Co-Expression of Podoplanin and CD44 in Proliferative Vitreoretinopathy Epiretinal Membranes
Abstract
:1. Introduction
2. Results
2.1. PDPN and CD44 Detection in ERMs
2.2. Functional Prediction of PDPN Role in ERM
2.3. Expression and Immunolocalization of TFs Regulating PDPN
3. Discussion
4. Materials and Methods
4.1. PDPN Functional Inclusion into ECM and ECM-Related Proteins from ERMs
4.2. Patients and Tissues
4.3. Confocal Microscopy
4.4. Quantitative Real-Time PCR (RT-qPCR)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AOUS | Azienda Ospedaliera Universitaria Senese |
Axin 1 | Axis inhibition protein 1 |
CD44 | CD44 antigen/hyaluronic acid receptor |
cFos | Protein cFos |
CK | Cytokeratin |
CLEC-2 | C-type lectin-like receptor 2 |
Cy5 | Cyanine 5 |
DIN | Direct interaction network |
ECM | Extracellular matrix |
EGFR | Epidermal growth factor receptor |
ERM | Epiretinal membrane |
E2F1 | Transcription Factor E2F1 |
FICT | Fluorescein 5- isothiocyanate |
FNI | First niche of interaction |
GFAP | Glial fibrillary acidic protein |
gp36 | glycoprotein 36 |
GSK3 | Glycogen synthase kinase 3 |
HMGB1 | High mobility group protein B1 |
HRPT | Hypoxanthine-guanine phosphoribosyltransferase |
KLF4 | Kruppel-like factor 4 |
MRTF | Myocardin-related transcription factor B |
NANOG | Homeobox protein NANOG |
OCT | Optimal cutting temperature |
Oct3/4 | Octamer-binding protein 3/4 |
PDPN | Podoplanin |
PVR | Proliferative vitreoretinopathy |
RPE | Retinal pigment epithelium |
RT-qPCR | Reverse transcriptase-quantitative polymerase chain reaction |
SMAD2 | Mothers against decapentaplegic homolog 2 |
SNI | Second niche of interaction |
SOX2 | Transcription factor SOX-2 |
SPA | Shortest path algorithm |
STAT3 | Signal transducer and activator of transcription-3 |
TAZ | Tafazzin |
TF | Transcription Factor |
TGF-β | Transforming growth factor beta-1 |
TLR2 | Toll-like receptor 2 |
TLR9 | Toll-like receptor 9 |
TRITC | Tetramethylrhodamine isothiocyanate |
T1α | T1 alpha |
VEGFR-1 | Vascular and endothelial growth factor receptor 1 |
VIM | Vimentin |
Wnt | Protein Wnt |
YAP1 | Yes associated protein 1 |
References
- Folk, J.C.; Adelman, R.A.; Flaxel, C.J.; Hyman, L.; Pulido, J.S.; Olsen, T.W. Idiopathic Epiretinal Membrane and Vitreomacular Traction Preferred Practice Pattern® Guidelines. Ophthalmology 2016, 123, P152–P181. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.; Smith, W.; Chey, T.; Wang, J.J.; Chang, A. Prevalence and Associations of Epiretinal Membranes: The Blue Mountains Eye Study, Australia. Ophthalmology 1997, 104, 1033–1040. [Google Scholar] [CrossRef]
- Patronas, M.; Kroll, A.J.; Lou, P.L.; Ryan, E.A. A Review of Vitreoretinal Interface Pathology. Int. Ophthalmol. Clin. 2009, 49, 133–143. [Google Scholar] [CrossRef] [PubMed]
