Comparison of Osteoconductive Ability of Two Types of Cholesterol-Bearing Pullulan (CHP) Nanogel-Hydrogels Impregnated with BMP-2 and RANKL-Binding Peptide: Bone Histomorphometric Study in a Murine Calvarial Defect Model
Abstract
:1. Introduction
2. Results
2.1. Chemical Structure of Two Types of CHP Nanogels
2.2. Radiological Analysis of Calcified Tissue in the Calvarial Bone Defect In Vivo
2.3. Bone Histomorphometric Analyses at the Calvarial Bone Defect
3. Discussion
4. Materials and Methods
4.1. Preparation Method for the Scaffold Materials
4.2. Experimental Animal
4.3. In Vivo Experimental Design
- (1)
- No scaffold (defects only);
- (2)
- CHP-A;
- (3)
- CHP-A + BMP-2 (2 µg; Bioventus LLC, Durham, NC, USA);
- (4)
- CHP-OA;
- (5)
- CHP-OA + BMP-2 (2 µg; Bioventus LLC, Durham, NC, USA).
- (1)
- CHP-A + BMP-2 (2 µg; Bioventus LLC, Durham, NC, USA);
- (2)
- CHP-A + BMP (2 µg) + Vehicle (solvents for BMP-2 and RANKL-binding peptide: the component ratio of the vehicle; NaOH (0.004 mol)/2.35 µL, DW/2.629 µL, NaOH (1 mol)/0.021 µL);
- (3)
- CHP-A + BMP-2 (2 µg) + OP3-4 (0.66 mg; Atlantic peptides, PA, USA, dissolved in the above RANKL-binding peptide solvent);
- (4)
- CHP-OA + BMP-2 (2 µg);
- (5)
- CHP-OA + BMP-2 (2 µg) + Vehicle;
- (6)
- CHP-OA + BMP-2 (2 µg) + OP3-4 (0.66 mg).
4.4. Radiographic Assessments
4.5. Histological Assessments and Bone Histomorphometry
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oryan, A.; Monazzah, S.; Bigham-Sadegh, A. Bone injury and fracture healing biology. Biomed. Environ. Sci. 2015, 28, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P.V. Bone regeneration: Current concepts and future directions. BMC. Med. 2011, 9, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girón, J.; Kerstner, E.; Medeiros, T.; Oliveira, L.; Machado, G.M.; Malfatti, C.F.; Pranke, P. Biomaterials for bone regeneration: An orthopedic and dentistry overview. Braz. J. Med. Biol. Res. 2021, 54, e11055. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, S.; Saikrishna, D. Dental concerns of children with lip cleft and palate-a review. J. Pediatr. Neonatal. Care 2018, 8, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yeung, K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017, 2, 224–247. [Google Scholar] [CrossRef]
- Vo, T.N.; Kasper, F.K.; Mikos, A.G. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv. Drug. Deliv. Rev. 2012, 64, 1292–1309. [Google Scholar] [CrossRef] [Green Version]
- Nikolova, M.P.; Chavali, M.S. Recent advances in biomaterials for 3D scaffolds: A review. Bioact. Mater. 2019, 4, 271–292. [Google Scholar] [CrossRef]
- Markhoff, J.; Wieding, J.; Weissmann, V.; Pasold, J.; Jonitz-Heincke, A.; Bader, R. Influence of different three-dimensional open porous titanium scaffold designs on human osteoblasts behavior in static and dynamic cell investigations. Materials 2015, 8, 5490–5507. [Google Scholar] [CrossRef] [Green Version]
- Tsuruga, E.; Takita, H.; Itoh, H.; Wakisaka, Y.; Kuboki, Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J. Biochem. 1997, 324, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Kuboki, Y.; Jin, Q.; Takita, H. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J. Bone. Jt. Surg. Am. 2001, 83, S105-15. [Google Scholar] [CrossRef]
- Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef]
