Regulation of Vicia faba L. Response and Its Effect on Megoura crassicauda Reproduction under Zinc Stress
Abstract
:1. Introduction
2. Results
2.1. Zn Concentration in Field Collection Sites and Broad Bean Roots, Stems, and Leaves after Zn2+ Irrigation
2.2. Effects of Zn Stress on Germination, Seedling Height, and Chlorophyll Content of Broad Bean
2.3. Effect of Zn Stress on the Content of Soluble Total Sugar and Proline (PRO) in Broad Beans
2.4. Aphid Production in Three Successive Generations and the Expression of Vitellogenin (Vg) in Aphids
2.5. Aphid Carbohydrates Content and Trehalase Activity
2.6. Expression of Trehalose Metabolism Related Gene in Aphids
2.7. Changes in the Content of Zn in Broad Bean Roots, Stems, and Leaves before and after Aphid Inoculation
3. Discussion
4. Materials and Methods
4.1. Insect Sources and Tested Plants
4.2. Establishment of Experiments
4.3. Measurement of Germination Rate and Development Observation of Broad Bean Seedling
4.4. Determination of Zn Content in Broad Bean
4.5. Determination of Soluble Total Sugar and Chlorophyll and PRO Content in Broad Beans
4.6. Aphid Fecundity Determination
4.7. Determination of Carbohydrate Content and Trehalase Activity in Aphids
4.8. Total RNA Extraction and cDNA First Strand Synthesis of Aphids
4.9. Real-Time Fluorescence Quantitative PCR (qRT-PCR)
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, P.Y.; Chao, D.Y. Phytoremediation of heavy metal contamination and related molecular mechanisms in plants. Chin. J. Biotechnol. 2020, 36, 426–435. [Google Scholar]
- Zhao, Y.; Fang, X.; Mu, Y.; Cheng, Y.; Ma, Q.; Nian, H.; Yang, C. Metal pollution (Cd, Pb, Zn, and as) in agricultural soils and soybean, Glycine max, in southern China. Bull. Environ. Contam. Toxicol. 2014, 92, 427–432. [Google Scholar] [CrossRef]
- Duan, Q.; Lee, J.; Liu, Y.; Chen, H.; Hu, H. Distribution of heavy metal pollution in surface soil samples in china: A graphical review. Bull. Environ. Contam. Toxicol. 2016, 97, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Tan, M.; Guo, Q.; Yan, S. Transfer of heavy metal along food chain: A mini-review on insect susceptibility to entomopathogenic microorganisms under heavy metal stress. Pest Manag. Sci. 2021, 77, 1115–1120. [Google Scholar] [CrossRef]
- Askari, M.S.; Alamdari, P.; Chahardoli, S.; Afshari, A. Quantification of heavy metal pollution for environmental assessment of soil condition. Environ. Monit. Assess. 2020, 192, 162. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Z.; Guo, K.; Huo, Y.; He, G.; Sun, H.; Guan, Y.; Xu, N.; Yang, W.; Sun, G. Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis. Ecotoxicol. Environ. Saf. 2020, 202, 110856. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, X.; Wang, L.; Wang, X.; Wang, R.; Hui, X.; Wang, S.; Wang, Z.; Shi, M. Selecting high zinc wheat cultivars increases grain zinc bioavailability. J. Agric. Food Chem. 2021, 69, 11196–11203. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.S.; Dietz, K.J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot. 2006, 57, 711–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colovic, M.B.; Vasic, V.M.; Djuric, D.M.; Krstic, D.Z. Sulphur-containing amino acids: Protective role against free radicals and heavy metals. Curr. Med. Chem. 2018, 25, 324–335. [Google Scholar] [CrossRef]
- Samal, I.; Dhillon, M.K.; Tanwar, A.K.; Kumar, S.; Hasan, F. Biological performance and amino acid profiles of different geographical Chilo partellus populations on diverse maize genotypes. Entomol. Gen. 2022, 42, 479–489. [Google Scholar] [CrossRef]