- You, Q.; Xu, L.; Jonas, J.B. Prevalence and Associations of Epiretinal Membranes in Adult Chinese: The Beijing Eye Study. Eye 2008, 22, 874–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, C.H.; Cheung, N.; Wang, J.J.; Islam, A.F.; Kawasaki, R.; Meuer, S.M.; Cotch, M.F.; Klein, B.E.; Klein, R.; Wong, T.Y. Prevalence and Risk Factors for Epiretinal Membranes in a Multi-Ethnic United States Population. Ophthalmology 2011, 118, 694–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, R.; Klein, B.E.; Wang, Q.; Moss, S.E. The Epidemiology of Epiretinal Membranes. Trans. Am. Ophthalmol. Soc. 1994, 92, 403–425; discussion 425–430. [Google Scholar] [PubMed]
- Stevenson, W.; Prospero Ponce, C.; Agarwal, D.; Gelman, R.; Christoforidis, J. Epiretinal Membrane: Optical Coherence Tomography-Based Diagnosis and Classification. OPTH 2016, 10, 527–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regoli, M.; Tosi, G.M.; Neri, G.; Altera, A.; Orazioli, D.; Bertelli, E. The Peculiar Pattern of Type IV Collagen Deposition in Epiretinal Membranes. J. Histochem. Cytochem. 2020, 68, 149–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altera, A.; Tosi, G.M.; Regoli, M.; De Benedetto, E.; Bertelli, E. The Extracellular Matrix Complexity of Idiopathic Epiretinal Membranes and the Bilaminar Arrangement of the Associated Internal Limiting Membrane in the Posterior Retina. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 2559–2571. [Google Scholar] [CrossRef]
- Bianchi, L.; Altera, A.; Barone, V.; Bonente, D.; Bacci, T.; De Benedetto, E.; Bini, L.; Tosi, G.M.; Galvagni, F.; Bertelli, E. Untangling the Extracellular Matrix of Idiopathic Epiretinal Membrane: A Path Winding among Structure, Interactomics and Translational Medicine. Cells 2022, 11, 2531. [Google Scholar] [CrossRef]
- Foos, R.Y. Vitreoretinal Juncture; Epiretinal Membranes and Vitreous. Investig. Ophthalmol. Vis. Sci. 1977, 16, 416–422. [Google Scholar]
- Oberstein, S.Y.L.; Byun, J.; Herrera, D.; Chapin, E.A.; Fisher, S.K.; Lewis, G.P. Cell Proliferation in Human Epiretinal Membranes: Characterization of Cell Types and Correlation with Disease Condition and Duration. Mol. Vis. 2011, 17, 1794. [Google Scholar] [PubMed]
- Zhao, F.; Gandorfer, A.; Haritoglou, C.; Scheler, R.; Schaumberger, M.M.; Kampik, A.; Schumann, R.G. EPIRETINAL CELL PROLIFERATION IN MACULAR PUCKER AND VITREOMACULAR TRACTION SYNDROME: Analysis of Flat-Mounted Internal Limiting Membrane Specimens. Retina 2013, 33, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Hiscott, P.S.; Grierson, I.; McLeod, D. Natural History of Fibrocellular Epiretinal Membranes: A Quantitative, Autoradiographic, and Immunohistochemical Study. Br. J. Ophthalmol. 1985, 69, 810–823. [Google Scholar] [CrossRef] [Green Version]
- Bochaton-Piallat, M.L.; Kapetanios, A.D.; Donati, G.; Redard, M.; Gabbiani, G.; Pournaras, C.J. TGF-Beta1, TGF-Beta Receptor II and ED-A Fibronectin Expression in Myofibroblast of Vitreoretinopathy. Investig. Ophthalmol. Vis. Sci. 2000, 41, 2336–2342. [Google Scholar]
- Schumann, R.G.; Gandorfer, A.; Ziada, J.; Scheler, R.; Schaumberger, M.M.; Wolf, A.; Kampik, A.; Haritoglou, C. Hyalocytes in Idiopathic Epiretinal Membranes: A Correlative Light and Electron Microscopic Study. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 1887–1894. [Google Scholar] [CrossRef]
