Statistical Analysis of Methotrexate Degradation by UV-C Photolysis and UV-C/TiO2 Photocatalysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. MTX Photolityc Degradation
2.2. MTX Photocatalytic Degradation
2.3. Statistic Analysis
2.4. Comparison of MTX Degradation, Residual H2O2 and TOC
2.5. MTX Degradation by Products
3. Materials and Methods
3.1. Sample Preparation and Reagents
3.2. MTX Degradation via Photolysis
3.3. MTX Degradation via Photocatalysis
3.4. Control Experiments
3.5. Design of Experiments and Statistical Analysis
3.6. MTX, Residual H2O2 and TOC Concentration Analysis
3.7. MTX Formation By-Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, N.A.; Khan, S.U.; Ahmed, S.; Farooqi, I.H.; Yousefi, M.; Mohammadi, A.A.; Changani, F. Recent Trends in Disposal and Treatment Technologies of Emerging-Pollutants—A Critical Review. TrAC Trends Anal. Chem. 2020, 122, 115744. [Google Scholar] [CrossRef]
- Tang, Y.; Yin, M.; Yang, W.; Li, H.; Zhong, Y.; Mo, L.; Liang, Y.; Ma, X.; Sun, X. Emerging Pollutants in Water Environment: Occurrence, Monitoring, Fate, and Risk Assessment. Water Environ. Res. 2019, 91, 984–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasilachi, I.; Asiminicesei, D.; Fertu, D.; Gavrilescu, M. Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. Water 2021, 13, 181. [Google Scholar] [CrossRef]
- Peña-Guzmán, C.; Ulloa-Sánchez, S.; Mora, K.; Helena-Bustos, R.; Lopez-Barrera, E.; Alvarez, J.; Rodriguez-Pinzón, M. Emerging Pollutants in the Urban Water Cycle in Latin America: A Review of the Current Literature. J. Environ. Manag. 2019, 237, 408–423. [Google Scholar] [CrossRef]
- Moreno Ríos, A.L.; Gutierrez-Suarez, K.; Carmona, Z.; Ramos, C.G.; Silva Oliveira, L.F. Pharmaceuticals as Emerging Pollutants: Case Naproxen an Overview. Chemosphere 2022, 291, 132822. [Google Scholar] [CrossRef]
- Gondi, R.; Kavitha, S.; Yukesh Kannah, R.; Parthiba Karthikeyan, O.; Kumar, G.; Kumar Tyagi, V.; Rajesh Banu, J. Algal-Based System for Removal of Emerging Pollutants from Wastewater: A Review. Bioresour. Technol. 2022, 344, 126245. [Google Scholar] [CrossRef]
- Calza, P.; Medana, C.; Sarro, M.; Rosato, V.; Aigotti, R.; Baiocchi, C.; Minero, C. Photocatalytic Degradation of Selected Anticancer Drugs and Identification of Their Transformation Products in Water by Liquid Chromatography–High Resolution Mass Spectrometry. J. Chromatogr. A 2014, 1362, 135–144. [Google Scholar] [CrossRef]
- Roig, B.; Marquenet, B.; Delpla, I.; Bessonneau, V.; Sellier, A.; Leder, C.; Thomas, O.; Bolek, R.; Kummerer, K. Monitoring of Methotrexate Chlorination in Water. Water Res. 2014, 57, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Lutterbeck, C.A.; Baginska, E.; Machado, Ê.L.; Kümmerer, K. Removal of the Anti-Cancer Drug Methotrexate from Water by Advanced Oxidation Processes: Aerobic Biodegradation and Toxicity Studies after Treatment. Chemosphere 2015, 141, 290–296. [Google Scholar] [CrossRef]
