-1 | 6.14 | |
Glyma10g26450 | g-DSF-10-3 | 1.69 | g-ADLDSF-10-4 | 0.17 | g-AATDSF-10-2 | 1.79 | E4 (2112.8 kb) [44] |
Glyma13g07110 | g-DSF-13-1 | 5.60 | g-ADLDSF-13-1 | 5.67 | g-AATDSF-13-2 | 6.25 | |
Glyma16g03320 | g-DSF-16-2 | 2.24 | g-ADLDSF-16-1 | 2.70 | g-AATDSF-16-2 | 2.30 | LHY1a (1306.3 kb) [45] |
Glyma17g08460 | g-DSF-17-4 | 6.95 | g-ADLDSF-17-3 | 6.77 | g-AATDSF-17-3 | 7.32 | |
Glyma17g09500 | g-DSF-17-6 | 2.26 | g-ADLDSF-17-4 | 2.72 | g-AATDSF-17-4 | 2.30 | |
9 | 35.09 | 32.60 | 37.89 | ||||
Glyma03g27970 | g-DSF-03-4 | 0.16 | g-ADLDSF-03-4 | 0.40 | |||
Glyma09g31087 | g-DSF-09-6 | 0.10 | g-ADLDSF-09-3 | 0.37 | |||
Glyma14g37330 | g-DSF-14-7 | 0.08 | g-ADLDSF-14-6 | 0.25 | |||
Glyma20g08091 | g-DSF-20-1 | 0.04 | g-ADLDSF-20-3 | 0.07 | |||
4 | 0.38 | 1.09 | |||||
Glyma02g03920 | g-DSF-02-1 | 1.25 | g-AATDSF-02-1 | 1.60 | |||
Glyma02g37350 | g-DSF-02-8 | 0.63 | g-AATDSF-02-6 | 0.65 | |||
Glyma02g48010 | g-DSF-02-11 | 2.08 | g-AATDSF-02-9 | 2.10 | |||
Glyma04g36240 | g-DSF-04-3 | 1.06 | g-AATDSF-04-5 | 1.16 | |||
Glyma05g31250 | g-DSF-05-3 | 0.19 | g-AATDSF-05-2 | 0.09 | |||
Glyma06g36380 | g-DSF-06-6 | 1.93 | g-AATDSF-06-8 | 1.91 | |||
Glyma06g47590 | g-DSF-06-9 | 0.11 | g-AATDSF-06-12 | 0.04 | |||
Glyma07g09170 | g-DSF-07-2 | 0.14 | g-AATDSF-07-2 | 3.6 × 10−3 | |||
Glyma09g02470 | g-DSF-09-1 | 2.81 | g-AATDSF-09-1 | 2.95 | |||
Glyma09g25215 | g-DSF-09-5 | 0.33 | g-AATDSF-09-4 | 1.6 × 10−3 | |||
Glyma09g34850 | g-DSF-09-7 | 1.79 | g-AATDSF-09-8 | 1.85 | |||
Glyma10g35960 | g-DSF-10-7 | 0.97 | g-AATDSF-10-4 | 0.99 | E2 (545.6 kb) [46] | ||
Glyma11g14500 | g-DSF-11-3 | 1.42 | g-AATDSF-11-3 | 1.79 | |||
Glyma11g19670 | g-DSF-11-5 | 1.04 | g-AATDSF-11-4 | 1.11 | |||
Glyma12g08000 | g-DSF-12-2 | 1.59 | g-AATDSF-12-1 | 1.73 | PRR3b (152.2 kb) [47] | ||
Glyma12g34830 | g-DSF-12-4 | 0.36 | g-AATDSF-12-3 | 0.08 | |||
Glyma13g21340 | g-DSF-13-4 | 0.01 | g-AATDSF-13-3 | 0.07 | |||
Glyma13g25480 | g-DSF-13-5 | 0.01 | g-AATDSF-13-5 | 1.3 × 10−3 | |||
Glyma15g08420 | g-DSF-15-2 | 0.08 | g-AATDSF-15-3 | 0.04 | |||
Glyma15g34840 | g-DSF-15-5 | 3.05 | g-AATDSF-15-7 | 3.22 | |||
Glyma18g08410 | g-DSF-18-2 | 1.74 | g-AATDSF-18-3 | 1.61 | |||
Glyma18g17395 | g-DSF-18-4 | 1.55 | g-AATDSF-18-5 | 1.59 | |||
Glyma18g17515 | g-DSF-18-5 | 0.02 | g-AATDSF-18-6 | 0.02 | |||
23 | 24.16 | 24.61 | |||||
Glyma06g32870 | g-ADLDSF-06-4 | 0.08 | g-AATDSF-06-7 | 0.27 | |||