- Tosi, G.M.; Regoli, M.; Altera, A.; Galvagni, F.; Arcuri, C.; Bacci, T.; Elia, I.; Realini, G.; Orlandini, M.; Bertelli, E. Heat Shock Protein 90 Involvement in the Development of Idiopathic Epiretinal Membranes. Investig. Ophthalmol. Vis. Sci. 2020, 61, 34. [Google Scholar] [CrossRef] [PubMed]
- Bu, S.-C.; Kuijer, R.; Van Der Worp, R.J.; Postma, G.; Renardel De Lavalette, V.W.; Li, X.-R.; Hooymans, J.M.M.; Los, L.I. Immunohistochemical Evaluation of Idiopathic Epiretinal Membranes and In Vitro Studies on the Effect of TGF-β on Müller Cells. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Villar, E.; Fernández-Munoz, B.; Parsons, M.; Yurrita, M.M.; Megías, D.; Pérez-Gomez, E.; Jones, G.E.; Quintanilla, M. Podoplanin Associates with CD44 to Promote Directional Cell Migration. Mol. Biol. Cell 2010, 21, 4387–4399. [Google Scholar] [CrossRef] [Green Version]
- Quintanilla, M.; Montero-Montero, L.; Renart, J.; Martín-Villar, E. Podoplanin in Inflammation and Cancer. IJMS 2019, 20, 707. [Google Scholar] [CrossRef] [Green Version]
- Gandarillas, A.; Scholl, F.G.; Benito, N.; Gamallo, C.; Quintanilla, M. Induction of PA2. 26, a Cell-surface Antigen Expressed by Active Fibroblasts, in Mouse Epidermal Keratinocytes during Carcinogenesis. Mol. Carcinog. 1997, 20, 10–18. [Google Scholar] [CrossRef]
- Neri, S.; Ishii, G.; Hashimoto, H.; Kuwata, T.; Nagai, K.; Date, H.; Ochiai, A. Podoplanin-Expressing Cancer-Associated Fibroblasts Lead and Enhance the Local Invasion of Cancer Cells in Lung Adenocarcinoma: PDPN-CAFs Lead and Enhance Cancer Cell Invasion. Int. J. Cancer 2015, 137, 784–796. [Google Scholar] [CrossRef] [PubMed]
- Suchanski, J.; Tejchman, A.; Zacharski, M.; Piotrowska, A.; Grzegrzolka, J.; Chodaczek, G.; Nowinska, K.; Rys, J.; Dziegiel, P.; Kieda, C.; et al. Podoplanin Increases the Migration of Human Fibroblasts and Affects the Endothelial Cell Network Formation: A Possible Role for Cancer-Associated Fibroblasts in Breast Cancer Progression. PLoS ONE 2017, 12, e0184970. [Google Scholar] [CrossRef] [Green Version]
- Weng, X.; Maxwell-Warburton, S.; Hasib, A.; Ma, L.; Kang, L. The Membrane Receptor CD44: Novel Insights into Metabolism. Trends Endocrinol. Metab. 2022, 33, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Abu El-Asrar, A.M.; Missotten, L.; Geboes, K. Expression of Myofibroblast Activation Molecules in Proliferative Vitreoretinopathy Epiretinal Membranes. Acta Ophthalmol. 2011, 89, e115–e121. [Google Scholar] [CrossRef]
- Christakopoulos, C.; Cehofski, L.J.; Christensen, S.R.; Vorum, H.; Honoré, B. Proteomics Reveals a Set of Highly Enriched Proteins in Epiretinal Membrane Compared with Inner Limiting Membrane. Exp. Eye Res. 2019, 186, 107722. [Google Scholar] [CrossRef]
- Bilodeau, S.; Kagey, M.H.; Frampton, G.M.; Rahl, P.B.; Young, R.A. SetDB1 Contributes to Repression of Genes Encoding Developmental Regulators and Maintenance of ES Cell State. Genes Dev. 2009, 23, 2484–2489. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Kong, Y. YAP Is Essential for TGF-β-induced Retinal Fibrosis in Diabetic Rats via Promoting the Fibrogenic Activity of Müller Cells. J. Cell. Mol. Med. 2020, 24, 12390–12400. [Google Scholar] [CrossRef]
