A Green Synthesis of CoFe2O4 Decorated ZIF-8 Composite for Electrochemical Oxygen Evolution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Oxygen Evolution Reaction (OER)
3. Materials and Methods
3.1. Materials
3.2. Instrumentation
3.3. Synthesis of ZIF-8
3.4. Extraction of Potato Peels and the Synthesis of Spinel CoFe2O4
3.5. Synthesis of CoFe2O4@ZIF-8
3.6. Electrochemical Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanan, M.W.; Surendranath, Y.; Nocera, D.G. Cobalt–Phosphate Oxygen-Evolving Compound. Chem. Soc. Rev. 2009, 38, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.S.; Nocera, D.G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, T.R.; Dogutan, D.K.; Reece, S.Y.; Surendranath, Y.; Teets, T.S.; Nocera, D.G. Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chem. Rev. 2010, 110, 6474–6502. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Papadantonakis, K.M.; Lewis, N.S. Principles and Implementations of Electrolysis Systems for Water Splitting. Mater. Horiz. 2016, 3, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Coridan, R.H.; Nielander, A.C.; Francis, S.A.; McDowell, M.T.; Dix, V.; Chatman, S.M.; Lewis, N.S. Methods for Comparing the Performance of Energy-Conversion Systems for Use in Solar Fuels and Solar Electricity Generation. Energy Environ. Sci. 2015, 8, 2886–2901. [Google Scholar] [CrossRef] [Green Version]
- Suen, N.T.; Hung, S.F.; Quan, Q.; Zhang, N.; Xu, Y.J.; Chen, H.M. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef]
- Anantharaj, S.; Ede, S.R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catal. 2016, 6, 8069–8097. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, Y. Designing Transition-Metal-Boride-Based Electrocatalysts for Applications in Electrochemical Water Splitting. Nanoscale 2020, 12, 9327–9351. [Google Scholar] [CrossRef]
- Li, X.; Hao, X.; Abudula, A.; Guan, G. Nanostructured Catalysts for Electrochemical Water Splitting: Current State and Prospects. J. Mater. Chem. A Mater. 2016, 4, 11973–12000. [Google Scholar] [CrossRef]
- Fang, M.; Dong, G.; Wei, R.; Ho, J.C. Hierarchical Nanostructures: Design for Sustainable Water Splitting. Adv. Energy Mater. 2017, 7, 1700559. [Google Scholar] [CrossRef] [Green Version]
- Suryanto, B.H.R.; Wang, Y.; Hocking, R.K.; Adamson, W.; Zhao, C. Overall Electrochemical Splitting of Water at the Heterogeneous Interface of Nickel and Iron Oxide. Nat. Commun. 2019, 10, 5599. [Google Scholar] [CrossRef] [Green Version]
- Hu, E.; Feng, Y.; Nai, J.; Zhao, D.; Hu, Y.; Lou, X.W. Construction of Hierarchical Ni-Co-P Hollow Nanobricks with Oriented Nanosheets for Efficient Overall Water Splitting. Energy Environ. Sci. 2018, 11, 872–880. [Google Scholar] [CrossRef]
- You, B.; Sun, Y. Innovative Strategies for Electrocatalytic Water Splitting. Acc. Chem. Res. 2018, 51, 1571–1580. [Google Scholar] [CrossRef]
- Panda, A.; Kim, H. Phosphorus Embedded Mo-MXene/CQDs Hybrid: A 2D/0D Architecture for Bifunctional Electrochemical Water Splitting. Nanoscale 2021, 13, 14795–14806. [Google Scholar] [CrossRef]
- Panda, A.; Arumugasamy, S.K.; Lee, J.; Son, Y.; Yun, K.; Venkateswarlu, S.; Yoon, M. Chemical-Free Sustainable Carbon Nano-Onion as a Dual-Mode Sensor Platform for Noxious Volatile Organic Compounds. Appl. Surf. Sci. 2021, 537, 147872. [Google Scholar] [CrossRef]
- Venkateswarlu, S.; Panda, A.; Kim, E.; Yoon, M. Biopolymer-Coated Magnetite Nanoparticles and Metal-Organic Framework Ternary Composites for Cooperative Pb(II) Adsorption. ACS Appl. Nano Mater. 2018, 1, 4198–4210. [Google Scholar] [CrossRef]
