Temporal and Spatial Patterns of Inflammation and Tissue Injury in Patients with Postoperative Respiratory Failure after Lung Resection Surgery: A Nested Case–Control Study
Abstract
:1. Introduction
2. Results
Biomarkers Associated with Respiratory Failure
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. 394 CA: A Cancer Journal for Clinicians Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang-Lazdunski, L. Surgery for Nonsmall Cell Lung Cancer. Eur. Respir. Rev. 2013, 22, 382–404. [Google Scholar] [CrossRef] [PubMed]
- Brassard, C.L.; Lohser, J.; Donati, F.; Bussiè, J.S. Step-by-Step Clinical Management of One-Lung Ventilation: Continuing Professional Development. Can. J. Anesth. 2014, 61, 1103. [Google Scholar] [CrossRef] [PubMed]
- Grichnik, K.P.; Clark, J.A. Pathophysiology and Management of One-Lung Ventilation. Thorac. Surg. Clin. 2005, 15, 85–103. [Google Scholar] [CrossRef]
- Della Rocca, G.; Coccia, C. Acute Lung Injury in Thoracic Surgery. Curr. Opin. Anesthesiol. 2013, 26, 40–46. [Google Scholar] [CrossRef]
- Della Rocca, G.; Coccia, C. Ventilatory Management of One-Lung Ventilation. Minerva Anestesiol. 2011, 77, 534–536. [Google Scholar]
- Gama de Abreu, M.; Heintz, M.; Heller, A.; Széchényi, R.; Albrecht, D.M.; Koch, T. One-Lung Ventilation with High Tidal Volumes and Zero Positive End-Expiratory Pressure Is Injurious in the Isolated Rabbit Lung Model. Anesth. Analg. 2003, 96, 220–228. [Google Scholar]
- Bruinooge, A.J.G.; Mao, R.; Gottschalk, T.H.; Srinathan, S.K.; Buduhan, G.; Tan, L.; Halayko, A.J.; Kidane, B. Identifying Biomarkers of Ventilator Induced Lung Injury during One-Lung Ventilation Surgery: A Scoping Review. J. Thorac. Dis. 2022, 14, 4506–4520. [Google Scholar] [CrossRef]
- Peel, J.K.; Funk, D.J.; Slinger, P.; Srinathan, S.; Kidane, B. Positive End-Expiratory Pressure and Recruitment Maneuvers during One-Lung Ventilation: A Systematic Review and Meta-Analysis. J. Thorac. Cardiovasc. Surg. 2020, 160, 1112–1122.e3. [Google Scholar] [CrossRef]
- Peel, J.K.; Funk, D.J.; Slinger, P.; Srinathan, S.; Kidane, B. Tidal Volume during 1-Lung Ventilation: A Systematic Review and Meta-Analysis. J. Thorac. Cardiovasc. Surg. 2022, 163, 1573–1585.e1. [Google Scholar] [CrossRef]
- Kidane, B.; Choi, S.; Fortin, D.; O’hare, T.; Nicolaou, G.; Badner, N.H.; Inculet, R.I.; Slinger, P.; Malthaner, R.A. Use of Lung-Protective Strategies during One-Lung Ventilation Surgery: A Multi-Institutional Survey. Ann. Transl. Med. 2018, 6, 269. [Google Scholar] [CrossRef]
- Dulu, A.; Pastores, S.M.; Park, B.; Riedel, E.; Rusch, V.; Halpern, N.A. Prevalence and Mortality of Acute Lung Injury and ARDS after Lung Resection. Chest 2006, 130, 73–78. [Google Scholar] [CrossRef]
- Alam, N.; Park, B.J.; Wilton, A.; Seshan, V.E.; Bains, M.S.; Downey, R.J.; Flores, R.M.; Rizk, N.; Rusch, V.W.; Amar, D. Incidence and Risk Factors for Lung Injury After Lung Cancer Resection. Ann. Thorac. Surg. 2007, 84, 1085–1091. [Google Scholar] [CrossRef]