Glyma09g28620 | g-ADLDSF-09-2 | 0.07 | g-AATDSF-09-6 | 3.5 × 10−3 | |||
Glyma18g26120 | g-ADLDSF-18-4 | 3.7E-03 | g-AATDSF-18-9 | 3.8 × 10−3 | |||
Glyma19g23640 | g-ADLDSF-19-3 | 0.07 | g-AATDSF-19-1 | 0.02 | |||
4 | 0.22 | 0.30 | |||||
Specific gene | 94 | 14.75 | 96 | 31.65 | 88 | 10.49 | |
Total | 141 | 74.38 | 130 | 65.56 | 130 | 73.29 | |
Glyma02g00371 | g-DFM-02-1 | 2.66 | g-ADLDFM-02-1 | 2.72 | g-AATDFM-02-1 | 1.33 | |
Glyma07g40260 | g-DFM-07-8 | 0.69 | g-ADLDFM-07-8 | 1.00 | g-AATDFM-07-7 | 0.57 | |
Glyma08g15870 | g-DFM-08-4 | 1.21 | g-ADLDFM-08-3 | 1.45 | g-AATDFM-08-5 | 1.27 | |
Glyma12g06580 | g-DFM-12-2 | 0.77 | g-ADLDFM-12-2 | 0.18 | g-AATDFM-12-2 | 0.28 | |
Glyma12g06950 | g-DFM-12-4 | 0.06 | g-ADLDFM-12-3 | 0.01 | g-AATDFM-12-4 | 0.15 | |
Glyma13g09470 | g-DFM-13-3 | 1.25 | g-ADLDFM-13-1 | 1.14 | g-AATDFM-13-2 | 1.27 | |
Glyma13g25480 | g-DFM-13-8 | 2.59 | g-ADLDFM-13-4 | 2.16 | g-AATDFM-13-7 | 3.07 | |
Glyma19g34740 | g-DFM-19-9 | 2.31 | g-ADLDFM-19-6 | 2.67 | g-AATDFM-19-6 | 0.69 | DT1 (TFL1b, 2633.3 Kb) [17] |
8 | 11.54 | 11.33 | 8.63 | ||||
Glyma03g02940 | g-DFM-03-1 | 0.08 | g-ADLDFM-03-2 | 0.10 | |||
Glyma03g06483 | g-DFM-03-2 | 1.09 | g-ADLDFM-03-4 | 1.31 | |||
Glyma06g40670 | g-DFM-06-4 | 0.49 | g-ADLDFM-06-7 | 0.60 | |||
Glyma07g09420 | g-DFM-07-3 | 1.44 | g-ADLDFM-07-2 | 1.56 | |||
Glyma10g29970 | g-DFM-10-3 | 0.76 | g-ADLDFM-10-6 | 0.97 | |||
Glyma11g10800 | g-DFM-11-2 | 0.15 | g-ADLDFM-11-2 | 0.35 | |||
Glyma13g28880 | g-DFM-13-12 | 0.17 | g-ADLDFM-13-5 | 0.34 | |||
Glyma19g23740 | g-DFM-19-3 | 1.10 | g-ADLDFM-19-2 | 0.93 | |||
Glyma19g30690 | g-DFM-19-6 | 7.20 | g-ADLDFM-19-4 | 7.18 | |||
Glyma19g33210 | g-DFM-19-7 | 0.05 | g-ADLDFM-19-5 | 0.02 | |||
Glyma20g03100 | g-DFM-20-1 | 0.24 | g-ADLDFM-20-2 | 0.65 | |||
11 | 12.77 | 14.01 | |||||
Glyma05g26620 | g-DFM-05-6 | 0.05 | g-AATDFM-05-4 | 0.01 | |||
Glyma11g13111 | g-DFM-11-3 | 0.01 | g-AATDFM-11-4 | 0.12 | |||
Glyma12g06620 | g-DFM-12-3 | 0.21 | g-AATDFM-12-3 | 0.15 | |||
Glyma16g25500 | g-DFM-16-3 | 2.12 | g-AATDFM-16-2 | 0.99 | E9 (1225.6 kb) [48] | ||
4 | 2.39 | 1.27 | |||||
Glyma05g04561 | g-ADLDFM-05-1 | 1.22 | g-AATDFM-05-2 | 0.58 | |||
Glyma06g19480 | g-ADLDFM-06-5 | 0.52 | g-AATDFM-06-6 | 0.36 | |||
Glyma07g10541 | g-ADLDFM-07-3 | 0.18 | g-AATDFM-07-3 | 0.03 | |||
Glyma07g29650 | g-ADLDFM-07-6 | 0.62 | g-AATDFM-07-5 | 0.17 | |||