- Venkateswarlu, S.; Mahajan, H.; Panda, A.; Lee, J.; Govindaraju, S.; Yun, K.; Yoon, M. Fe3O4 Nano Assembly Embedded in 2D-Crumpled Porous Carbon Sheets for High Energy Density Supercapacitor. Chem. Eng. J. 2021, 420, 127584. [Google Scholar] [CrossRef]
- Zhou, H.C.; Long, J.R.; Yaghi, O.M. Introduction to Metal-Organic Frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [Green Version]
- Tao, Z.; Wang, T.; Wang, X.; Zheng, J.; Li, X. MOF-Derived Noble Metal Free Catalysts for Electrochemical Water Splitting. ACS Appl. Mater. Interfaces 2016, 8, 35390–35397. [Google Scholar] [CrossRef]
- Li, F.L.; Shao, Q.; Huang, X.; Lang, J.P. Nanoscale Trimetallic Metal–Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis. Angew. Chem.—Int. Ed. 2018, 57, 1888–1892. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wang, Y.; Dong, J.; He, C.T.; Yin, H.; An, P.; Zhao, K.; Zhang, X.; Gao, C.; Zhang, L.; et al. Ultrathin Metal-Organic Framework Nanosheets for Electrocatalytic Oxygen Evolution. Nat. Energy 2016, 1, 16184. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Q. Metal-Organic Framework Composites for Catalysis. Matter 2019, 1, 57–89. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, S.; Wang, D.; Chen, Q. Interface Engineering of Ru-Co3O4 Nanocomposites for Enhancing CO Oxidation. J. Mater. Chem. A Mater. 2018, 6, 11037–11043. [Google Scholar] [CrossRef]
- Gopi, S.; Panda, A.; Ramu, A.G.; Theerthagiri, J.; Kim, H.; Yun, K. Bifunctional Electrocatalysts for Water Splitting from a Bimetallic (V Doped-NixFey) Metal–Organic Framework MOF@Graphene Oxide Composite. Int. J. Hydrogen Energy 2021, 47, 42122–42135. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, Y.; Ma, T.; Yang, C.; Peng, Y.; Zhou, Z.; Zhou, M.; Li, S.; Wang, Y.; Cheng, C. Designing MOF Nanoarchitectures for Electrochemical Water Splitting. Adv. Mater. 2021, 33, e2006042. [Google Scholar] [CrossRef]
- Khalid, M.; Hassan, A.; Honorato, A.M.B.; Crespilho, F.N.; Varela, H. Nano-Flocks of a Bimetallic Organic Framework for Efficient Hydrogen Evolution Electrocatalysis. Chem. Commun. 2018, 54, 11048–11051. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, Y.P.; Wang, X.; Tian, J.W.; Huang, D.D.; Zhao, J.; Lan, Y.Q.; Li, D.S. Improved Conductivity of a New Co(Ii)-MOF by Assembled Acetylene Black for Efficient Hydrogen Evolution Reaction. CrystEngComm 2018, 20, 4804–4809. [Google Scholar] [CrossRef]
- Rui, K.; Zhao, G.; Lao, M.; Cui, P.; Zheng, X.; Zheng, X.; Zhu, J.; Huang, W.; Dou, S.X.; Sun, W. Direct Hybridization of Noble Metal Nanostructures on 2D Metal-Organic Framework Nanosheets to Catalyze Hydrogen Evolution. Nano Lett. 2019, 19, 8447–8453. [Google Scholar] [CrossRef]
- Cao, C.; Ma, D.D.; Xu, Q.; Wu, X.T.; Zhu, Q.L. Semisacrificial Template Growth of Self-Supporting MOF Nanocomposite Electrode for Efficient Electrocatalytic Water Oxidation. Adv. Funct. Mater. 2019, 29, 1807418. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. Zeolitic Imidazolate Framework Materials: Recent Progress in Synthesis and Applications. J. Mater. Chem. A Mater. 2014, 2, 16811–16831. [Google Scholar] [CrossRef]
- Xie, W.; Gao, C.; Li, J. Sustainable Biodiesel Production from Low-Quantity Oils Utilizing H6PV3MoW8O40 Supported on Magnetic Fe3O4/ZIF-8 Composites. Renew Energy 2021, 168, 927–937. [Google Scholar] [CrossRef]