- Ruffni, E.; Parola, A.; Papalia, E.; Filosso, P.L.; Mancuso, M.; Oliaro, A.; Actis-Dato, G.; Maggi, G. Frequency and Mortality of Acute Lung Injury and Acute Respiratory Distress Syndrome after Pulmonary Resection for Bronchogenic Carcinoma Q. Eur. J. Cardio-Thorac. Surg. 2001, 20, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Licker, M.; de Perrot, M.; Spiliopoulos, A.; Robert, J.; Diaper, J.; Chevalley, C.; Tschopp, J.-M. Risk Factors for Acute Lung Injury after Thoracic Surgery for Lung Cancer. Anesth. Analg. 2003, 97, 1558–1565. [Google Scholar] [CrossRef] [Green Version]
- Eichenbaum, K.D.; Neustein, S.M. Acute Lung Injury After Thoracic Surgery. J. Cardiothorac. Vasc. Anesth. 2010, 24, 681–690. [Google Scholar] [CrossRef]
- Relja, B.; Yang, B.; Bundkirchen, K.; Xu, B.; Köhler, K.; Neunaber, C. Different Experimental Multiple Trauma Models Induce Comparable Inflammation and Organ Injury. Sci. Rep. 2020, 10, 20185. [Google Scholar] [CrossRef]
- Weckbach, S.; Hohmann, C.; Braumueller, S.; Denk, S.; Klohs, B.; Stahel, P.F.; Gebhard, F.; Huber-Lang, M.S.; Perl, M. Inflammatory and Apoptotic Alterations in Serum and Injured Tissue after Experimental Polytrauma in Mice: Distinct Early Response Compared with Single Trauma or “Double-Hit” Injury. J. Trauma Acute Care Surg. 2013, 74, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Brunelli, A.; Cicconi, S.; Decaluwe, H.; Szanto, Z.; Falcoz, P.E. Parsimonious Eurolung Risk Models to Predict Cardiopulmonary Morbidity and Mortality Following Anatomic Lung Resections: An Updated Analysis from the European Society of Thoracic Surgeons Database. Eur. J. Cardio-Thorac. Surg. 2020, 57, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Brunelli, A.; Salati, M.; Rocco, G.; Varela, G.; Van Raemdonck, D.; Decaluwe, H.; Falcoz, P.E. European Risk Models for Morbidity (EuroLung1) and Mortality (EuroLung2) to Predict Outcome Following Anatomic Lung Resections: An Analysis from the European Society of Thoracic Surgeons Database. Eur. J. Cardio-Thorac. Surg. 2017, 51, 490–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozower, B.D.; Sheng, S.; O’Brien, S.M.; Liptay, M.J.; Lau, C.L.; Jones, D.R.; Shahian, D.M.; Wright, C.D. STS Database Risk Models: Predictors of Mortality and Major Morbidity for Lung Cancer Resection. Ann. Thorac. Surg. 2010, 90, 873–875. [Google Scholar] [CrossRef]
- Fernandez, F.G.; Kosinski, A.S.; Burfeind, W.; Park, B.; DeCamp, M.M.; Seder, C.; Marshall, B.; Magee, M.J.; Wright, C.D.; Kozower, B.D. The Society of Thoracic Surgeons Lung Cancer Resection Risk Model: Higher Quality Data and Superior Outcomes. Ann. Thorac. Surg. 2016, 102, 370–377. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, M.K.; Dignam, J.J.; Siddique, J.; Vigneswaran, W.T.; Celauro, A.D.; Ferguson, M.K. Diffusing Capacity Predicts Long-Term Survival after Lung Resection for Cancer. Eur. J. Cardio-Thorac. Surg. 2012, 41, e81–e86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller-Redetzky, H.C.; Felten, M.; Hellwig, K.; Wienhold, S.-M.; Naujoks, J.; Opitz, B.; Kershaw, O.; Gruber, A.D.; Suttorp, N.; Witzenrath, M. Increasing the Inspiratory Time and I:E Ratio during Mechanical Ventilation Aggravates Ventilator-Induced Lung Injury in Mice. Crit. Care 2015, 19, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, B. Ventilator-Induced Lung Injury: Role of Protein-Protein Interaction in Mechanosensation. Proc. Am. Thorac. Soc. 2005, 2, 181–187. [Google Scholar] [CrossRef]
