Genome-Wide Identification and Expression Analysis of the SPL Gene Family in Three Orchids
Abstract
:1. Introduction
2. Results
2.1. Identification and Physicochemical Properties
2.2. Phylogenetic Analysis
2.3. Protein Conservative Domain and Gene Structure Analysis
2.4. Collinearity and Location Analysis on Chromosome
2.5. Cis-Elements Analysis
2.6. GO Analysis
2.7. Expression Pattern Analysis of SPLs in Orchids
2.8. qRT-PCR Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Identification and Physicochemical Properties of the SPLs
4.3. Phylogenetic Analysis
4.4. Protein Conservative Domain and Gene Structure Analysis
4.5. Collinearity and Location Analysis on Chromosome
4.6. Cis-Acting Regulatory Elements Analysis
4.7. Gene Ontology Analysis
4.8. Expression Pattern and qRT-PCR Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weidemüller, P.; Kholmatov, M.; Petsalak, E.; Zaugg, J.B. Transcription factors: Bridge between cell signaling and gene regulation. Proteomics 2021, 21, 2000034. [Google Scholar] [CrossRef]
- Chen, K.; Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet. 2007, 8, 93–103. [Google Scholar] [CrossRef]
- Klein, J.; Saedler, H.; Huijser, P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol. Genet. Genom. 1996, 250, 7–16. [Google Scholar] [CrossRef]
- Yamasaki, K.; Kigawa, T.; Inoue, M.; Yamasaki, T.; Yabuki, T.; Aoki, M.; Seki, E.; Matsuda, T.; Tomo, Y.; Terada, T.; et al. An Arabidopsis SBP-domain fragment with a disrupted C-terminal zinc-binding site retains its tertiary structure. FEBS Lett. 2006, 580, 2109–2116. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-W.; Czech, B.; Weigeland, D. miR156-Regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 2009, 138, 738–749. [Google Scholar] [CrossRef] [Green Version]
- Gandikota, M.; Birkenbihl, R.P.; Höhmann, S.; Cardon, G.H.; Saedler, H.; Huijser, P. The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J. 2007, 49, 683–693. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, Y.; Susanne, E.K.; Lisa, A.; Abdelali, H. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 2controls floral organ development and plant fertility by activating ASYMMETRIC LEAVES 2 in Arabidopsis thaliana. Plant Mol. Biol. 2016, 92, 661–674. [Google Scholar] [CrossRef]
- Shikata, M.; Koyama, T.; Mitsuda, N.; Ohme-Takagi, M. Arabidopsis SBP-Box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant Cell Physiol. 2009, 50, 2133–2145. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Zheng, F.; Wang, J.; Zhang, C.; Xiao, F.; Ye, J.; Li, C.; Ye, Z.; Zhang, J. miR156a-targeted SBP-Box transcription factor SlSPL13 regulates inflorescence morphogenesis by directly activating SFT in tomato. Plant Biotechnol. J. 2020, 18, 1670–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Wang, Y.; Xiao, Y.; Zhang, X.; Du, B.; Turupu, M.; Wang, C.; Yao, Q.; Gai, S.; Huang, J.; et al. Genome-Wide Identification of the SQUAMOSA Promoter-Binding Protein-like (SPL) transcription factor family in sweet cherry fruit. Int. J. Mol. Sci. 2023, 24, 2880. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, R.; Bregitzer, P.; Singh, J. Genome-wide analysis of the SPL/miR156 module and its interaction with the AP2/miR172 unit in barley. Sci. Rep. 2018, 8, 7085. [Google Scholar] [CrossRef] [Green Version]