- Kruger, T.E.; Miller, A.H.; Wang, J. Collagen scaffolds in bone sialoprotein-mediated bone regeneration. Sci. World. J. 2013, 2013, 812718. [Google Scholar] [CrossRef] [Green Version]
- Vaquette, C.; Fan, W.; Xiao, Y.; Hamlet, S.; Hutmacher, D.W.; Ivanovski, S. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials 2012, 33, 5560–5573. [Google Scholar] [CrossRef]
- Dayashankar, C.P.; Deepika, P.C.; Siddaramaiah, B. Clinical and radiographic evaluation of citric acid-based nano hydroxyapatite composite graft in the regeneration of intrabony defects-A randomized controlled trial. Contemp. Clin. Dent. 2017, 8, 380–386. [Google Scholar] [CrossRef]
- Chen, L.; Shao, L.; Wang, F.; Huang, Y.; Gao, F. Enhancement in sustained released of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. RSC. Adv. 2019, 9, 10494–10507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D.S.; Mehrotra, D. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J. Oral. Biol. Craniofac. Res. 2020, 10, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Teimouri, R.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Surface modifications of scaffolds for bone regeneration. J. Mater. Res. Technol. 2023, 24, 7938–7973. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, X.; Song, J.; Xu, X.; Xu, A.; Wang, M.; Xie, B.; Huang, E.; Deng, F.; Wei, S. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering. Int. J. Nanomed. 2015, 10, 7109–7128. [Google Scholar] [CrossRef] [Green Version]
- Meng, C.; Su, W.; Liu, M.; Yao, S.; Ding, Q.; Yu, K.; Xiong, Z.; Chen, K.; Guo, X.; Bo, L.; et al. Controlled delivery of bone morphogenic protein-2-related peptide from mineralised extracellular matrix-based scaffold induces bone regeneration. Mater. Sci. Eng. C 2021, 126, 112182. [Google Scholar] [CrossRef] [PubMed]
- Amani, H.; Arzaghi, H.; Bayandori, M.; Dezfuli, A.S.; Pazoki-Toroudi, H.; Shafiee, A.; Moradi, L. Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques. Adv. Mater. Interfaces 2019, 6, 1900572. [Google Scholar] [CrossRef] [Green Version]
- Zapadka, K.L.; Becher, F.J.; Gomes dos Santos, A.L.; Jackson, S.E. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 2017, 7, 20170030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, A.; Clegg, J.R.; Anselmo, A.C.; Mitragotri, S. Hydrogels in the clinic. Bioeng. Transl. Med. 2020, 5, e10158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alles, N.; Soysa, N.S.; Hussain, M.A.; Tomomatsu, N.; Saito, H.; Baron, R.; Morimoto, N.; Aoki, K.; Akiyoshi, K.; Ohya, K. Polysaccharide nanogel delivery of a TNF-α and RANKL antagonist peptide allows systemic prevention of bone loss. Eur. J. Pharm. Sci. 2009, 37, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Akiyoshi, K. Nanogel engineering for new nanobiomaterials: From chaperoning engineering to biomedical applications. Chem. Rec. 2010, 10, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, N.; Sasaki, Y.; Marukawa, E.; Hirose, R.; Sawada, S.; Harada, H.; Akiyoshi, K. Crosslinked nanogel-based porous hydrogel as a functional scaffold for tongue muscle regeneration. J. Biomater. Sci. Polym. Ed. 2020, 31, 1254–1271. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Fang, J.; Yang, D.; Yu, L.; Chen, H.; Jiang, C.; Guo, R.; Zhu, T.; Tang, S. OP3-4 peptide sustained-release hydrogel inhibits osteoclast formation and promotes vascularization to promote bone regeneration in a rat femoral defect model. Bioeng. Transl. Med. 2022, 8, e10414. [Google Scholar] [CrossRef]