- Mo, Z.; Tai, D.Z.; Zhang, H.; Shahab, A. A Comprehensive Review on the Adsorption of Heavy Metals by Zeolite Imidazole Framework (ZIF-8) Based Nanocomposite in Water. Chem. Eng. J. 2022, 443, 136320. [Google Scholar] [CrossRef]
- Paul, A.; Banga, I.K.; Muthukumar, S.; Prasad, S. Engineering the ZIF-8 Pore for Electrochemical Sensor Applications-A Mini Review. ACS Omega 2022, 7, 26993–27003. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Zeolitic Imidazolate Frameworks (ZIF-8) for Biomedical Applications: A Review. Curr. Med. Chem. 2021, 28, 7023–7075. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [Green Version]
- Chameh, B.; Moradi, M.; Hajati, S.; Hessari, F.A. Design and Construction of ZIF(8 and 67) Supported Fe3O4 Composite as Advanced Materials of High Performance Supercapacitor. Phys. E Low Dimens. Syst. Nanostruct. 2021, 126, 114442. [Google Scholar] [CrossRef]
- Meng, W.; Chen, W.; Zhao, L.; Huang, Y.; Zhu, M.; Huang, Y.; Fu, Y.; Geng, F.; Yu, J.; Chen, X.; et al. Porous Fe3O4/Carbon Composite Electrode Material Prepared from Metal-Organic Framework Template and Effect of Temperature on Its Capacitance. Nano Energy 2014, 8, 133–140. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Qiu, L.G.; Yuan, Y.P.; Zhu, Y.J.; Jiang, X.; Xiao, J.D. Magnetic Fe3O4@C/Cu and Fe3O4@CuO Core-Shell Composites Constructed from MOF-Based Materials and Their Photocatalytic Properties under Visible Light. Appl. Catal. B 2014, 144, 863–869. [Google Scholar] [CrossRef]
- Zhou, Q.; Xing, J.; Gao, Y.; Lv, X.; He, Y.; Guo, Z.; Li, Y. Ordered Assembly of NiCo2O4 Multiple Hierarchical Structures for High-Performance Pseudocapacitors. ACS Appl. Mater. Interfaces 2014, 6, 11394–11402. [Google Scholar] [CrossRef]
- Cai, D.; Wang, D.; Liu, B.; Wang, Y.; Liu, Y.; Wang, L.; Li, H.; Huang, H.; Li, Q.; Wang, T. Comparison of the Electrochemical Performance of Nimoo4 Nanorods and Hierarchical Nanospheres for Supercapacitor Applications. ACS Appl. Mater. Interfaces 2013, 5, 12905–12910. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Li, M.; Zhi, M.; Manivannan, A.; Wu, N. A Reduced Graphene Oxide/Co3O4 Composite for Supercapacitor Electrode. J. Power Sources 2013, 226, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Jiang, X.; Ding, S.; Li, B.Q. Preparation and Electrochemical Characteristics of Porous Hollow Spheres of NiO Nanosheets as Electrodes of Supercapacitors. J. Power Sources 2014, 256, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Lian, L.; Ruan, H.; Xie, F.; Wei, M. Nanostructured Porous MnO2 on Ni Foam Substrate with a High Mass Loading via a CV Electrodeposition Route for Supercapacitor Application. Electrochim. Acta 2014, 136, 189–194. [Google Scholar] [CrossRef]
- Tan, J.B.; Sahoo, P.; Wang, J.W.; Hu, Y.W.; Zhang, Z.M.; Lu, T.B. Highly Efficient Oxygen Evolution Electrocatalysts Prepared by Using Reduction-Engraved Ferrites on Graphene Oxide. Inorg. Chem. Front. 2018, 5, 310–318. [Google Scholar] [CrossRef]
- Li, M.; Xiong, Y.; Liu, X.; Bo, X.; Zhang, Y.; Han, C.; Guo, L. Facile Synthesis of Electrospun MFe2O4 (M = Co, Ni, Cu, Mn) Spinel Nanofibers with Excellent Electrocatalytic Properties for Oxygen Evolution and Hydrogen Peroxide Reduction. Nanoscale 2015, 7, 8920–8930. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Lv, M.; Chai, P.; Liu, Y.; Meng, J. Preparation of Ferrite MFe2O4 (M = Co, Ni) Ribbons with Nanoporous Structure and Their Magnetic Properties. J. Phys. Chem. B 2008, 112, 11292–11297. [Google Scholar] [CrossRef]