Glyma08g15400 | g-ADLDFM-08-2 | 0.03 | g-AATDFM-08-4 | 0.10 | |||
Glyma16g33100 | g-ADLDFM-16-8 | 1.39 | g-AATDFM-16-5 | 0.48 | |||
Glyma17g01160 | g-ADLDFM-17-1 | 0.2 | g-AATDFM-17-1 | 0.05 | |||
Glyma17g19084 | g-ADLDFM-17-5 | 0.1 | g-AATDFM-17-5 | 0.04 | |||
8 | 4.26 | 1.81 | |||||
Specific gene | 105 | 26.59 | 86 | 18.43 | 96 | 28.33 | |
Total | 135 | 53.29 | 124 | 48.03 | 129 | 40.04 |
Category -Group | DSF (R2 %) | ADLDSF (R2 %) | AATDSF (R2 %) | DFM (R2 %) | ADLDFM (R2 %) | AATDFM (R2 %) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | ① | 27 (12.9) | 11 (3.5) | 28 (13.4) | 14 (8.6) | 23 (12.9) | 10 (3.3) | 19 (3.0) | 14 (2.4) | 17 (6.3) | 7 (3.7) | 24 (4.6) | 13 (1.4) |
② | 7 (4.5) | 8 (1.2) | 5 (5.2) | 2 (0.4) | 10 (2.6) | 6 (1.9) | |||||||
③ | 9 (4.9) | 6 (3.7) | 8 (4.4) | 3 (0.2) | 0 (0.0) | 5 (1.3) | |||||||
II | ④ | 41 (18.4) | 4 (4.0) | 53 (24.4) | 6 (4.5) | 48 (18.8) | 8 (4.2) | 38 (16.6) | 10 (6.5) | 47 (20.2) | 6 (3.2) | 45 (14.5) | 7 (5.1) |
⑤ | 18 (10.2) | 33 (15.0) | 23 (10.8) | 12 (5.0) | 20 (8.6) | 27 (6.7) | |||||||
⑥ | 19 (4.2) | 14 (4.9) | 17 (3.8) | 16 (5.1) | 21 (8.4) | 11 (2.7) | |||||||
III | ⑦ | 61 (38.1) | 17 (10.5) | 48 (33.2) | 12 (9.7) | 38 (32.6) | 8 (8.3) | 53 (16.9) | 12 (3.3) | 48 (19.9) | 14 (6.4) | 37 (10.9) | 2 (1.4) |
⑧ | 35 (18.2) | 32 (15.8) | 26 (16.3) | 36 (12.6) | 24 (10.6) | 14 (3.7) | |||||||
⑨ | 9 (9.4) | 4 (7.6) | 4 (8.0) | 5 (0.9) | 10 (3.0) | 21 (5.8) | |||||||
IV | ⑩ | 47 (27.9) | 47 (27.9) | 41 (29.1) | 41 (29.1) | 53 (27.6) | 53 (27.6) | 54 (27.5) | 54 (27.5) | 42 (18.8) | 42 (18.8) | 51 (19.7) | 51 (19.7) |
Total | 176 (87.9) | 170 (100.1) | 162 (91.9) | 164 (63.9) | 154 (65.3) | 157 (49.7) |
Trait | Contrast | Total | Inherent | Emerged | Excluded | ||||
---|---|---|---|---|---|---|---|---|---|
Allele No. | Gene | Allele No. | Gene | Allele No. | Gene | Allele No. | Gene | ||
Geographic adaptation | |||||||||
DSF | O | 364 (188,176) | 141 | ||||||
A vs.O | 352 (186,166) | 141 | 329 (171,158) | 141 | 23 (15, 8) (8,5) * | 22 | 35 (17,18) (15,10) * | 29 | |
B vs. O | 359 (190,169) | 141 | 336 (177,159) | 141 | 23 (13,10) (7,3) * | 22 | 28 (11,17) (6,6) * | 26 | |
C vs. O | 362 (187,175) | 141 | 330 (170,160) | 141 | 32 (17,15) (10,10) * | 29 | 34 (18,16) (12,7) * | 30 | |
D vs. O | 361 (184,177) | 141 | 334 (171,163) | 141 | 27 (13,14) (5,4) * | 24 | 30 (17,13) (11,8) * | 26 | |