- Barone, V.; Borghini, A.; Tedone Clemente, E.; Aglianò, M.; Gabriele, G.; Gennaro, P.; Weber, E. New Insights into the Pathophysiology of Primary and Secondary Lymphedema: Histopathological Studies on Human Lymphatic Collecting Vessels. Lymphat. Res. Biol. 2020, 18, 502–509. [Google Scholar] [CrossRef]
- Breiteneder-Geleff, S.; Matsui, K.; Soleiman, A.; Meraner, P.; Poczewski, H.; Kalt, R.; Schaffner, G.; Kerjaschki, D. Podoplanin, Novel 43-Kd Membrane Protein of Glomerular Epithelial Cells, Is down-Regulated in Puromycin Nephrosis. Am. J. Pathol. 1997, 151, 1141. [Google Scholar]
- Ramirez, M.I.; Millien, G.; Hinds, A.; Cao, Y.; Seldin, D.C.; Williams, M.C. T1alpha, a Lung Type I Cell Differentiation Gene, Is Required for Normal Lung Cell Proliferation and Alveolus Formation at Birth. Dev. Biol. 2003, 256, 61–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schacht, V. T1 /Podoplanin Deficiency Disrupts Normal Lymphatic Vasculature Formation and Causes Lymphedema. EMBO J. 2003, 22, 3546–3556. [Google Scholar] [CrossRef] [PubMed]
- Weber, E.; Aglianò, M.; Bertelli, E.; Gabriele, G.; Gennaro, P.; Barone, V. Lymphatic Collecting Vessels in Health and Disease: A Review of Histopathological Modifications in Lymphedema. Lymphat. Res. Biol. 2022, 20, 468–477. [Google Scholar] [CrossRef]
- Koop, K.; Eikmans, M.; Wehland, M.; Baelde, H.; Ijpelaar, D.; Kreutz, R.; Kawachi, H.; Kerjaschki, D.; De Heer, E.; Bruijn, J.A. Selective Loss of Podoplanin Protein Expression Accompanies Proteinuria and Precedes Alterations in Podocyte Morphology in a Spontaneous Proteinuric Rat Model. Am. J. Pathol. 2008, 173, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Morigi, M.; Buelli, S.; Angioletti, S.; Zanchi, C.; Longaretti, L.; Zoja, C.; Galbusera, M.; Gastoldi, S.; Mundel, P.; Remuzzi, G.; et al. In Response to Protein Load Podocytes Reorganize Cytoskeleton and Modulate Endothelin-1 Gene. Am. J. Pathol. 2005, 166, 1309–1320. [Google Scholar] [CrossRef]
- Asai, J.; Hirakawa, S.; Sakabe, J.; Kishida, T.; Wada, M.; Nakamura, N.; Takenaka, H.; Mazda, O.; Urano, T.; Suzuki-Inoue, K.; et al. Platelets Regulate the Migration of Keratinocytes via Podoplanin/CLEC-2 Signaling during Cutaneous Wound Healing in Mice. Am. J. Pathol. 2016, 186, 101–108. [Google Scholar] [CrossRef]
- Cimini, M.; Garikipati, V.N.S.; De Lucia, C.; Cheng, Z.; Wang, C.; Truongcao, M.M.; Lucchese, A.M.; Roy, R.; Benedict, C.; Goukassian, D.A.; et al. Podoplanin Neutralization Improves Cardiac Remodeling and Function after Myocardial Infarction. JCI Insight 2019, 4, e126967. [Google Scholar] [CrossRef]
- Ward, L.S.C.; Sheriff, L.; Marshall, J.L.; Manning, J.E.; Brill, A.; Nash, G.B.; McGettrick, H.M. Podoplanin Regulates the Migration of Mesenchymal Stromal Cells and Their Interaction with Platelets. J. Cell Sci. 2019, 132, jcs222067. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Ma, J.; Zhao, F.; An, J.; Geng, Y.; Liu, L. Effects of Curcumin on Epidermal Growth Factor in Proliferative Vitreoretinopathy. Cell Physiol. Biochem. 2018, 47, 2136–2146. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, H.-B.; Meng, J.-M.; Yuan, B.; Lin, W.-J.; Feng, Y.; Chen, X.-D. YM155 Inhibits Retinal Pigment Epithelium Cell Survival through EGFR/MAPK Signaling Pathway. Int. J. Ophthalmol. 2021, 14, 489–496. [Google Scholar] [CrossRef]