- Kaufmann, K.B.; Heinrich, S.; Felix Staehle, H.; Bogatyreva, L.; Buerkle, H.; Goebel, U. Perioperative Cytokine Profile during Lung Surgery Predicts Patients at Risk for Postoperative Complications-A Prospective, Clinical Study. PLoS ONE 2018, 13, e0199807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arend, W.P.; Malyak, M.; Guthridge, C.J.; Gabay, C. Interleukin-1 Receptor Antagonist: Role in Biology. Annu. Rev. Immunol. 1998, 16, 27–55. [Google Scholar] [CrossRef] [PubMed]
- Arend, W.P. The Balance between IL-1 and IL-1Ra in Disease. Cytokine Growth Factor Rev. 2002, 13, 323–340. [Google Scholar] [CrossRef]
- Ardain, A.; Marakalala, M.J.; Leslie, A. Tissue-Resident Innate Immunity in the Lung. Immunology 2020, 159, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Marriott, H.M.; Gascoyne, K.A.; Gowda, R.; Geary, I.; Nicklin, M.J.H.; Iannelli, F.; Pozzi, G.; Mitchell, T.J.; Whyte, M.K.B.; Sabroe, I.; et al. Interleukin-1β Regulates CXCL8 Release and Influences Disease Outcome in Response to Streptococcus Pneumoniae, Defining Intercellular Cooperation between Pulmonary Epithelial Cells and Macrophages. Infect. Immun. 2012, 80, 1140–1149. [Google Scholar] [CrossRef] [Green Version]
- Ravandi, A.; Leibundgut, G.; Hung, M.-Y.; Patel, M.; Hutchins, P.M.; Murphy, R.C.; Prasad, A.; Mahmud, E.; Miller, Y.I.; Dennis, E.A.; et al. Release and Capture of Bioactive Oxidized Phospholipids and Oxidized Cholesteryl Esters during Percutaneous Coronary and Peripheral Arterial Interventions in Humans. J. Am. Coll. Cardiol. 2014, 63, 1961–1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, S.; Zhang, L.; Richner, J.M.; Class, J.; Rehman, J.; Malik, A.B. Interleukin-1RA Mitigates SARS-CoV-2-Induced Inflammatory Lung Vascular Leakage and Mortality in Humanized K18-HACE-2 Mice. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2773–2785. [Google Scholar] [CrossRef]
- Frank, J.A.; Pittet, J.-F.; Wray, C.; Matthay, M.A. Protection from Experimental Ventilator-Induced Acute Lung Injury by IL-1 Receptor Blockade. Thorax 2008, 63, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farlow, E.C.; Vercillo, M.S.; Coon, J.S.; Basu, S.; Kim, A.W.; Faber, L.P.; Warren, W.H.; Bonomi, P.; Liptay, M.J.; Borgia, J.A. A Multi-Analyte Serum Test for the Detection of Non-Small Cell Lung Cancer. Br. J. Cancer 2010, 103, 1221–1228. [Google Scholar] [CrossRef]
- Lugg, S.T.; Alridge, K.A.; Howells, P.A.; Parekh, D.; Scott, A.; Mahida, R.Y.; Park, D.; Tucker, O.; Gao, F.; Perkins, G.D.; et al. Dysregulated Alveolar Function and Complications in Smokers Following Oesophagectomy. ERJ Open Res. 2019, 5, 00089-2018. [Google Scholar] [CrossRef] [Green Version]