- Cui, L.; Qu, F.; Liu, J.; Du, G.; Asiri, A.M.; Sun, X. Interconnected Network of Core–Shell CoP@CoBiPi for Efficient Water Oxidation Electrocatalysis under Near Neutral Conditions. ChemSusChem 2017, 10, 1370–1374. [Google Scholar] [CrossRef]
- Wang, H.Y.; Hung, S.F.; Chen, H.Y.; Chan, T.S.; Chen, H.M.; Liu, B. In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36–39. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Ma, T.Y.; Jaroniec, M.; Qiao, S.Z. Self-Templating Synthesis of Hollow Co3O4 Microtube Arrays for Highly Efficient Water Electrolysis. Angew. Chem.—Int. Ed. 2017, 56, 1324–1328. [Google Scholar] [CrossRef]
- Hu, H.; Guan, B.; Xia, B.; Lou, X.W. Designed Formation of Co3O4/NiCo2O4 Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. J. Am. Chem. Soc. 2015, 137, 5590–5595. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Li, F.; Li, W.; Yang, H.; Zhang, X.; Liu, Y.; Ma, J. A Facile Preparation of CoFe2O4 Nanoparticles on Polyaniline-Functionalised Carbon Nanotubes as Enhanced Catalysts for the Oxygen Evolution Reaction. J. Mater. Chem. A Mater. 2016, 4, 4472–4478. [Google Scholar] [CrossRef]
- Kargar, A.; Yavuz, S.; Kim, T.K.; Liu, C.H.; Kuru, C.; Rustomji, C.S.; Jin, S.; Bandaru, P.R. Solution-Processed CoFe2O4 Nanoparticles on 3D Carbon Fiber Papers for Durable Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2015, 7, 17851–17856. [Google Scholar] [CrossRef]
- Lu, X.F.; Gu, L.F.; Wang, J.W.; Wu, J.X.; Liao, P.Q.; Li, G.R. Bimetal-Organic Framework Derived CoFe2O4/C Porous Hybrid Nanorod Arrays as High-Performance Electrocatalysts for Oxygen Evolution Reaction. Adv. Mater. 2017, 29, 1604437. [Google Scholar] [CrossRef]
- Shanmugavani, A.; Kalpana, D.; Selvan, R.K. Electrochemical Properties of CoFe2O4 Nanoparticles as Negative and Co(OH)2 and Co2Fe(CN)6 as Positive Electrodes for Supercapacitors. Available online: https://reader.elsevier.com/reader/sd/pii/S0025540815002664?token=F9FC8EBC3DB2D9B8F6097010A2361E59DAEE1F164F815537E592D646AE6C02130E77D64EECC7AAB7A8CDE5809A2B6EE5&originRegion=us-east-1&originCreation=20210831033308 (accessed on 31 August 2021).
- Ortiz-Quiñonez, J.L.; Pal, U. Borohydride-Assisted Surface Activation of Co3O4/CoFe2O4 Composite and Its Catalytic Activity for 4-Nitrophenol Reduction. ACS Omega 2019, 4, 10129–10139. [Google Scholar] [CrossRef] [Green Version]
- Kubisztal, J.; Kubisztal, M. Synthesis and Characterisation of Cobalt Ferrite Coatings for Oxygen Evolution Reaction. Catalysts 2022, 12, 21. [Google Scholar] [CrossRef]
- Ferreira, L.S.; Silva, T.R.; Santos, J.R.; Silva, V.D.; Raimundo, R.A.; Morales, M.A.; Macedo, D.A. Structure, magnetic behavior and OER activity of CoFe2O4 powders obtained using agar-agar from red seaweed (Rhodophyta). Mater. Chem. Phys. 2019, 237, 121847. [Google Scholar] [CrossRef]
- Silva, V.D.; Ferreira, L.S.; Simões, T.A.; Medeiros, E.S.; Macedo, D.A. 1D hollow MFe2O4 (M = Cu, Co, Ni) fibers by Solution Blow Spinning for oxygen evolution reaction. J. Colloid Interface Sci. 2019, 540, 59–65. [Google Scholar] [CrossRef]