ABCD vs.O | 405 (210,195) | 141 | 363 (187,176) | 141 | 42 (23,17) (23,17) * | 37 | 1 (1,0) (1,0) * | 1 | |
ADLDSF | O | 340 (181,159) | 130 | ||||||
A vs.O | 336 (177,159) | 130 | 307 (165,142) | 130 | 29 (12,17) (9,11) * | 28 | 33 (16,17) (7,10) * | 31 | |
B vs. O | 347 (185,162) | 130 | 319 (172,147) | 130 | 28 (13,15) (9,7) * | 26 | 21 (9,12) (3,5) * | 20 | |
C vs. O | 365 (189,176) | 130 | 326 (175,151) | 130 | 39 (14,25) (9,13) * | 34 | 14 (6,8) (1,4) * | 14 | |
D vs. O | 346 (181,165) | 130 | 312 (171,141) | 130 | 34 (10, 24) (6,12) * | 30 | 28 (10,18) (5,9) * | 27 | |
ABCD vs.O | 390 (199,191) | 130 | 340 (181,159) | 130 | 50 (18, 32) (18,32) * | 44 | (0,0) | 0 | |
AATDSF | O | 342 (182,160) | 130 | ||||||
A vs.O | 336 (178,158) | 130 | 312 (166,146) | 130 | 24 (12,12) (6,7) * | 23 | 30 (16,14) (13,8) * | 27 | |
B vs. O | 346 (186,160) | 130 | 318 (173,145) | 130 | 28 (13,15) (8,6) * | 25 | 24 (9,15) (7,4) * | 23 | |
C vs. O | 354 (182,172) | 130 | 318 (168,150) | 130 | 36 (14,22) (4,14) * | 33 | 24 (14,10) (9,3) * | 20 | |
D vs. O | 344 (179,165) | 130 | 315 (169,146) | 130 | 29 (10,19) (5,6) * | 24 | 27 (13,14) (8,7) * | 24 | |
ABCD vs.O | 383 (198,185) | 130 | 341 (182,159) | 130 | 42 (16,26) (16,26) * | 38 | 1 (0,1) (0,0) * | 1 | |
DFM | O | 340 (177,163) | 135 | ||||||
A vs.O | 348 (177,171) | 135 | 312 (161,151) | 135 | 36 (16,20) (7,9) * | 33 | 28 (16,12) (8,8) * | 26 | |
B vs. O | 347 (180,167) | 135 | 316 (164,152) | 135 | 31 (16,15) (10,8) * | 28 | 24 (13,11) (4,7) * | 23 | |
C vs. O | 340 (174,166) | 135 | 314 (163,151) | 135 | 26 (11,15) (3,5) * | 24 | 26 (14,12) (7,6) * | 24 | |
D vs. O | 345 (175,170) | 135 | 315 (158,157) | 135 | 30 (17,13) (8,7) * | 27 | 25 (19,6) (12,3) * | 23 | |
ABCD vs.O | 384 (199,185) | 135 | 340 (177,163) | 135 | 44 (22,22) (22,22) * | 39 | (0,0) | 0 | |
ADLDFM | O | 323 (157,166) | 124 | ||||||
A vs.O | 325 (155,170) | 124 | 299 (142,157) | 124 | 26 (13,13) (6,10) * | 24 | 24 (15,9) (11,7) * | 21 | |
B vs. O | 328 (162,166) | 124 | 300 (146,154) | 124 | 28 (16,12) (7,4) * | 26 | 23 (11,12) (5,6) * | 21 | |
C vs. O | 317 (158,159) | 124 | 296 (146,150) | 124 | 21 (12,9) (3,2) * | 20 | 27 (11,16) (5,6) * | 25 | |
D vs. O | 320 (154,166) | 124 | 292 (143,149) | 124 | 28 (11,17) (10,9) * | 26 | 31 (14,17) (8,12) * | 29 | |
ABCD vs.O | 364 (178,186) | 124 | 323 (157,166) | 124 | 41 (21,20) (21,20) * | 36 | (0,0) | 0 | |