- Epstein Shochet, G.; Brook, E.; Eyal, O.; Edelstein, E.; Shitrit, D. Epidermal Growth Factor Receptor Paracrine Upregulation in Idiopathic Pulmonary Fibrosis Fibroblasts Is Blocked by Nintedanib. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2019, 316, L1025–L1034. [Google Scholar] [CrossRef] [PubMed]
- Panizo, S.; Martínez-Arias, L.; Alonso-Montes, C.; Cannata, P.; Martín-Carro, B.; Fernández-Martín, J.L.; Naves-Díaz, M.; Carrillo-López, N.; Cannata-Andía, J.B. Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. IJMS 2021, 22, 408. [Google Scholar] [CrossRef] [PubMed]
- Peck, D.; Isacke, C.M. CD44 Phosphorylation Regulates Melanoma Cell and Fibroblast Migration on, but Not Attachment to, a Hyaluronan Substratum. Curr. Biol. 1996, 6, 884–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trochon, V.; Mabilat, C.; Bertrand, P.; Legrand, Y.; Smadja-Joffe, F.; Soria, C.; Delpech, B.; Lu, H. Evidence of Involvement of CD44 in Endothelial Cell Proliferation, Migration and Angiogenesisin Vitro. Int. J. Cancer 1996, 66, 664–668. [Google Scholar] [CrossRef]
- Montero-Montero, L.; Renart, J.; Ramírez, A.; Ramos, C.; Shamhood, M.; Jarcovsky, R.; Quintanilla, M.; Martín-Villar, E. Interplay between Podoplanin, CD44s and CD44v in Squamous Carcinoma Cells. Cells 2020, 9, 2200. [Google Scholar] [CrossRef]
- Martín-Villar, E.; Megías, D.; Castel, S.; Yurrita, M.M.; Vilaró, S.; Quintanilla, M. Podoplanin Binds ERM Proteins to Activate RhoA and Promote Epithelial-Mesenchymal Transition. J. Cell Sci. 2006, 119, 4541–4553. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, J.W.; Gomez, E.W. Biomechanics of TGFβ-induced Epithelial-mesenchymal Transition: Implications for Fibrosis and Cancer. Clin. Transl. Med. 2014, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Kanda, A.; Noda, K.; Hirose, I.; Ishida, S. TGF-β-SNAIL Axis Induces Müller Glial-Mesenchymal Transition in the Pathogenesis of Idiopathic Epiretinal Membrane. Sci. Rep. 2019, 9, 673. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Kato, Y.; Kaneko, M.K.; Okita, Y.; Narimatsu, H.; Kato, M. Induction of Podoplanin by Transforming Growth Factor-β in Human Fibrosarcoma. FEBS Lett. 2008, 582, 341–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Schaijik, B.; Davis, P.F.; Wickremesekera, A.C.; Tan, S.T.; Itinteang, T. Subcellular Localisation of the Stem Cell Markers OCT4, SOX2, NANOG, KLF4 and c-MYC in Cancer: A Review. J. Clin. Pathol. 2018, 71, 88–91. [Google Scholar] [CrossRef]
- Chakraborty, D.; Šumová, B.; Mallano, T.; Chen, C.-W.; Distler, A.; Bergmann, C.; Ludolph, I.; Horch, R.E.; Gelse, K.; Ramming, A.; et al. Activation of STAT3 Integrates Common Profibrotic Pathways to Promote Fibroblast Activation and Tissue Fibrosis. Nat. Commun. 2017, 8, 1130. [Google Scholar] [CrossRef] [Green Version]