- Peter, H.; Markus, S. The control of developmental phase transitions in plants. Development 2011, 138, 4117–4129. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Ma, R.; Fan, Y.; Zhao, B.; Cheng, P.; Fan, Y.; Wang, B. Genome-wide identification and expression analysis of the SPL transcription factor family and its response to abiotic stress in Quinoa (Chenopodium quinoa). BMC Genom. 2022, 23, 773. [Google Scholar] [CrossRef] [PubMed]
- Ning, K.; Chen, S.; Huang, H.; Jiang, J.; Yuan, H.; Li, H. Molecular characterization and expression analysis of the SPL gene family with BpSPL9 transgenic lines found to confer tolerance to abiotic stress in Betula platyphylla Suk. Plant Cell Tissue Organ Cult. 2017, 130, 469–481. [Google Scholar] [CrossRef]
- Wang, Y.; Ruan, Q.; Zhu, X.; Wang, B.; Wei, B.; Wei, X. Identification of Alfalfa SPL gene family and expression analysis under biotic and abiotic stresses. Sci. Rep. 2023, 13, 84. [Google Scholar] [CrossRef]
- Wang, Z.-M.; Xue, W.; Dong, C.; Jin, L.-G.; Bian, S.-M.; Wang, C.; Wu, X.-Y.; Liu, J.-Y. A Comparative miRNAome Analysis Reveals Seven Fiber Initiation-Related and 36 Novel miRNAs in Developing Cotton Ovules. Mol Plant. 2012, 5, 889–900. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Zhu, G.; Wang, Z.; Liu, H.; Xu, Q.; Huang, D.; Zhao, C. Integrated miRNA and microRNA transcriptome variations in the multi-tepal mutant provide insights into the floral patterning of the orchid Cymbidium goeringii. BMC Genom. 2017, 18, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhakaran, M.; Yevgen, Z.; Louis-Valentin, M.; Peter, M.; Martina, V.S. De novo computational identification of stress-related sequence motifs and microRNA target sites in untranslated regions of a plant translatome. Sci. Rep. 2017, 9, 43861. [Google Scholar] [CrossRef] [Green Version]
- Rhoades, M.; Reinhart, B.; Lim, L.; Burge, C.; Bartel, B.; Bartel, D. Prediction of plant microRNA targets. Cell 2002, 23, 513–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.; Poethig, R.S. Temporal regulation of shoot development in Arabidopsis thaliana by mir156 and its target SPL3. Development 2006, 133, 3539–3547. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.-H.; Seo, J.; Kang, S. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Mol. Biol. 2011, 76, 35–45. [Google Scholar] [CrossRef]
- Lian, H.; Wang, L.; Ma, N.; Zhou, C.-M.; Han, L.; Zhang, T.; Wang, J.-W. Redundant and specific roles of individual miR172 genes in plant development. PLoS Biol. 2021, 19, e3001044. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Hu, F. Research progress of miR172 in plant development and regulation. Biol. Bull. 2020, 36, 173–184. [Google Scholar] [CrossRef]
- Zhang, G.-Q.; Xu, Q.; Bian, C.; Tsai, W.-C.; Yeh, C.-M.; Liu, K.-W.; Kouki, Y.; Zhang, L.-S.; Chang, S.-B.; Chen, F.; et al. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Sci. Rep. 2016, 6, 19029. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-H.; Liu, K.-W.; Li, Z.; Lu, H.-C.; Ye, Q.-L.; Zhang, D.; Wang, J.-Y.; Li, Y.-F.; Zhong, Z.-M.; Liu, X.; et al. Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy. Nat. Plants. 2022, 8, 373–388. [Google Scholar] [CrossRef]