AATDFM | O | 320 (162,158) | 129 | ||||||
A vs.O | 321 (167,154) | 129 | 292 (152,140) | 129 | 29 (15,14) (10,10) * | 29 | 28 (10,18) (8,12) * | 25 | |
B vs. O | 325 (168,157) | 129 | 302 (156,146) | 129 | 23 (12,11) (4,3) * | 22 | 18 (6,12) (4,5) * | 17 | |
C vs. O | 322 (163,159) | 129 | 297 (151,146) | 129 | 25 (12,13) (6,8) * | 24 | 23 (11,12) (3,5) * | 21 | |
D vs. O | 327 (171,156) | 129 | 301 (156,145) | 129 | 26 (15,11) (8,5) * | 24 | 19 (6,13) (4,6) * | 18 | |
ABCD vs.O | 362 (184,178) | 129 | 320 (162,158) | 129 | 42 (22,20) (22,20) * | 38 | (0,0) | 0 | |
MG expansion | |||||||||
DSF | P | 405 (211,194) | 141 | ||||||
E vs. P | 309 (161,148) | 141 | 309 (161,148) | 141 | 0 (0,0) | 0 | 96 (50,46) (49,44) * | 73 | |
L vs. P | 353 (182,171) | 141 | 352 (182,170) | 141 | 1 (0,1) (0,1) * | 1 | 53 (29,24) (27,23) * | 47 | |
EL vs. P | 381 (196,185) | 141 | 380 (196,184) | 141 | 1 (0,1) (0,1) * | 1 | 25 (15,10) (15,10) * | 11 | |
ADLDSF | P | 390 (199,191) | 130 | ||||||
E vs. P | 281 (153,128) | 130 | 281 (153,128) | 130 | 0 (0,0) | 0 | 109 (46,63) (45,61) * | 84 | |
L vs. P | 336 (174,162) | 130 | 336 (174,162) | 130 | 0 (0,0) | 0 | 54 (25,29) (25,29) * | 42 | |
EL vs. P | 360 (189,171) | 130 | 360 (189,171) | 130 | 0 (0,0) | 0 | 30 (10,20) (10,20) * | 27 | |
AATDSF | P | 383 (198,185) | 130 | ||||||
E vs. P | 275 (145,130) | 130 | 275 (145,130) | 130 | 0 (0,0) | 0 | 108 (53,55) (52,52) * | 77 | |
L vs. P | 337 (172,165) | 130 | 336 (172,164) | 130 | 1 (0,1) (0,1) * | 1 | 47 (26,21) (26,18) * | 36 | |
EL vs. P | 363 (186,177) | 130 | 362 (186,176) | 130 | 1 (0,1) (0,1) * | 1 | 21 (12,9) (12,9) * | 18 | |
DFM | P | 384 (199,185) | 135 | ||||||
E vs. P | 292 (152,140) | 135 | 292 (152,140) | 135 | 0 (0,0) | 0 | 92 (47,45) (47,43) * | 70 | |
L vs. P | 332 (165,167) | 135 | 332 (165,167) | 135 | 0 (0,0) | 0 | 52 (34,18) (32,18) * | 42 | |
EL vs. P | 359 (184,175) | 135 | 359 (184,175) | 135 | 0 (0,0) | 0 | 25 (15,10) (15,10) * | 24 | |
ADLDFM | P | 364 (176,186) | 124 | ||||||
E vs. P | 274 (134,140) | 124 | 274 (134,140) | 124 | 0 (0,0) | 0 | 90 (44,46) (44,46) * | 65 | |
L vs. P | 293 (143,150) | 124 | 293 (143,150) | 124 | 0 (0,0) | 0 | 71 (35,36) (35,33) * | 56 | |
EL vs. P | 323 (163,160) | 124 | 323 (163,160) | 124 | 0 (0,0) | 0 | 41 (15,26) (15,26) * | 37 | |
AATDFM | P | 362 (184,178) | 129 | ||||||