- Wood, T.J.; Vanderplanck, M.; Vastrade, M.; Vaudo, A.D.; Michez, D. Trees for bees: Could woody plant pollen be used as a consistent resource in bee-focused agri-environment schemes? Entomol. Gen. 2022, 42, 361–374. [Google Scholar] [CrossRef]
- Zemanová, V.; Pavlík, M.; Pavlíková, D. Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species. PLoS ONE 2017, 12, e0177963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, H.; Yu, H.; Li, T.; Zhang, X. Influence of cadmium stress on root exudates of high cadmium accumulating rice line (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2018, 150, 168–175. [Google Scholar] [CrossRef]
- Yin, D.C.; Qi, J.Y. The physiological response of ectomycorrhizal fungus Lepista sordida to Cd and Cu stress. PeerJ 2021, 9, e11115. [Google Scholar]
- Shahid, M.A.; Balal, R.M.; Khan, N.; Zotarelli, L.; Liu, G.D.; Sarkhosh, A.; Fernández-Zapata, J.C.; Martínez Nicolás, J.J.; Garcia-Sanchez, F. Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism. Ecotoxicol. Environ. Saf. 2019, 180, 588–599. [Google Scholar] [CrossRef]
- Elbein, A.D.; Pan, Y.T.; Pastuszak, I.; Carroll, D. New insights on trehalose: A multifunctional molecule. Glycobiology 2003, 13, 17R–27R. [Google Scholar] [CrossRef]
- Yu, L.Y.; Chen, X.M.; Wei, Y.; Ding, Q.W.; Wang, S.H.; Tang, B.; Wang, S.G. Effects of long-term cadmium exposure on trehalose metabolism, growth, and development of Aedes albopictus (Diptera: Culicidae). Ecotoxicol. Environ. Saf. 2020, 204, 111034. [Google Scholar] [CrossRef]
- Di, N.; Wang, S.; Ridsdill-Smith, J.; Chen, Y.F.; Harwood, J.D.; Zhang, K.; Liu, T.X. Nitrogen and plant growth regulator affect plant detoxification metabolism and tritrophic interactions among Triticum aestivum, Sitobion avenae and Aphelinus asychis. Entomol. Gen. 2021, 41, 369–384. [Google Scholar] [CrossRef]
- Wang, S.S.; Chen, X.; Li, Y.; Pan, B.Y.; Wang, S.G.; Dai, H.J.; Wang, S.; Tang, B. Effects of changing temperature on the physiological and biochemical properties of Harmonia axyridis larvae. Entomol. Gen. 2020, 40, 229–241. [Google Scholar] [CrossRef]
- Shen, X.N.; Ji, S.X.; Liu, W.X.; Guo, J.Y.; Lü, Z.C.; Wan, F.H. Molecular characteristics of three cold resistance genes and their roles in temperature stress response in two Bemisia tabaci cryptic species. Entomol. Gen. 2021, 41, 317–328. [Google Scholar] [CrossRef]
- Tang, B.; Zhang, L.; Xiong, X.P.; Wang, H.J.; Wang, S.G. Advances in trehalose metabolism and lts regulation of lnsect chitin synthesis. Zhongguo Nong Ye Ke Xue 2018, 51, 697–707. [Google Scholar]
- Luo, Y.J.; Chen, Y.; Wang, X.J.; Wang, S.T.; Yang, Y.Y.; Xu, H.X.; Qu, C.; Wu, Y.; Li, C.; Wang, S.G.; et al. Validamycin affects the development and chitin metabolism in Spodoptera frugiperda by inhibiting trehalase activity. Entomol. Gen. 2022, 42, 931–939. [Google Scholar] [CrossRef]
- Leyria, J.; El-Mawed, H.; Orchard, I.; Lange, A.B. Regulation of a trehalose-specific facilitated transporter (TRET) by insulin and adipokinetic hormone in Rhodnius prolixus, a vector of chagas disease JJ. Front. Physiol. 2021, 12, 624165. [Google Scholar] [CrossRef] [PubMed]
- Li, F.L.; Ni, L.J.; Yuan, J.; Sheng, G.D. Cultivation practices affect heavy metal migration between soil and Vicia faba (broad bean). Chemosphere 2010, 80, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Oubane, M.; Khadra, A.; Ezzariai, A.; Kouisni, L.; Hafidi, M. Heavy metal accumulation and genotoxic effect of long-term wastewater irrigated periurban agricultural soils in semiarid climate. Sci. Total Environ. 2021, 794, 148611. [Google Scholar] [CrossRef]