- Li, B.-J.; Zheng, B.-Q.; Wang, J.-Y.; Tsai, W.-C.; Lu, H.-C.; Zou, L.-H.; Wan, X.; Zhang, D.; Qiao, H.-J.; Liu, Z.-J.; et al. New insight into the molecular mechanism of colour differentiation among floral segments in orchids. Commun. Biol. 2020, 3, 89. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Liu, D.-K.; Wang, Q.-Q.; Ke, S.; Li, Y.; Zhang, D.; Zheng, Q.; Zhang, C.; Liu, Z.-J.; Lan, S. Genome-wide identification and expression analysis of the GRAS gene family in Dendrobium chrysotoxum. Front. Plant Sci. 2022, 13, 1058287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhao, X.-W.; Li, Y.-Y.; Ke, S.-J.; Yin, W.-L.; Lan, S.; Liu, Z.-J. Advances and prospects of orchid research and industrialization. Hort. Res. 2022, 9, uhac220. [Google Scholar] [CrossRef]
- Zhang, G.-Q.; Liu, K.-W.; Li, Z.; Rolf, L.; Hsiao, Y.-Y.; Niu, S.-C.; Wang, J.-Y.; Lin, Y.-C.; Xu, Q.; Chen, L.-J.; et al. The Apostasia genome and the evolution of orchids. Nature 2017, 549, 379–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-Y.; Lee, P.-F.; Hsiao, Y.-Y.; Wu, W.-L.; Pan, Z.-J.; Lee, Y.; Liu, K.-W.; Chen, L.-J.; Liu, Z.-J.; Tsai, W.-C. C- and D-class MADS-Box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant Cell Physiol. 2012, 53, 1053–1067. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Chen, G.-Z.; Huang, J.; Liu, D.-K.; Xue, F.; Chen, X.-L.; Chen, S.-Q.; Liu, C.-G.; Liu, H.; Ma, H.; et al. The Cymbidium goeringii genome provides insight into organ development and adaptive evolution in orchids. Ornam. Plant Res. 2021, 1, 10. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.-Q.; Zhang, D.; Liu, X.-D.; Xu, X.-Y.; Sun, W.-H.; Yu, X.; Zhu, X.; Wang, Z.-W.; Zhao, X.; et al. Chromosome-scale assembly of the Dendrobium chrysotoxum genome enhances the understanding of orchid evolution. Hort. Res. 2021, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Jin, X.; Liu, J.; Zhao, X.; Zhou, J.; Wang, X.; Wang, D.; Lai, C.; Xu, W.; Huang, J.; et al. The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat. Commun. 2018, 9, 1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, F.; Hsiao, S.; Chan, M. Sequencing-based approaches reveal low ambient temperature-responsive and tissue-specific microRNAs in phalaenopsis orchid. PLoS ONE 2011, 6, e18937. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Ma, Y.; Zhang, M.; Lyu, M.; Yuan, Y.; Wu, B. Expression Pattern of FT/TFL1 and miR156-targeted SPL genes associated with developmental stages in Dendrobium catenatum. Int. J. Mol. Sci. 2019, 20, 2725. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-Y.; Li, C.; Hsiao, Y.-Y.; Ho, S.-Y.; Zhang, Z.-B.; Liao, C.-C.; Lee, B.-R.; Lin, S.-T.; Wu, W.-L.; Wang, J.-S.; et al. OrchidBase 5.0: Updates of the orchid genome knowledgebase. BMC Plant Biol. 2022, 22, 557. [Google Scholar] [CrossRef]
- Chou, K.C.; Shen, H.B. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 2010, 5, e11335. [Google Scholar] [CrossRef] [Green Version]