E vs. P | 283 (148,135) | 129 | 283 (148,135) | 129 | 0 (0,0) | 0 | 79 (36,43) (35,43) * | 59 | |
L vs. P | 302 (157,145) | 129 | 302 (157,145) | 129 | 0 (0,0) | 0 | 60 (27,33) (27,31) * | 50 | |
EL vs. P | 339 (175,164) | 129 | 339 (175,164) | 129 | 0 (0,0) | 0 | 23 (9,14) (9,14) * | 22 |
Prediction Model | Trait | No. Crosses | 25% Percentile | No. Crosses | LPT | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Mean | CV (%) | Min. | Max. | Mean | CV (%) | ||||
Linkage model | DSF (d) | 62,128 | 5.43 | 89.24 | 33.24 | 31.34 | 5149 | −20.19 | −0.09 | −5.28 | −54.59 |
ADLDSF (d · h) | 62,128 | 161.76 | 1314.71 | 489.67 | 31.53 | 6352 | −202.57 | −0.08 | −78.61 | −43.63 | |
AATDSF (d · °C) | 62,128 | 245.25 | 2628.83 | 975.05 | 29.76 | 4663 | −416.02 | −0.72 | −136.33 | −52.21 | |
DFM (d) | 62,128 | 20.36 | 108.65 | 72.78 | 16.71 | 942 | −22.41 | −0.10 | −9.25 | −42.40 | |
ADLDFM (d·h) | 62,128 | 443.29 | 1436.31 | 999.43 | 15.36 | 992 | −307.52 | −0.58 | −143.73 | −43.60 | |
AATDFM (d · °C) | 62,128 | 774.41 | 2641.53 | 1898.16 | 16.44 | 1732 | −643.04 | −0.38 | −299.76 | −35.78 | |
Trait | Cross number | 95% percentile | Cross number | HPT | |||||||
Min. | Max. | Mean | CV (%) | Min. | Max. | Mean | CV (%) | ||||
DSF (d) | 62,128 | 21.98 | 140.03 | 58.42 | 28.77 | 2090 | 0.51 | 58.18 | 18.46 | 54.75 | |
ADLDSF (d · h) | 62,128 | 328.37 | 1872.39 | 882.47 | 24.90 | 1742 | 0.42 | 632.14 | 227.99 | 57.05 | |
AATDSF (d · °C) | 62,128 | 661.21 | 3750.91 | 1679.24 | 26.21 | 1631 | 11.01 | 1120.67 | 404.14 | 61.25 | |
DFM (d) | 62,128 | 50.83 | 153.23 | 107.97 | 11.97 | 19857 | 0.04 | 47.14 | 19.23 | 32.91 | |
ADLDFM (d · h) | 62,128 | 735.37 | 1995.88 | 1425.32 | 10.87 | 21821 | 0.38 | 743.29 | 232.89 | 42.62 | |
AATDFM (d · °C) | 62,128 | 1400.68 | 3895.99 | 2712.61 | 9.94 | 27145 | 0.81 | 1545.11 | 420.20 | 46.29 | |
Prediction model | Trait | Cross number | 25% percentile | Cross number | LPT | ||||||
Min. | Max. | Mean | CV (%) | Min. | Max. | Mean | CV (%) | ||||
Independent assortment model | DSF (d) | 62,128 | 6.80 | 89.58 | 32.87 | 31.69 | 5784 | −22.77 | −0.04 | −5.37 | −49.71 |
ADLDSF (d · h) | 62,128 | 156.68 | 1319.42 | 474.07 | 32.49 | 8269 | −212.94 | −0.25 | −88.18 | −40.35 | |
AATDSF (d · °C) | 62,128 | 244.29 | 2590.16 | 944.7.1 | 31.08 | 7041 | −473.13 | −1.57 | −159.19 | −44.65 | |