- Lai, W.W.-P.; Hsu, M.-H.; Lin, A.Y.-C. The Role of Bicarbonate Anions in Methotrexate Degradation via UV/TiO2: Mechanisms, Reactivity and Increased Toxicity. Water Res. 2017, 112, 157–166. [Google Scholar] [CrossRef]
- Attari, E.; Nosrati, H.; Danafar, H.; Kheiri Manjili, H. Methotrexate Anticancer Drug Delivery to Breast Cancer Cell Lines by Iron Oxide Magnetic Based Nanocarrier. J. Biomed. Mater. Res. A 2019, 107, 2492–2500. [Google Scholar] [CrossRef] [PubMed]
- Bedoui, Y.; Guillot, X.; Sélambarom, J.; Guiraud, P.; Giry, C.; Jaffar-Bandjee, M.C.; Ralandison, S.; Gasque, P. Methotrexate an Old Drug with New Tricks. Int. J. Mol. Sci. 2019, 20, 5023. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Yu, Y.; Chen, Y.; Hung, Y.; Yiang, G. Anticancer Effects of Methotrexate in Combination with A-tocopherol and A-tocopherol Succinate on Triple-negative Breast Cancer. Oncol. Rep. 2019, 41, 2060–2066. [Google Scholar] [CrossRef] [PubMed]
- Levêque, D.; Becker, G.; Toussaint, E.; Fornecker, L.-M.; Paillard, C. Clinical Pharmacokinetics of Methotrexate in Oncology. Int. J. Pharmacokinet. 2017, 2, 137–147. [Google Scholar] [CrossRef]
- Consejo de Salubridad General; Comisión Interinstitucional del Cuadro Básico y Catálogo de Insumos del Sector Salud. Cuadro Básico y Catálogo de Medicamentos, 2017th ed.; Consejo de Salubridad General: Ciudad de México, Mexico, 2017. [Google Scholar]
- Instituto Mexicano del Seguro Social. Cuadro Básico de Medicamentos Instituto Mexicano Del Seguro Social; Dirección de Prestaciones Médicas, Unidad de Atención Médica, Coordinación de Unidades de Medicas de Alta Especialidad, Eds.; Instituto Mexicano del Seguro Social: Ciudad de México, Mexico, 2019. [Google Scholar]
- Schmiegelow, K.; Nielsen, S.N.; Frandsen, T.L.; Nersting, J. Mercaptopurine/Methotrexate Maintenance Therapy of Childhood Acute Lymphoblastic Leukemia. J. Pediatr. Hematol. Oncol. 2014, 36, 503–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vena, G.A.; Cassano, N.; Iannone, F. Update on Subcutaneous Methotrexate for Inflammatory Arthritis and Psoriasis. Ther. Clin. Risk Manag. 2018, 14, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Yélamos, O.; Puig, L. Systemic Methotrexate for the Treatment of Psoriasis. Expert Rev. Clin. Immunol. 2015, 11, 553–563. [Google Scholar] [CrossRef]
- Methotrexate: Dosing and Uses, Medscape.com. Available online: https://reference.medscape.com/drug/trexall-otrexup-methotrexate-343201 (accessed on 25 March 2023).
- Methotrexate Dosage, Drugs.com. Available online: https://www.drugs.com/dosage/methotrexate.html#Usual_Adult_Dose_for_Psoriasis (accessed on 25 March 2023).