- Hei, Z.W.; Xiang, H.M.; Zhang, J.E.; Liang, K.M. Advances in legumes-based remediation of heavy metals contaminated soil. Ecological Sci. 2019, 38, 218–224. [Google Scholar]
- Saadani, O.; Jebara, S.H.; Fatnassi, I.C.; Chiboub, M.; Mannai, K.; Zarrad, I.; Jebara, M. Effect of Vicia faba L. var. minor and Sulla coronaria (L.) Medik associated with plant growth-promoting bacteria on lettuce cropping system and heavy metal phytoremediation under field conditions. Environ. Sci. Pollut. Res. Int. 2019, 26, 8125–8135. [Google Scholar] [CrossRef]
- Han, X.M.; Cao, C.Y.; Yao, J.D.; Gau, F.F. Effects of copper and cadmium on leguminous plant growth and nutrient uptake. Chin. J. Ecol. 2009, 28, 2250–2256. [Google Scholar]
- Wang, S.S. Effects of Cadmium Transfer along Soil and Broad Bean on Aphid and Its Natural Predator, Harmonia axyridis; HZNU: Hangzhou, China, 2022; pp. 1–80. [Google Scholar]
- Zhang, Y.H.; Han, S.H. Effects of Pb2+ on the Germination and Root Growth of Vicia faba L. J. Anhui Agri. Sci. 2011, 39, 8540–8541. [Google Scholar]
- Hulle, M.; Chaubet, B.; Turpeau, E.; Simon, J. Encyclop’ Aphid: A website on aphids and their natural enemies. Entomol. Gen. 2020, 40, 97–101. [Google Scholar] [CrossRef]
- Desneux, N.; O’neil, R.J.; Yoo, H.J.S. Suppression of population growth of the soybean aphid, Aphis glycines Matsumura, by predators: The identification of a key predator and the effects of prey dispersion, predator abundance, and temperature. Environ. Entomol. 2006, 35, 1342–1349. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Desneux, N.; Lu, Y.; Wu, K. Key aphid natural enemies showing positive effects on wheat yield through biocontrol services in northern China. Agric. Ecosyst. Environ. 2018, 266, 1–9. [Google Scholar] [CrossRef]
- Lumbierres, B.; Madeira, F.; Roca, M.; Pons, X. Effects of temperature and diet on the development and reproduction of the ladybird Oenopia conglobata. Entomol. Gen. 2021, 41, 197–208. [Google Scholar] [CrossRef]
- Xiao, D.; Xu, Q.; Chen, X.; Du, X.; Desneux, N.; Thomine, E.; Dai, H.J.; Harwood, J.D.; Wang, S. Development of a molecular gut-content identification system to identify aphids preyed upon by the natural enemy Coccinella septempunctata. Entomol. Gen. 2021, 41, 591–599. [Google Scholar] [CrossRef]
- Luo, C.; Chai, R.R.; Liu, X.; Dong, Y.; Desneux, N.; Feng, Y.Z.; Hu, Z.Q. The facultative symbiont Regiella insecticola modulates non-consumptive and consumptive effects of Harmonia axyridis on host aphids. Entomol. Gen. 2022, 42, 733–741. [Google Scholar] [CrossRef]
- Ragsdale, D.W.; Landis, D.A.; Brodeur, J.; Heimpel, G.E.; Desneux, N. Ecology and management of the soybean aphid in north america. Annu. Rev. Entomol. 2011, 56, 375–399. [Google Scholar] [CrossRef] [Green Version]
- Saska, P.; Özgökçe, M.S.; Skuhrovec, J.; Atlihan, R.; Güncan, A.; Zamani, A.A.; Tuan, S.-J. Bias introduced by the simplified method for the estimation of the intrinsic rate of increase of aphid populations: A meta-analysis. Entomol. Gen. 2021, 41, 305–316. [Google Scholar] [CrossRef]
- Rusin, M.; Gospodarek, J.; Nadgórska-Socha, A.; Barczyk, G. Effect of petroleum-derived substances on life history traits of black bean aphid (Aphis fabae Scop.) and on the growth and chemical composition of broad bean. Ecotoxicology 2017, 26, 308–319. [Google Scholar] [CrossRef] [Green Version]