- Kaundal, R.; Saini, R.; Zhao, P.X. Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis. Plant Physiol. 2010, 154, 36–54. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-L.; Viswanath, K.S.; Tong, C.-G.; An, H.Y.; Jang, S.; Chen, F.-C. Floral induction and flower development of orchids. Front. Plant Sci. 2019, 10, 1258. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, W.; Wang, X.; Yang, R.; Wu, Z.; Wang, H.; Wang, L.; Hu, Z.; Guo, S.; Zhang, H.; et al. MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar. Hort. Res. 2020, 7, 118. [Google Scholar] [CrossRef] [PubMed]
- Cardon, G.; Hohmann, S.; Klein, J.; Nettesheim, K.; Saedler, H.; Huijser, P. Molecular characterisation of the Arabidopsis SBP-box genes. Gene 1999, 23, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Yue, E.; Li, C.; Li, Y.; Liu, Z.; Xu, J.-H. MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice (Oryza sativa). Plant Mol. Biol. 2017, 94, 469–480. [Google Scholar] [CrossRef]
- Li, X.-Y.; Lin, E.-P.; Huang, H.-H.; Niu, M.-Y.; Tong, Z.-K.; Zhang, J.-H. Molecular Characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family in Betula luminifera. Front. Plant Sci. 2018, 9, 608. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yuan, J.; Zhang, D.; Deng, K.; Chai, G.; Huang, Y.; Ma, S.; Qin, Y.; Wang, L. Genome-Wide Identification and Characterization of the SBP Gene Family in Passion Fruit (Passiflora edulis Sims). Int. J. Mol. Sci. 2022, 23, 14153. [Google Scholar] [CrossRef]
- He, B.; Gao, S.; Lu, H.; Yan, J.; Li, C.; Ma, M.; Wang, X.; Chen, X.; Zhan, Y.; Zeng, F.; et al. Genome-wide analysis and molecular dissection of the SPL gene family in Fraxinus mandshurica. BMC Plant Biol. 2022, 22, 451. [Google Scholar] [CrossRef] [PubMed]
- Bao, A.; Chen, H.; Chen, L.; Chen, S.; Hao, Q.; Guo, W.; Qiu, D.; Shan, Z.; Yang, Z.; Yuan, S.; et al. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol. 2019, 19, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Zhang, F.; Gao, G.; Li, H.; Wu, X. Auxin-related genes associated with leaf petiole angle at the seedling stage are involved in adaptation to low temperature in Brassica napus. Environ. Exp. Bot. 2021, 182, 104308. [Google Scholar] [CrossRef]
- Stull, G.W.; Qu, X.J.; Parins-Fukuchi, C.; Yang, Y.Y.; Yang, J.B.; Yang, Z.Y.; Hu, Y.; Ma, H.; Soltis, P.S.; Soltis, D.E.; et al. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nat. Plants. 2021, 7, 1015–1025. [Google Scholar] [CrossRef]
- Zhang, D.; Lan, S.; Yin, W.-L.; Liu, Z.-J. Genome-Wide Identification and Expression Pattern Analysis of KNOX Gene Family in Orchidaceae. Front. Plant Sci. 2022, 13, 901089. [Google Scholar] [CrossRef]
- Magadum, S.; Banerjee, U.; Murugan, P.; Gangapur, D.; Ravikesavan, R. Gene duplication as a major force in evolution. J. Genet. 2013, 92, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Cannon, S.; Mitra, A.; Baumgarten, A.; Young, N.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Liu, X.; Vanneste, K.; Proost, S.; Tsai, W.C.; Liu, K.W.; Chen, L.J.; He, Y.; Xu, Q.; Bian, C.; et al. The genome sequence of the orchid Phalaenopsis equestris. Nat. Genet. 2015, 47, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; Lan, S.; Tsai, W.; Liu, Z.J. The origin and evolution of orchids. J. FAFU Natl. Sci. Ed. 2019, 48, 002. [Google Scholar] [CrossRef]