- Kosjek, T.; Negreira, N.; de Alda, M.L.; Barceló, D. Aerobic Activated Sludge Transformation of Methotrexate: Identification of Biotransformation Products. Chemosphere 2015, 119, S42–S50. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Das, R.; Choi, H.; Bhattacharjee, C. Involvement of Process Parameters and Various Modes of Application of TiO2 Nanoparticles in Heterogeneous Photocatalysis of Pharmaceutical Wastes—A Short Review. RSC Adv. 2014, 4, 57250–57266. [Google Scholar] [CrossRef]
- Chekir, N.; Tassalit, D.; Benhabiles, O.; Kasbadji Merzouk, N.; Ghenna, M.; Abdessemed, A.; Issaadi, R. A Comparative Study of Tartrazine Degradation Using UV and Solar Fixed Bed Reactors. Int. J. Hydrogen Energy 2017, 42, 8948–8954. [Google Scholar] [CrossRef]
- Lee, C.M.; Palaniandy, P.; Dahlan, I. Pharmaceutical Residues in Aquatic Environment and Water Remediation by TiO2 Heterogeneous Photocatalysis: A Review. Environ. Earth Sci. 2017, 76, 611. [Google Scholar] [CrossRef]
- Ahmed, S.N.; Haider, W. Heterogeneous Photocatalysis and Its Potential Applications in Water and Wastewater Treatment: A Review. Nanotechnology 2018, 29, 342001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokode, O.; Prabhu, R.; Lawton, L.A.; Robertson, P.K.J. UV LED Sources for Heterogeneous Photocatalysis. In Environmental Photochemistry Part III; Springer: Berlin/Heidelberg, Germany, 2015; pp. 159–179. [Google Scholar]
- Yasmina, M.; Mourad, K.; Mohammed, S.H.; Khaoula, C. Treatment Heterogeneous Photocatalysis; Factors Influencing the Photocatalytic Degradation by TiO2. Energy Procedia 2014, 50, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Litter, M.I. Introduction to Photochemical Advanced Oxidation Processes for Water Treatment. In Environmental Photochemistry Part II; Springer: Berlin/Heidelberg, Germany, 2005; pp. 325–366. [Google Scholar]
- Somensi, C.A.; Simionatto, E.L.; Dalmarco, J.B.; Gaspareto, P.; Radetski, C.M. A Comparison between Ozonolysis and Sonolysis/Ozonolysis Treatments for the Degradation of the Cytostatic Drugs Methotrexate and Doxorubicin: Kinetic and Efficiency Approaches. J. Environ. Sci. Health Part A 2012, 47, 1543–1550. [Google Scholar] [CrossRef]
- Espinosa, A.; Nélieu, S.; Lieben, P.; Skarbek, C.; Labruère, R.; Benoit, P. Photodegradation of Methotrexate in Aqueous Solution: Degradation Kinetics and Identification of Transformation Products. Environ. Sci. Pollut. Res. 2022, 29, 6060–6071. [Google Scholar] [CrossRef]
- Alinejad, A.; Akbari, H.; Ghaderpoori, M.; Jeihooni, A.K.; Adibzadeh, A. Catalytic Ozonation Process Using a MgO Nano-Catalyst to Degrade Methotrexate from Aqueous Solutions and Cytotoxicity Studies in Human Lung Epithelial Cells (A549) after Treatment. RSC Adv. 2019, 9, 8204–8214. [Google Scholar] [CrossRef] [Green Version]
- Kanjal, M.I.; Muneer, M.; Abdelhaleem, A.; Chu, W. Degradation of Methotrexate by UV/Peroxymonosulfate: Kinetics, Effect of Operational Parameters and Mechanism. Chin. J. Chem. Eng. 2020, 28, 2658–2667. [Google Scholar] [CrossRef]
- Catalkaya, E.C.; Kargi, F. Color, TOC and AOX Removals from Pulp Mill Effluent by Advanced Oxidation Processes: A Comparative Study. J. Hazard. Mater. 2007, 139, 244–253. [Google Scholar] [CrossRef]