- Kazimirova, M.; Ortel, J. Metal accumulation by Ceratitis capitata (Diptera)and transfer to the parasitic wasp Coptera occidentalis (Hymenoptera). Environ. Toxicol. Chem. 2000, 19, 1822–1829. [Google Scholar] [CrossRef]
- Sun, H.X.; Liu, Y.; Zhang, G.R. Effects of heavy metal pollution on insects. Acta Entomol. Sin. 2007, 50, 178–185. [Google Scholar]
- Chen, J.; Wang, J.W.; Shu, Y.H. Review on the effects of heavy metal pollution on herbivorous insects. Chin. J. Appl. Ecol. 2020, 31, 1773–1782. [Google Scholar]
- Zhu, Q.; Wang, L.; Dong, Q.; Chang, S.; Wen, K.; Jia, S.; Chu, Z.; Wang, H.; Gao, P.; Zhao, H.; et al. FRET-based glucose imaging identifies glucose signaling in response to biotic and abiotic stresses in rice roots. J. Plant Physiol. 2017, 215, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, Y.S. Physiological response characteristics of four mangrove plants seedlings toheavy metal stress. J. Trop. Oceanogr. 2022, 41, 28–34. [Google Scholar]
- Zhang, W.B.; Wang, C.H.; Liu, Y.P. Research progress on hyperaccumulation mechanism of heavy metal-enriched plants. Yunnan Chem. Technol. 2020, 47, 9–11. [Google Scholar]
- He, Y.; Yang, S.N.; Wan, D.M.; Yang, H.Y.; Duan, W.J. Effects of cadmium, lead and zinc stress on the growth of pakchoi in heavy metal contaminated soil. Hortic. Seed 2021, 41, 3–5. [Google Scholar]
- Li, Y.; Xin, J.; Ge, W.; Tian, R. Tolerance mechanism and phytoremediation potential of Pistia stratiotes to zinc and cadmium co-contamination. Int. J. Phytoremediation 2022, 17, 1259–1266. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.B.; Gou, X.; Su, Y.B.; Wang, G. Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China. J. Environ. Sci. 2006, 18, 1124–1134. [Google Scholar] [CrossRef]
- Liu, X.S.; Feng, S.J.; Zhang, B.Q.; Wang, M.Q.; Cao, H.W.; Rono, J.K.; Chen, X.; Yang, Z.M. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biol. 2019, 19, 283. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Chen, J.; Mahmood, Q.; Li, S.; Wu, J.; Ye, Z.; Peng, D.; Yan, W.; Lu, K. Effect of Zn toxicity on root morphology, ultrastructure, and the ability to accumulate Zn in Moso bamboo (Phyllostachys pubescens). Environ. Sci. Pollut. Res. 2014, 21, 13615–13624. [Google Scholar] [CrossRef]
- Zhao, X.X.; Feng, L.; Wang, Y.H. Physiological responses and joint toxicity of tomato seedlings under single and combined stress of zinc and cadmium. J. Saf. Environ. 2020, 20, 1176–1184. [Google Scholar]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.Q.; Wu, Y.S.; Liu, G.; Li, X.S.; Tang, Q. Effects of compound pollution of Cr, As, Cd and Pb on enzyme activities and cell effects of compound pollution of Cr, As, Cd and Pb on enzyme activities and cell membrance permeability of leaves of tea. South China Agric. 2012, 6, 1–6. [Google Scholar]
- Yu, X.W. Study on Extraction technology of chlorophyll from bitter cabbage in chifeng area. Agric. Technol. 2022, 42, 28–31. [Google Scholar]
- Mishra, S.; Dubey, R.S. Heavy metal toxicity induced alterations in photosynthetic metabolism in plants. Environ. Sci. 2005, 2, 845–863. [Google Scholar]
- Kleckerova, A.; Sobrova, P.; Krystofova, O.; Sochor, J.; Zitka, O.; Babula, P.; Adam, V.; Docekalova, H.; Kizek, R. Cadmium (II) and zinc (II) ions effects on maize plants revealed by spectroscopy and electrochemistry. Int. J. Electrochem. Sci. 2011, 6, 6011–6031. [Google Scholar]
- Hu, G.T.; Yang, X.; Chen, X.M.; Lu, K.P.; He, L.Z.; Ye, Z.Q.; Wu, X.H.; Wang, H.L. Physiological responses of bamboo-willow plants to heavy metal stress. Acta Sci. Circumstantiae 2016, 36, 3870–3875. [Google Scholar]