- Kasembeli, M.; Bharadwaj, U.; Robinson, P.; Tweardy, D. Contribution of STAT3 to Inflammatory and Fibrotic Diseases and Prospects for Its Targeting for Treatment. IJMS 2018, 19, 2299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avalle, L.; Poli, V. Nucleus, Mitochondrion, or Reticulum? STAT3 à La Carte. IJMS 2018, 19, 2820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germain, D.; Frank, D.A. Targeting the Cytoplasmic and Nuclear Functions of Signal Transducers and Activators of Transcription 3 for Cancer Therapy. Clin. Cancer Res. 2007, 13, 5665–5669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Z.; Barbier, L.; Stuart, H.; Amraei, M.; Pelech, S.; Dennis, J.W.; Metalnikov, P.; O’Donnell, P.; Nabi, I.R. Tumor Cell Pseudopodial Protrusions. Localized Signaling Domains Coordinating Cytoskeleton Remodeling, Cell Adhesion, Glycolysis, RNA Translocation, and Protein Translation. J. Biol. Chem. 2005, 280, 30564–30573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, D.L.; Naora, H.; Liu, J.; Cheng, W.; Montell, D.J. Activated Signal Transducer and Activator of Transcription (STAT) 3: Localization in Focal Adhesions and Function in Ovarian Cancer Cell Motility. Cancer Res. 2004, 64, 3550–3558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, D.C.H.; Lin, B.H.; Lim, C.P.; Huang, G.; Zhang, T.; Poli, V.; Cao, X. Stat3 Regulates Microtubules by Antagonizing the Depolymerization Activity of Stathmin. J. Cell Biol. 2006, 172, 245–257. [Google Scholar] [CrossRef]
- Debidda, M.; Wang, L.; Zang, H.; Poli, V.; Zheng, Y. A Role of STAT3 in Rho GTPase-Regulated Cell Migration and Proliferation. J. Biol. Chem. 2005, 280, 17275–17285. [Google Scholar] [CrossRef] [Green Version]
- Kiratipaiboon, C.; Voronkova, M.; Ghosh, R.; Rojanasakul, L.W.; Dinu, C.Z.; Chen, Y.C.; Rojanasakul, Y. SOX2Mediates Carbon Nanotube-Induced Fibrogenesis and Fibroblast Stem Cell Acquisition. ACS Biomater. Sci. Eng. 2020, 6, 5290–5304. [Google Scholar] [CrossRef]
- Chuang, H.-M.; Ho, L.-I.; Huang, M.-H.; Huang, K.-L.; Chiou, T.-W.; Lin, S.-Z.; Su, H.-L.; Harn, H.-J. Non-Canonical Regulation of Type I Collagen through Promoter Binding of SOX2 and Its Contribution to Ameliorating Pulmonary Fibrosis by Butylidenephthalide. IJMS 2018, 19, 3024. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Tolosa, M.F.; Zhang, T.; Goru, S.K.; Severino, L.U.; Misra, P.S.; McEvoy, C.M.; Caldwell, L.; Szeto, S.G.; Gao, F. Myofibroblast YAP/TAZ Activation Is a Key Step in Organ Fibrogenesis. JCI Insight 2022, 7, e146243. [Google Scholar] [CrossRef]
- Azzolin, L.; Panciera, T.; Soligo, S.; Enzo, E.; Bicciato, S.; Dupont, S.; Bresolin, S.; Frasson, C.; Basso, G.; Guzzardo, V.; et al. YAP/TAZ Incorporation in the β-Catenin Destruction Complex Orchestrates the Wnt Response. Cell 2014, 158, 157–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.; Alfajaro, M.M.; DeWeirdt, P.C.; Hanna, R.E.; Lu-Culligan, W.J.; Cai, W.L.; Strine, M.S.; Zhang, S.-M.; Graziano, V.R.; Schmitz, C.O.; et al. Genome-Wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell 2021, 184, 76–91.e13. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Kang, R.; Livesey, K.M.; Zeh, H.J.; Lotze, M.T. High Mobility Group Box 1 (HMGB1) Activates an Autophagic Response to Oxidative Stress. Antioxid. Redox Signal. 2011, 15, 2185–2195. [Google Scholar] [CrossRef] [Green Version]