- Xie, C.; Satake-Ozawa, M.; Rashed, F.; Khan, M.; Ikeda, M.; Hayashi, S.; Sawada, S.; Sasaki, Y.; Ikeda, T.; Mori, Y.; et al. Perforated Hydrogels Consisting of Cholesterol-Bearing Pullulan (CHP) Nanogels: A Newly Designed Scaffold for Bone Regeneration Induced by RANKL-Binding Peptides and BMP-2. Int. J. Mol. Sci. 2022, 23, 7768. [Google Scholar] [CrossRef]
- Rashed, F.; Kamijyo, S.; Shimizu, Y.; Hirohashi, Y.; Khan, M.; Sugamori, Y.; Murali, R.; Aoki, K. The Effects of Receptor Activator of NF-κB Ligand-Binding Peptides on Bone Resorption and Bone Formation. Front. Cell. Dev. Biol. 2021, 9, 648084. [Google Scholar] [CrossRef]
- Maeda, H.; Kobayashi, H.; Miyahara, T.; Hashimoto, Y.; Akiyoshi, K.; Kasugai, S. Effects of a polysaccharide nanogel-crosslinked membrane on wound healing. J. Biomed. Mater. Res. B. Appl. Biomater. 2017, 105, 544–550. [Google Scholar] [CrossRef]
- Sato, T.; Alles, N.; Khan, M.; Nagano, K.; Takahashi, M.; Tamura, Y.; Shimoda, A.; Ohya, K.; Akiyoshi, K.; Aoki, K. Nanogel-crosslinked nanoparticles increase the inhibitory effects of W9 synthetic peptide on bone loss in a murine bone resorption model. Int. J. Nanomed. 2015, 10, 3459–3473. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yu, T.; Peng, L.; Sun, Q.; Wei, Y.; Han, B. Advancements in Hydrogel-Based Drug Sustained Release Systems for Bone Tissue Engineering. Front. Pharmacol. 2020, 11, 622. [Google Scholar] [CrossRef]
- Kim, Y.J.; Choi, S.; Koh, J.J.; Lee, M.; Ko, K.S.; Kim, S.W. Controlled release of insulin from injectable biodegradable triblock copolymer. Pharm. Res. 2001, 18, 548–550. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Baudys, M.; Kim, S.W. Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats. Pharm. Res. 2004, 21, 827–831. [Google Scholar] [CrossRef] [PubMed]
- Ehrbar, M.; Schoenmakers, R.; Christen, E.H.; Fussenegger, M.; Weber, W. Drug-sensing hydrogels for the inducible release of biopharmaceuticals. Nat. Mater. 2008, 7, 800–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutolf, M.P.; Raeber, G.P.; Zisch, A.H.; Tirelli, N.; Hubbell, J.A. Cell-Responsive Synthetic Hydrogels. Adv. Mater. 2003, 15, 888–892. [Google Scholar] [CrossRef]
- Lutolf, M.P.; Weber, F.E.; Schmoekel, H.G.; Schense, J.C.; Kohler, T.; Müller, R.; Hubbell, J.A. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol. 2003, 21, 513–518. [Google Scholar] [CrossRef]
- Verheyen, E.; Delain-Bioton, L.; van der Wal, S.; el Morabit, N.; Barendregt, A.; Hennink, W.E.; van Nostrum, C.F. Conjugation of Methacrylamide Groups to a Model Protein via a Reducible Linker for Immobilization and Subsequent Triggered Release from Hydrogels. Macromol. Biosci. 2010, 10, 1517–1526. [Google Scholar] [CrossRef]
- Sakiyama-Elbert, S.E.; Hubbell, J.A. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J. Control. Release 2000, 65, 389–402. [Google Scholar] [CrossRef]
- Lin, C.C.; Metters, A.T. Metal-chelating affinity hydrogels for sustained protein release. J. Biomed. Mater. Res. A 2007, 83, 954–964. [Google Scholar] [CrossRef]