- Mao, H.-D.; Yu, L.-J.; Li, Z.-J.; Yan, Y.; Han, R.; Liu, H.; Ma, M. Genome-wide analysis of the SPL family transcription factors and their responses to abiotic stresses in maize. Plant Gene 2016, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Zhang, S.; Chen, F.; Liu, B.; Wu, L.; Li, F.; Zhang, J.; Bao, M.; Liu, G. Genome-wide identification and characterization of the SBP-box gene family in Petunia. BMC Genom. 2018, 19, 193. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xu, H.; Wall, M.; Yang, J. Roles of transcription factor SQUAMOSA promoter binding protein-like gene family in papaya (Carica papaya) development and ripening. Genomics 2020, 112, 2734–2747. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Ikeda, M.; Matsubara, A.; Song, X.-J.; Ito, M.; Asano, K.; Matsuoka, M.; Kitano, H.; Ashikari, M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 2010, 42, 545–549. [Google Scholar] [CrossRef]
- Li, C.; Lu, S. Molecular characterization of the SPL gene family in Populus trichocarpa. BMC Plant Biol. 2014, 15, 131. [Google Scholar] [CrossRef] [Green Version]
- Ramanjulu, S.; Zhu, J.-K. Novel and Stress-Regulated MicroRNAs and Other Small RNAs from Arabidopsis. Plant Cell. 2004, 16, 2001–2019. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Liu, C.; Tian, J.; Zhang, Y.; Xin, Q.; Chen, A.; Li, D.; Liu, X. Identification, molecular characterization, and expression analysis of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family in Betula platyphylla Suk. Trees 2020, 34, 229–241. [Google Scholar] [CrossRef]
- Feng, X.; Zhou, B.; Wu, X.; Wu, H.; Zhang, S.; Jiang, Y.; Wang, Y.; Zhang, Y.; Cao, M.; Guo, B.; et al. Molecular characterization of SPL gene family during flower morphogenesis and regulation in blueberry. BMC Plant Biol. 2023, 23, 40. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; He, Y.; Xia, R. TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface. bioRxiv 2018. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Bi, Y.-Y.; Wang, Q.-Q.; Liu, D.-K.; Zhang, D.; Ding, X.; Liu, Z.-J.; Chen, S.-P. Genome-wide identification and analysis of anthocyanin synthesis-related R2R3-MYB genes in Cymbidium goeringii. Front. Plant Sci. 2022, 13, 1002043. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhang, H.; Gao, S.; Lercher, M.J.; Chen, W.H.; Hu, S. Evolview v2: An online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res. 2016, 44, W236–W241. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME suite: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Jin, J.; Guo, A.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics. 2015, 31, 1296–1297. [Google Scholar] [CrossRef] [Green Version]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2022, 30, 325–327. [Google Scholar] [CrossRef]
- UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name 1 | ID | AA 2 (aa) | Mw 3 (kDa) | pI 4 | II 5 | AI 6 | Gravy 7 | CDS 8 (bp) | Chromosome Location 9 | Subcellular Localization 10 |