- Avgousti, D.C.; Herrmann, C.; Kulej, K.; Pancholi, N.J.; Sekulic, N.; Petrescu, J.; Molden, R.C.; Blumenthal, D.; Paris, A.J.; Reyes, E.D.; et al. A Core Viral Protein Binds Host Nucleosomes to Sequester Immune Danger Signals. Nature 2016, 535, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Schiraldi, M.; Raucci, A.; Muñoz, L.M.; Livoti, E.; Celona, B.; Venereau, E.; Apuzzo, T.; De Marchis, F.; Pedotti, M.; Bachi, A.; et al. HMGB1 Promotes Recruitment of Inflammatory Cells to Damaged Tissues by Forming a Complex with CXCL12 and Signaling via CXCR4. J. Exp. Med. 2012, 209, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-A.; Kwak, M.S.; Kim, S.; Shin, J.-S. The Role of High Mobility Group Box 1 in Innate Immunity. Yonsei Med. J. 2014, 55, 1165–1176. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, R.; De Marchis, F.; Pusterla, T.; Conti, A.; Alessio, M.; Bianchi, M.E. Src Family Kinases Are Necessary for Cell Migration Induced by Extracellular HMGB1. J. Leukoc. Biol. 2009, 86, 617–623. [Google Scholar] [CrossRef]
- Wang, L.; Kang, F.; Wang, J.; Yang, C.; He, D. Downregulation of MiR-205 Contributes to Epithelial–Mesenchymal Transition and Invasion in Triple-Negative Breast Cancer by Targeting HMGB1–RAGE Signaling Pathway. Anti-Cancer Drugs 2019, 30, 225–232. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, H.; Chen, H.; Gong, A.; Liu, Y.; Song, L.; Xu, X.; You, T.; Fan, X.; Wang, D.; et al. Dedifferentiation Process Driven by Radiotherapy-Induced HMGB1/TLR2/YAP/HIF-1α Signaling Enhances Pancreatic Cancer Stemness. Cell Death Dis. 2019, 10, 724. [Google Scholar] [CrossRef] [Green Version]
- Suzuki-Inoue, K.; Kato, Y.; Inoue, O.; Kaneko, M.K.; Mishima, K.; Yatomi, Y.; Yamazaki, Y.; Narimatsu, H.; Ozaki, Y. Involvement of the Snake Toxin Receptor CLEC-2, in Podoplanin-Mediated Platelet Activation, by Cancer Cells. J. Biol. Chem. 2007, 282, 25993–26001. [Google Scholar] [CrossRef] [Green Version]
- Kazama, F.; Nakamura, J.; Osada, M.; Inoue, O.; Oosawa, M.; Tamura, S.; Tsukiji, N.; Aida, K.; Kawaguchi, A.; Takizawa, S. Measurement of Soluble C-Type Lectin-like Receptor 2 in Human Plasma. Platelets 2015, 26, 711–719. [Google Scholar] [CrossRef]
- Osada, M.; Inoue, O.; Ding, G.; Shirai, T.; Ichise, H.; Hirayama, K.; Takano, K.; Yatomi, Y.; Hirashima, M.; Fujii, H. Platelet Activation Receptor CLEC-2 Regulates Blood/Lymphatic Vessel Separation by Inhibiting Proliferation, Migration, and Tube Formation of Lymphatic Endothelial Cells. J. Biol. Chem. 2012, 287, 22241–22252. [Google Scholar] [CrossRef] [Green Version]
- Acton, S.E.; Astarita, J.L.; Malhotra, D.; Lukacs-Kornek, V.; Franz, B.; Hess, P.R.; Jakus, Z.; Kuligowski, M.; Fletcher, A.L.; Elpek, K.G. Podoplanin-Rich Stromal Networks Induce Dendritic Cell Motility via Activation of the C-Type Lectin Receptor CLEC-2. Immunity 2012, 37, 276–289. [Google Scholar] [CrossRef] [Green Version]