DFM (d) | 62,128 | 26.15 | 108.65 | 70.80 | 17.66 | 1890 | −22.54 | −0.15 | −10.92 | −38.56 | |
ADLDFM (d · h) | 62,128 | 413.22 | 1436.31 | 986.99 | 15.48 | 1141 | −309.67 | −0.70 | −144.60 | −42.82 | |
AATDFM (d · °C) | 62,128 | 622.26 | 2641.53 | 1847.34 | 17.18 | 2667 | −680.01 | −2.03 | −321.39 | −36.25 | |
Trait | Cross number | 95% percentile | Cross number | HPT | |||||||
Min. | Max. | Mean | CV (%) | Min. | Max. | Mean | CV (%) | ||||
DSF (d) | 62,128 | 21.98 | 154.33. | 59.62 | 28.96 | 2633 | 0.10 | 76.37 | 24.15 | 56.71 | |
ADLDSF (d · h) | 62,128 | 328.37 | 1936.45 | 919.74 | 24.32 | 2631 | 0.01 | 685.29 | 248.36 | 51.68 | |
AATDS F (d · °C) | 62,128 | 661.21 | 3849.81 | 1756.04 | 25.22 | 2148 | 0.54 | 1187.69 | 439.01 | 57.75 | |
DFM (d) | 62,128 | 50.83 | 159.41 | 112.79 | 12.03 | 27922 | 0.14 | 53.48 | 23.70 | 33.73 | |
ADLDFM (d · h) | 62,128 | 735.37 | 2066.57 | 1458.78 | 10.50 | 26383 | 0.95 | 646.95 | 246.47 | 35.88 | |
AATDFM (d · °C) | 62,128 | 1400.68 | 4358.57 | 2842.92 | 10.99 | 37073 | 195 | 1763.93 | 559.27 | 43.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Hao, X.; Liu, X.; Su, Y.; Pan, Y.; Zong, C.; Wang, W.; Xing, G.; He, J.; Gai, J. An Improved Genome-Wide Association Procedure Explores Gene–Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population. Int. J. Mol. Sci. 2023, 24, 9570. https://doi.org/10.3390/ijms24119570
Wang C, Hao X, Liu X, Su Y, Pan Y, Zong C, Wang W, Xing G, He J, Gai J. An Improved Genome-Wide Association Procedure Explores Gene–Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population. International Journal of Molecular Sciences. 2023; 24(11):9570. https://doi.org/10.3390/ijms24119570
Chicago/Turabian StyleWang, Can, Xiaoshuai Hao, Xueqin Liu, Yanzhu Su, Yongpeng Pan, Chunmei Zong, Wubin Wang, Guangnan Xing, Jianbo He, and Junyi Gai. 2023. "An Improved Genome-Wide Association Procedure Explores Gene–Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population" International Journal of Molecular Sciences 24, no. 11: 9570. https://doi.org/10.3390/ijms24119570
APA StyleWang, C., Hao, X., Liu, X., Su, Y., Pan, Y., Zong, C., Wang, W., Xing, G., He, J., & Gai, J. (2023). An Improved Genome-Wide Association Procedure Explores Gene–Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population. International Journal of Molecular Sciences, 24(11), 9570. https://doi.org/10.3390/ijms24119570