- Vassilev, A.; Nikolova, A.; Koleva, L.; Lidon, F. Effects of excess Zn on growth and photosynthetic performance of young bean plants. J. Phytol. 2011, 3, 58–62. [Google Scholar]
- Zhao, H.; Guan, J.; Liang, Q.; Zhang, X.; Hu, H.; Zhang, J. Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Sci. Rep. 2021, 11, 9913. [Google Scholar] [CrossRef]
- Guo, T.R.; Zhang, G.P.; Zhang, Y.H. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids Surf. B 2007, 57, 182–188. [Google Scholar] [CrossRef]
- Tanwir, K.; Javed, M.T.; Abbas, S.; Shahid, M.; Akram, M.S.; Chaudhary, H.J.; Iqbal, M. Serratia sp. CP-13 alleviates Cd toxicity by morpho-physio-biochemical improvements, antioxidative potential and diminished Cd uptake in Zea mays L. cultivars differing in Cd tolerance. Ecotoxicol. Environ. Saf. 2021, 208, 111584. [Google Scholar] [CrossRef]
- Sharma, S.S.; Schat, H.; Vooijs, R. In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry 1998, 49, 1531–1535. [Google Scholar] [CrossRef] [PubMed]
- Cobbett, C.S. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant Biol. 2000, 3, 211–216. [Google Scholar] [CrossRef]
- Kaur, R.; Das, S.; Bansal, S.; Singh, G.; Sardar, S.; Dhar, H.; Ram, H. Heavy metal stress in rice: Uptake, transport, signaling, and tolerance mechanisms. Physiol. Plant. 2021, 173, 430–448. [Google Scholar] [CrossRef] [PubMed]
- Perrin, D.D.; Sharma, V.S. The stability constants of metal-adenosine triphosphate complexes. Biochim. Biophys. Acta 1966, 127, 35–41. [Google Scholar] [CrossRef]
- Huang, J.N.; Chen, Y.M.; Huang, Y.; Wei, J.Q. The effect of heavy metal accumulation on plant and herbivore interaction: A review. J. Agric. 2021, 11, 42–45. [Google Scholar]
- Yang, S.Y.; Huang, Y.J.; Zhang, M.; Chen, Z.; Xie, J.C. Ecophysiological effects of heavy metals on insects. Acta Entomol. Sin. 2015, 58, 427–436. [Google Scholar]
- Jiang, D.; Yan, S.C. Effects of Cd, Zn or Pb stress in Populus alba berolinensis on the development and reproduction of Lymantria dispar. Ecotoxicology 2017, 26, 1305–1313. [Google Scholar] [CrossRef]
- Godinho, D.P.; Serrano, H.C.; Da Silva, A.B.; Branquinho, C.; Magalhães, S. Effect of cadmium accumulation on the performance of plants and of herbivores that cope differently with organic defenses. Front. Plant Sci. 2018, 9, 1723. [Google Scholar] [CrossRef]
- Shu, Y.; Gao, Y.; Sun, H.; Zou, Z.; Zhou, Q.; Zhang, G. Effects of zinc exposure on the reproduction of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Ecotoxicol. Environ. Saf. 2009, 72, 2130–2136. [Google Scholar] [CrossRef]
- Konopka, J.K.; Hanyu, K.; Macfie, S.M.; McNeil, J.N. Does the response of insect herbivores to cadmium depend on their feeding strategy? J. Chem. Ecol. 2013, 39, 546–554. [Google Scholar] [CrossRef] [Green Version]
- Thorat, L.J.; Gaikwad, S.M.; Nath, B.B. Trehalose as an indicator of desiccation stress in Drosophila melanogaster larvae: A potential marker of anhydrobiosis. Biochem. Biophys. Res. Commun. 2012, 419, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Kojić, D.; Popović, Ž.D.; Orčić, D.; Purać, J.; Orčić, S.; Vukašinović, E.L.; Nikolić, T.V.; Blagojević, D.P. The influence of low temperature and diapause phase on sugar and polyol content in the European corn borer Ostrinia nubilalis (Hbn.). J. Insect Physiol. 2018, 109, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.Y.; Wei, Y.; Chen, X.M. Effects of heavy metal cadmium on the trehalose metabolism in Aedes albopictus (Diptera: Culicidae) larvae. Acta Entomol. Sin. 2019, 62, 1250–1259. [Google Scholar]