- Sagu, J.S.; Mehta, D.; Wijayantha, K.U. Electrocatalytic activity of CoFe2O4 thin films prepared by AACVD towards the oxygen evolution reaction in alkaline media. Electrochem. Commun. 2018, 87, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Mahala, C.; Sharma, M.D.; Basu, M. 2D nanostructures of CoFe2O4 and NiFe2O4: Efficient oxygen evolution catalyst. Electrochim. Acta 2018, 273, 462–473. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Wang, T.; Li, Z.; Yang, G.; Bian, H.; Li, J.; Gao, D. Durable oxygen evolution reaction of one dimensional spinel CoFe2O4 nanofibers fabricated by electrospinning. RSC Adv. 2018, 8, 5338–5343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Li, P.; Yao, N.; Kong, T.; Cheng, G.; Chen, S.; Luo, W. Self-sacrificial template-directed vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting. Adv. Mater. 2019, 31, 1806672. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, M.; Li, J.; Jiao, F.; Lin, Y.; Gong, Y. A highly efficient electrochemical oxygen evolution reaction catalyst constructed from a S-treated two-dimensional Prussian blue analogue. Dalton Trans. 2020, 49, 14290–14296. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Xie, Y.; Dou, Y.; Zhou, J.; Zhou, A.; Wei, X.; Li, J.R. Partial sulfurization of a 2D MOF array for highly efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 41595–41601. [Google Scholar] [CrossRef]
- Zou, Z.; Wang, T.; Zhao, X.; Jiang, W.J.; Pan, H.; Gao, D.; Xu, C. Expediting in-situ electrochemical activation of two-dimensional metal–organic frameworks for enhanced OER intrinsic activity by iron incorporation. ACS Catal. 2019, 9, 7356–7364. [Google Scholar] [CrossRef]
- Gao, Z.; Yu, Z.W.; Liu, F.Q.; Yang, C.; Yuan, Y.H.; Yu, Y.; Luo, F. Stable Iron Hydroxide Nanosheets@ Cobalt-Metal–Organic–Framework Heterostructure for Efficient Electrocatalytic Oxygen Evolution. ChemSusChem 2019, 12, 4623–4628. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, C.; Sun, Y.; Zhang, G.; Shen, X.; Zou, F.; Zhang, H.; Wu, Z.; Wegener, E.C.; Taubert, C.J.; et al. High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction. ACS Nano 2018, 12, 158–167. [Google Scholar] [CrossRef]
Catalyst | OER | ||
---|---|---|---|
ECSA (cm2) | Overpotential at −10 mA cm−2 (mV) | Tafel (mV dec−1) | |
CPE | 0.95 | 151.1 | 403 |
CoFe2O4 | 35 | 370 | 283 |
ZIF-8 | 85 | 310 | 120 |
CoFe2O4@ZIF-8 | 260 | 105 | 43 |
Catalyst | b (mVdec−1) | Overpotential at 10 mA cm−2 (η10 (mV)) | Reference |
---|---|---|---|
CoFe2O4 (powders) | 45 | 295 | [57] |
CoFe2O4 (powders) | 126 | 435 | [58] |
CoFe2O4 (hollow nanofibers) | 95 | 414 | [59] |
CoFe2O4 (thin films) | 54 | 490 | [60] |
CoFe2O4 (nanoparticles) | 73 | 387 | [53] |
CoFe2O4 (nanoplates) | 61 | 360 | [61] |
CoFe2O4 (nanofibers) | 107 | 340 | [62] |
Co3S4/EC–MOF | 120 | 226 | [63] |
S–CoFe–PBA/CFP | 35.2 | 235 | [64] |
FeMOFs-SO3 | 36.2 | 218 | [65] |
CoFe–MOF–OH | 310 | [66] | |
Fe (OH)3@CoMOF-74 | 292 | [67] | |
Fe–Co–P Hollow Sphere | 33 | 252 | [68] |
ZIF@CoFe2O4 | 43 | 105 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panda, A.; Cho, H.-K.; Kim, H. A Green Synthesis of CoFe2O4 Decorated ZIF-8 Composite for Electrochemical Oxygen Evolution. Int. J. Mol. Sci. 2023, 24, 9585. https://doi.org/10.3390/ijms24119585
Panda A, Cho H-K, Kim H. A Green Synthesis of CoFe2O4 Decorated ZIF-8 Composite for Electrochemical Oxygen Evolution. International Journal of Molecular Sciences. 2023; 24(11):9585. https://doi.org/10.3390/ijms24119585
Chicago/Turabian StylePanda, Atanu, Hang-Kyu Cho, and Hansang Kim. 2023. "A Green Synthesis of CoFe2O4 Decorated ZIF-8 Composite for Electrochemical Oxygen Evolution" International Journal of Molecular Sciences 24, no. 11: 9585. https://doi.org/10.3390/ijms24119585
APA StylePanda, A., Cho, H. -K., & Kim, H. (2023). A Green Synthesis of CoFe2O4 Decorated ZIF-8 Composite for Electrochemical Oxygen Evolution. International Journal of Molecular Sciences, 24(11), 9585. https://doi.org/10.3390/ijms24119585