---|---|---|---|---|---|---|---|---|---|---|
CgoSPL1 | GL13531 | 377 | 42.33 | 5.67 | 57.9 | 65.17 | −0.602 | 1134 | Chr01: 230031076-230035267 | Nucleus. |
CgoSPL2 | GL20345 | 389 | 42.74 | 9.24 | 64.01 | 55.96 | −0.547 | 1170 | Chr02: 39176698-39179624 | Nucleus. |
CgoSPL3 | GL21357 | 1040 | 115.28 | 6.96 | 60.46 | 79.24 | −0.338 | 3123 | Chr03: 37958000-37985156 | Cytoplasm. |
CgoSPL4 | GL00812 | 358 | 39.90 | 8.34 | 53.58 | 58.04 | −0.691 | 1077 | Chr04: 98733351-98742543 | Nucleus. |
CgoSPL5 | GL20492 | 348 | 37.73 | 8.85 | 42.31 | 57.79 | −0.656 | 1047 | Chr04: 192125302-192146773 | Nucleus. |
CgoSPL6 | GL13362 | 888 | 100.57 | 6.77 | 45.24 | 87.64 | −0.149 | 2667 | Chr05: 4434453-4482550 | Cytoplasm. Nucleus. |
CgoSPL7 | GL09506 | 490 | 53.11 | 9.57 | 57.68 | 56.39 | −0.592 | 1473 | Chr06: 141164766-141181893 | Nucleus. |
CgoSPL8 | GL18277 | 401 | 44.00 | 6.24 | 56.56 | 62.72 | −0.532 | 1203 | Chr08: 176169836-176186187 | Nucleus. |
CgoSPL9 | GL21138 | 1166 | 128.59 | 7.1 | 59.21 | 74.34 | −0.447 | 3498 | Chr09: 165067503-165072570 | Cytoplasm. Nucleus. |
CgoSPL10 | GL02243 | 514 | 56.41 | 9.36 | 43.4 | 57.51 | −0.645 | 1545 | Chr10: 71076233-71082132 | Cytoplasm. Nucleus. |
CgoSPL11 | GL02624 | 508 | 55.60 | 9.53 | 42.46 | 58.21 | −0.632 | 1524 | Chr10: 71249381-71255310 | Nucleus. |
CgoSPL12 | GL10271 | 1147 | 125.51 | 8.16 | 53.34 | 78.49 | −0.354 | 3444 | Chr10: 133962266-133967116 | Nucleus. |
CgoSPL13 | GL18257 | 406 | 44.52 | 6.01 | 57.76 | 65.54 | −0.573 | 1221 | Chr11: 95920477-95925824 | Nucleus. |
CgoSPL14 | GL13558 | 690 | 76.76 | 7.93 | 48.54 | 81.22 | −0.414 | 2073 | Chr12: 43955282-43982564 | Nucleus. |
CgoSPL15 | GL10802 | 347 | 38.81 | 6.32 | 57.82 | 69.42 | −0.664 | 1044 | Chr14: 71780070-71797878 | Cytoplasm. Nucleus. |
CgoSPL16 | GL08313 | 270 | 30.07 | 9.5 | 75.19 | 61.93 | −0.659 | 813 | Chr17: 102450263-102452061 | Nucleus. |
DchSPL1 | Maker79039 | 482 | 53.40 | 7.51 | 59.19 | 71.02 | −0.602 | 1449 | Chr02: 7843583-7858503 | Nucleus. |
DchSPL2 | Maker65322 | 219 | 24.48 | 9.14 | 74.1 | 55.34 | −0.787 | 660 | Chr02: 58663177-58665354 | Nucleus. |
DchSPL3 | Maker61968 | 406 | 45.04 | 6.02 | 59.57 | 67.22 | −0.624 | 1221 | Chr04: 48287280-48317053 | Nucleus. |
DchSPL4 | Maker96228 | 416 | 46.29 | 6.83 | 52.45 | 74.98 | −0.428 | 1251 | Chr05: 46813915-46829419 | Nucleus. |
DchSPL5 | Maker109701 | 362 | 39.95 | 9.08 | 64.74 | 54.65 | −0.575 | 1089 | Chr06: 6975945-6979210 | Nucleus. |
DchSPL6 | Maker112013 | 466 | 51.85 | 8.52 | 48.11 | 63.45 | −0.619 | 1401 | Chr06: 9196495-9202663 | Nucleus. |
DchSPL7 | Maker68296 | 343 | 38.01 | 6.75 | 59.03 | 59.97 | −0.624 | 1032 | Chr09: 20765814-20774403 | Nucleus. |
DchSPL8 | Maker74669 | 347 | 37.67 | 8.97 | 51.51 | 60.2 | −0.543 | 1044 | Chr09: 85010872-85039578 | Nucleus. |
DchSPL9 | Maker57539 | 464 | 50.63 | 7.67 | 44.54 | 59.48 | −0.581 | 1395 | Chr11: 55483197-55489630 | Nucleus. |
DchSPL10 | Maker56717 | 1086 | 119.98 | 6.95 | 58.17 | 76.21 | −0.438 | 3261 | Chr12: 13543009-13548711 | Nucleus. |