- Lin, C.C.; Boyer, P.D.; Aimetti, A.A.; Anseth, K.S. Regulating MCP-1 diffusion in affinity hydrogels for enhancing immune-isolation. J. Control. Release 2010, 142, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Censi, R.; Di Martino, P.; Vermonden, T.; Hennink, W.E. Hydrogels for protein delivery in tissue engineering. J. Control. Release 2012, 161, 680–692. [Google Scholar] [CrossRef] [PubMed]
- Bouxsein, M.L.; Boyd, S.K.; Christiansen, B.A.; Guldberg, R.E.; Jepsen, K.J.; Müller, R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 2010, 25, 1468–1486. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.R. Von Kossa and his staining technique. Histochem. Cell. Biol. 2021, 156, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Dempster, D.W.; Compston, J.E.; Drezner, M.K.; Glorieux, F.H.; Kanis, J.A.; Malluche, H.; Meunier, P.J.; Ott, S.M.; Recker, R.R.; Parfitt, A.M. Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone. Miner. Res. 2013, 28, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Funda, G.; Taschieri, S.; Bruno, G.A.; Grecchi, E.; Paolo, S.; Girolamo, D.; Del Fabbro, M. Nanotechnology scaffolds for alveolar bone regeneration. Materials 2020, 13, 201. [Google Scholar] [CrossRef] [Green Version]
- Rezwan, K.; Chen, Q.Z.; Blaker, J.J.; Boccaccini, A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3413–3431. [Google Scholar] [CrossRef]
- Crowley, M.M.; Schroeder, B.; Fredersdorf, A.; Obara, S.; Talarico, M.; Kucera, S.; McGinity, J.W. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int. J. Pharm. 2004, 269, 509–522. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.; Hamilton, J.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, C.; Rashed, F.; Sasaki, Y.; Khan, M.; Qi, J.; Kubo, Y.; Matsumoto, Y.; Sawada, S.; Sasaki, Y.; Ono, T.; et al. Comparison of Osteoconductive Ability of Two Types of Cholesterol-Bearing Pullulan (CHP) Nanogel-Hydrogels Impregnated with BMP-2 and RANKL-Binding Peptide: Bone Histomorphometric Study in a Murine Calvarial Defect Model. Int. J. Mol. Sci. 2023, 24, 9751. https://doi.org/10.3390/ijms24119751
Xie C, Rashed F, Sasaki Y, Khan M, Qi J, Kubo Y, Matsumoto Y, Sawada S, Sasaki Y, Ono T, et al. Comparison of Osteoconductive Ability of Two Types of Cholesterol-Bearing Pullulan (CHP) Nanogel-Hydrogels Impregnated with BMP-2 and RANKL-Binding Peptide: Bone Histomorphometric Study in a Murine Calvarial Defect Model. International Journal of Molecular Sciences. 2023; 24(11):9751. https://doi.org/10.3390/ijms24119751
Chicago/Turabian StyleXie, Cangyou, Fatma Rashed, Yosuke Sasaki, Masud Khan, Jia Qi, Yuri Kubo, Yoshiro Matsumoto, Shinichi Sawada, Yoshihiro Sasaki, Takashi Ono, and et al. 2023. "Comparison of Osteoconductive Ability of Two Types of Cholesterol-Bearing Pullulan (CHP) Nanogel-Hydrogels Impregnated with BMP-2 and RANKL-Binding Peptide: Bone Histomorphometric Study in a Murine Calvarial Defect Model" International Journal of Molecular Sciences 24, no. 11: 9751. https://doi.org/10.3390/ijms24119751
APA StyleXie, C., Rashed, F., Sasaki, Y., Khan, M., Qi, J., Kubo, Y., Matsumoto, Y., Sawada, S., Sasaki, Y., Ono, T., Ikeda, T., Akiyoshi, K., & Aoki, K. (2023). Comparison of Osteoconductive Ability of Two Types of Cholesterol-Bearing Pullulan (CHP) Nanogel-Hydrogels Impregnated with BMP-2 and RANKL-Binding Peptide: Bone Histomorphometric Study in a Murine Calvarial Defect Model. International Journal of Molecular Sciences, 24(11), 9751. https://doi.org/10.3390/ijms24119751