- Bertelli, E. (Ed.) Anatomy of the Eye and Human Visual System; Piccin: Padova, Italy, 2019; ISBN 978-88-299-2941-2. [Google Scholar]
- Angeloni, C.; Turroni, S.; Bianchi, L.; Fabbri, D.; Motori, E.; Malaguti, M.; Leoncini, E.; Maraldi, T.; Bini, L.; Brigidi, P. Novel Targets of Sulforaphane in Primary Cardiomyocytes Identified by Proteomic Analysis. PLoS ONE 2013, 8, e83283. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, L.; Gagliardi, A.; Maruelli, S.; Besio, R.; Landi, C.; Gioia, R.; Kozloff, K.M.; Khoury, B.M.; Coucke, P.J.; Symoens, S. Altered Cytoskeletal Organization Characterized Lethal but Not Surviving Brtl+/− Mice: Insight on Phenotypic Variability in Osteogenesis Imperfecta. Hum. Mol. Genet. 2015, 24, 6118–6133. [Google Scholar] [CrossRef] [Green Version]
- Gagliardi, A.; Besio, R.; Carnemolla, C.; Landi, C.; Armini, A.; Aglan, M.; Otaify, G.; Temtamy, S.A.; Forlino, A.; Bini, L.; et al. Cytoskeleton and Nuclear Lamina Affection in Recessive Osteogenesis Imperfecta: A Functional Proteomics Perspective. J. Proteom. 2017, 167, 46–59. [Google Scholar] [CrossRef]
- Bianchi, L.; Damiani, I.; Castiglioni, S.; Carleo, A.; De Salvo, R.; Rossi, C.; Corsini, A.; Bellosta, S. Smooth Muscle Cell Phenotypic Switch Induced by Traditional Cigarette Smoke Condensate: A Holistic Overview. Int. J. Mol. Sci. 2023, 24, 6431. [Google Scholar] [CrossRef]
- Hartig, R.; Huang, Y.; Janetzko, A.; Shoeman, R.; Grüb, S.; Traub, P. Binding of Fluorescence- and Gold-Labeled Oligodeoxyribonucleotides to Cytoplasmic Intermediate Filaments in Epithelial and Fibroblast Cells. Exp. Cell Res. 1997, 233, 169–186. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonente, D.; Bianchi, L.; De Salvo, R.; Nicoletti, C.; De Benedetto, E.; Bacci, T.; Bini, L.; Inzalaco, G.; Franci, L.; Chiariello, M.; et al. Co-Expression of Podoplanin and CD44 in Proliferative Vitreoretinopathy Epiretinal Membranes. Int. J. Mol. Sci. 2023, 24, 9728. https://doi.org/10.3390/ijms24119728
Bonente D, Bianchi L, De Salvo R, Nicoletti C, De Benedetto E, Bacci T, Bini L, Inzalaco G, Franci L, Chiariello M, et al. Co-Expression of Podoplanin and CD44 in Proliferative Vitreoretinopathy Epiretinal Membranes. International Journal of Molecular Sciences. 2023; 24(11):9728. https://doi.org/10.3390/ijms24119728
Chicago/Turabian StyleBonente, Denise, Laura Bianchi, Rossana De Salvo, Claudio Nicoletti, Elena De Benedetto, Tommaso Bacci, Luca Bini, Giovanni Inzalaco, Lorenzo Franci, Mario Chiariello, and et al. 2023. "Co-Expression of Podoplanin and CD44 in Proliferative Vitreoretinopathy Epiretinal Membranes" International Journal of Molecular Sciences 24, no. 11: 9728. https://doi.org/10.3390/ijms24119728
APA StyleBonente, D., Bianchi, L., De Salvo, R., Nicoletti, C., De Benedetto, E., Bacci, T., Bini, L., Inzalaco, G., Franci, L., Chiariello, M., Tosi, G. M., Bertelli, E., & Barone, V. (2023). Co-Expression of Podoplanin and CD44 in Proliferative Vitreoretinopathy Epiretinal Membranes. International Journal of Molecular Sciences, 24(11), 9728. https://doi.org/10.3390/ijms24119728