DchSPL11 | Maker56713 | 353 | 38.50 | 9.12 | 57.86 | 59.43 | −0.582 | 1062 | Chr12: 14936124-14951987 | Nucleus. |
DchSPL12 | Maker65199 | 353 | 37.40 | 8.91 | 51.78 | 52.95 | −0.512 | 1062 | Chr13: 21531520-21533117 | Nucleus. |
DchSPL13 | Maker65105 | 266 | 28.84 | 9.63 | 61.45 | 60.98 | −0.607 | 801 | Chr13: 21593186-21597503 | Nucleus. |
DchSPL14 | Maker58047 | 1029 | 113.76 | 7.07 | 55.63 | 81.42 | −0.348 | 3090 | Chr17: 732323-759462 | Nucleus. |
DchSPL15 | Maker110154 | 376 | 42.04 | 5.37 | 58.26 | 66.91 | −0.557 | 1131 | Chr18: 85766921-85773574 | Nucleus. |
DchSPL16 | Maker86855 | 970 | 110.37 | 7.99 | 46.52 | 79.92 | −0.371 | 2910 | Chr19: 90135422-90210026 | Cytoplasm. Nucleus. |
DchSPL17 | Maker22024 | 954 | 106.57 | 8.31 | 49.18 | 80.83 | −0.345 | 2865 | Unknow: 235138-251725 | Cytoplasm. |
GelSPL1 | Gel009276 | 396 | 44.14 | 5.95 | 52.17 | 75.63 | −0.231 | 1191 | Chr01: 56565872-56588357 | Nucleus. |
GelSPL2 | Gel001761 | 467 | 50.87 | 7.24 | 58.66 | 73.88 | −0.453 | 1404 | Chr03: 45183311-45189748 | Cytoplasm. Nucleus. |
GelSPL3 | Gel018509 | 453 | 49.12 | 9.33 | 73.85 | 80.6 | −0.084 | 1362 | Chr03: 70218932-70246803 | Nucleus. |
GelSPL4 | Gel007541 | 381 | 41.10 | 9.2 | 54.53 | 55.22 | −0.492 | 1146 | Chr04: 16387253-16419109 | Nucleus. |
GelSPL5 | Gel012145 | 447 | 49.32 | 8.93 | 52.7 | 74.72 | −0.22 | 1344 | Chr08: 13481955-13494586 | Nucleus. |
GelSPL6 | Gel008706 | 1105 | 121.28 | 7.48 | 58.57 | 76.99 | −0.428 | 3318 | Chr08: 15310685-15315556 | Nucleus. |
GelSPL7 | Gel013055 | 1108 | 121.56 | 7.28 | 58.37 | 79.07 | −0.396 | 3327 | Chr08: 15375314-15380178 | Nucleus. |
GelSPL8 | Gel016438 | 821 | 92.44 | 6.13 | 48.37 | 82.79 | −0.263 | 2466 | Chr11: 50235152-50287389 | Nucleus. |
GelSPL9 | Gel008682 | 1002 | 112.49 | 8.4 | 54.79 | 87.12 | −0.218 | 3006 | Chr14: 375537-410747 | Cytoplasm. Nucleus. |
GelSPL10 | Gel015151 | 560 | 60.91 | 8.27 | 46.54 | 59.43 | −0.561 | 1683 | Chr17: 25780944-25804212 | Nucleus. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Zhang, M.; He, X.; Zheng, Q.; Huang, Y.; Li, Y.; Ahmad, S.; Liu, D.; Lan, S.; Liu, Z. Genome-Wide Identification and Expression Analysis of the SPL Gene Family in Three Orchids. Int. J. Mol. Sci. 2023, 24, 10039. https://doi.org/10.3390/ijms241210039
Zhao X, Zhang M, He X, Zheng Q, Huang Y, Li Y, Ahmad S, Liu D, Lan S, Liu Z. Genome-Wide Identification and Expression Analysis of the SPL Gene Family in Three Orchids. International Journal of Molecular Sciences. 2023; 24(12):10039. https://doi.org/10.3390/ijms241210039
Chicago/Turabian StyleZhao, Xuewei, Mengmeng Zhang, Xin He, Qinyao Zheng, Ye Huang, Yuanyuan Li, Sagheer Ahmad, Dingkun Liu, Siren Lan, and Zhongjian Liu. 2023. "Genome-Wide Identification and Expression Analysis of the SPL Gene Family in Three Orchids" International Journal of Molecular Sciences 24, no. 12: 10039. https://doi.org/10.3390/ijms241210039
APA StyleZhao, X., Zhang, M., He, X., Zheng, Q., Huang, Y., Li, Y., Ahmad, S., Liu, D., Lan, S., & Liu, Z. (2023). Genome-Wide Identification and Expression Analysis of the SPL Gene Family in Three Orchids. International Journal of Molecular Sciences, 24(12), 10039. https://doi.org/10.3390/ijms241210039