- Yang, Y. Effects of Cadmium Stress on Metabolism of Energysubstances and Its Mechanism in Adults of Spodoptera litura; Yangzhou University: Yangzhou, China, 2021; pp. 1–79. [Google Scholar]
- Plaza, S.; Weber, J.; Pajonk, S.; Thomas, J.; Talke, I.N.; Schellenberg, M.; Pradervand, S.; Burla, B.; Geisler, M.; Martinoia, E.; et al. Wounding of Arabidopsis halleri leaves enhances cadmium accumulation that acts as a defense against herbivory. Biometals 2015, 28, 521–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mithofer, A.; Boland, W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 2012, 63, 431–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazemi-Dinan, A.; Thomaschky, S.; Stein, R.J.; Krämer, U.; Müller, C. Zinc and cadmium hyperaccumulation act as deterrents towards specialist herbivores and impede the performance of a generalist herbivore. New Phytol. 2014, 202, 628–639. [Google Scholar] [CrossRef]
- Shi, Z.K.; Wang, S.S.; Pan, B.Y.; Liu, Y.K.; Li, Y.; Wang, S.G.; Wang, S.; Tang, B. Effects of zinc acquired through the plant-aphid-ladybug food chain on the growth, development and fertility of Harmonia axyridis. Chemosphere 2020, 259, 127497. [Google Scholar] [CrossRef]
- Zhang, L.; Qiu, L.Y.; Yang, H.L.; Wang, H.J.; Zhou, M.; Wang, S.G.; Tang, B. Study on the effect of wing bud chitin metabolism and its developmental network genes in the Brown Planthopper, Nilaparvata lugens, by knockdown of TRE gene. Front. Physiol. 2017, 8, 750. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Days after Planting (d) | 0 mg/L Zn | 50 mg/L Zn | 100 mg/L Zn | 150 mg/L Zn |
---|---|---|---|---|
9 | 3.66 + 0.35 c | 4.73 + 0.35 a | 3.98 + 0.56 bc | 4.26 + 0.37 b |
11 | 8.06 + 0.46 b | 8.84 + 0.49 a | 8.14 + 0.41 b | 7.48 + 0.36 c |
13 | 12.95 + 0.55 b | 14.14 + 0.91 a | 11.57 + 1.22 c | 12.22 + 0.53 bc |
15 | 17.21 + 0.91 b | 18.65 + 0.84 a | 15.41 + 1.58 c | 16.82 + 0.55 b |
Gene Name | Primer Name | Nucleotide Sequences (5′-3′) |
---|---|---|
TPS | McTPS-F | CGTGGACAGGCTAGACTACA |
McTPS-R | CAGCTCAGTCTCGTCCTTGA | |
TRE | McTRE-F | TGGCAAGATACTACGCACCA |
McTPS-R | ATCAGCCAATACCCCACGAT | |
Vg | McVg-F | GCATTAGCCACTATGTTTCA |
McVg-R | CGTATTGCTCCATTGTTGT | |
Actin | McActin-F | GATCATTGCCCCACCAGAAC |
McActin-R | TTTACGGTGGACAATGCCTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, S.-J.; Si, H.-R.; Wang, X.-Z.; Chao, L.; Ma, W.; Sun, S.-S.; Tang, B.; Tan, X.-L.; Wang, S. Regulation of Vicia faba L. Response and Its Effect on Megoura crassicauda Reproduction under Zinc Stress. Int. J. Mol. Sci. 2023, 24, 9659. https://doi.org/10.3390/ijms24119659
Wan S-J, Si H-R, Wang X-Z, Chao L, Ma W, Sun S-S, Tang B, Tan X-L, Wang S. Regulation of Vicia faba L. Response and Its Effect on Megoura crassicauda Reproduction under Zinc Stress. International Journal of Molecular Sciences. 2023; 24(11):9659. https://doi.org/10.3390/ijms24119659
Chicago/Turabian StyleWan, Si-Jing, Hui-Ru Si, Xian-Zhong Wang, Lei Chao, Wu Ma, Si-Si Sun, Bin Tang, Xiao-Ling Tan, and Shigui Wang. 2023. "Regulation of Vicia faba L. Response and Its Effect on Megoura crassicauda Reproduction under Zinc Stress" International Journal of Molecular Sciences 24, no. 11: 9659. https://doi.org/10.3390/ijms24119659
APA StyleWan, S. -J., Si, H. -R., Wang, X. -Z., Chao, L., Ma, W., Sun, S. -S., Tang, B., Tan, X. -L., & Wang, S. (2023). Regulation of Vicia faba L. Response and Its Effect on Megoura crassicauda Reproduction under Zinc Stress. International Journal of Molecular Sciences, 24(11), 9659. https://doi.org/10.3390/ijms24119659