- Kasim, N.A.; Whitehouse, M.; Ramachandran, C.; Bermejo, M.; Lennernäs, H.; Hussain, A.S.; Junginger, H.E.; Stavchansky, S.A.; Midha, K.K.; Shah, V.P.; et al. Molecular Properties of WHO Essential Drugs and Provisional Biopharmaceutical Classification. Mol. Pharm. 2004, 1, 85–96. [Google Scholar] [CrossRef]
- Jang, J.-H.; Jeong, S.-H.; Lee, Y.-B. Preparation and In Vitro/In Vivo Characterization of Polymeric Nanoparticles Containing Methotrexate to Improve Lymphatic Delivery. Int. J. Mol. Sci. 2019, 20, 3312. [Google Scholar] [CrossRef] [Green Version]
- Babyszko, A.; Wanag, A.; Sadłowski, M.; Kusiak-Nejman, E.; Morawski, A.W. Synthesis and Characterization of SiO2/TiO2 as Photocatalyst on Methylene Blue Degradation. Catalysts 2022, 12, 1372. [Google Scholar] [CrossRef]
- Reguzzoni, G. Degradation of Cytotoxic Compounds by TiO2-UV Photocatalysis; Politecnico de Milano: Milan, Italy, 2017. [Google Scholar]
- Wang, J.L.; Xu, L.J. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251–325. [Google Scholar] [CrossRef]
- Klamerth, N. Application of a Solar Photo-Fenton for the Treatment of Contaminants in Municipal Wastewater Effluents. Ph.D. Thesis, University of Almería, Almería, Spain, 2011. [Google Scholar]
- Crittenden, J.C.; Hu, S.; Hand, D.W.; Green, S.A. A Kinetic Model for H2O2/UV Process in a Completely Mixed Batch Reactor. Water Res. 1999, 33, 2315–2328. [Google Scholar] [CrossRef]
- Pantoja-Espinoza, J.C.; Proal-Nájera, J.B.; García-Roig, M.; Cháirez-Hernández, I.; Osorio-Revilla, G.I. Comparative Efficiencies of Coliform Bacteria Inactivation in Municipal Wastewater by Photolysis (UV) and Photocatalysis (UV/TiO2/SiO2). Case: Treatment Wastewater Plant of Salamanca, Spain. Rev. Mex. Ing. Quim. 2015, 14, 119–135. [Google Scholar]
Factor | Degrees of Freedom | Sum of Squares | Mean Squares | F-Value | Pr (>F) |
---|---|---|---|---|---|
Process | 1 | 1998 | 1998 | 8.934 | 0.00343 |
pH | 2 | 1627 | 1627 | 7.276 | 0.00106 |
Peroxide addition | 1 | 25,549 | 25,549 | 114.24 | 2 × 10−16 |
Time | 1 | 11,511 | 11,511 | 51.471 | 7.85 × 10−11 |
Residuals | 114 | 25,496 | 224 |
Variable | Units | Levels |
---|---|---|
Process | - | UV-C photolysis, UV-C photocatalysis |
Initial pH | - | 3.5, 7, 9.5 |
H2O2 addition | mM/L | 0, 3 |
Time | min | 0, 5, 10, 15, 20, 30, 45, 60, 90, 120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Burciaga, L.A.; García-Prieto, J.C.; Núñez-Núñez, C.M.; Proal-Nájera, J.B. Statistical Analysis of Methotrexate Degradation by UV-C Photolysis and UV-C/TiO2 Photocatalysis. Int. J. Mol. Sci. 2023, 24, 9595. https://doi.org/10.3390/ijms24119595
González-Burciaga LA, García-Prieto JC, Núñez-Núñez CM, Proal-Nájera JB. Statistical Analysis of Methotrexate Degradation by UV-C Photolysis and UV-C/TiO2 Photocatalysis. International Journal of Molecular Sciences. 2023; 24(11):9595. https://doi.org/10.3390/ijms24119595
Chicago/Turabian StyleGonzález-Burciaga, Luis A., Juan C. García-Prieto, Cynthia M. Núñez-Núñez, and José B. Proal-Nájera. 2023. "Statistical Analysis of Methotrexate Degradation by UV-C Photolysis and UV-C/TiO2 Photocatalysis" International Journal of Molecular Sciences 24, no. 11: 9595. https://doi.org/10.3390/ijms24119595
APA StyleGonzález-Burciaga, L. A., García-Prieto, J. C., Núñez-Núñez, C. M., & Proal-Nájera, J. B. (2023). Statistical Analysis of Methotrexate Degradation by UV-C Photolysis and UV-C/TiO2 Photocatalysis. International Journal of Molecular Sciences, 24(11), 9595. https://doi.org/10.3390/ijms24119595