- Del Sorbo, L.; Goffi, A.; Tomlinson, G.; Pettenuzzo, T.; Facchin, F.; Vendramin, A.; Goligher, E.C.; Cypel, M.; Slutsky, A.S.; Keshavjee, S.; et al. Effect of Driving Pressure Change During Extracorporeal Membrane Oxygenation in Adults With Acute Respiratory Distress Syndrome: A Randomized Crossover Physiologic Study. Crit. Care Med. 2020, 48, 1771–1778. [Google Scholar] [CrossRef] [PubMed]
- Dahmer, M.K.; Quasney, M.W.; Sapru, A.; Gildengorin, G.; Curley, M.A.Q.; Matthay, M.A.; Flori, H. Interleukin-1 Receptor Antagonist Is Associated With Pediatric Acute Respiratory Distress Syndrome and Worse Outcomes in Children With Acute Respiratory Failure. Pediatr. Crit. Care Med. 2018, 19, 930–938. [Google Scholar] [CrossRef]
- Manicone, A.M. Role of the Pulmonary Epithelium and Inflammatory Signals in Acute Lung Injury. Expert Rev. Clin. Immunol. 2009, 5, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Kalinina, O.; Golovkin, A.; Zaikova, E.; Aquino, A.; Bezrukikh, V.; Melnik, O.; Vasilieva, E.; Karonova, T.; Kudryavtsev, I.; Shlyakhto, E. Cytokine Storm Signature in Patients with Moderate and Severe COVID-19. Int. J. Mol. Sci. 2022, 23, 8879. [Google Scholar] [CrossRef]
- Tian, Y.; Gawlak, G.; O’Donnell, J.J., 3rd; Birukova, A.A.; Birukov, K.G. Activation of Vascular Endothelial Growth Factor (VEGF) Receptor 2 Mediates Endothelial Permeability Caused by Cyclic Stretch. J. Biol. Chem. 2016, 291, 10032–10045. [Google Scholar] [CrossRef] [Green Version]
- Lassus, P.; Turanlahti, M.; Heikkilä, P.; Andersson, L.C.; Nupponen, I.; Sarnesto, A.; Andersson, S. Pulmonary Vascular Endothelial Growth Factor and Flt-1 in Fetuses, in Acute and Chronic Lung Disease, and in Persistent Pulmonary Hypertension of the Newborn. Am. J. Respir. Crit. Care Med. 2001, 164, 1981–1987. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Hildebrandt, M.A.T.; Pu, X.; Ye, Y.; Correa, A.M.; Vaporciyan, A.A.; Wu, X.; Roth, J.A. Variations in the Vascular Endothelial Growth Factor Pathway Predict Pulmonary Complications. Ann. Thorac. Surg. 2012, 94, 1075–1079. [Google Scholar] [CrossRef] [PubMed]
- Seely, A.J.; Anstee, C.; Gilbert, S.; Maziak, D.E.; Moffat-Bruce, S.; Sundaresan, S.; Villeneuve, P.J. The Ottawa Thoracic Morbidity & Mortality System Classifying Thoracic Surgical Complications. Available online: https://ottawatmm.org (accessed on 1 January 2020).
Sample Location | Fold-Change (log2) | ANOVA RM F-Score (p-Value) α * ≤ 0.05 α ** ≤ 0.001 | ||||
---|---|---|---|---|---|---|
Biomarker | Complication Mean | Control Mean | Δ | PT (p1) | ST (p2) | PT:ST (p3) |
Ventilated Lung | ||||||
Tie-2 | −∞ | 1.93 | +∞ | 1.305 (0.283) | 1.353 (0.275) | 2.410 (0.155) |
TNF-α | −0.50 | 3.48 | 3.98 | 1.608 (0.245) | 2.011 (0.199) | 2.468 (0.160) |
IL-12 (p70) | −0.60 | 2.73 | 3.33 | 2.813 (0.137) | 2.012 (0.199) | 2.890 (0.133) |
MIP-1α | 0.57 | 3.26 | 2.69 | 1.891 (0.202) | 1.925 (0.199) | 1.733 (0.221) |
INF-γ | 0.17 | 2.54 | 2.37 | 1.566 (0.251) | 1.265 (0.298) | 1.115 (0.326) |
TGF-β3 | 0 | 2.16 | 2.16 | 2.053 (0.195) | 1.972 (0.203) | 1.972 (0.203) |
MIP-1β | 1.30 | 3.42 | 2.12 | 1.397 (0.267) | 1.603 (0.237) | 1.307 (0.282) |
IL-17D | 3.42 | 5.42 | 2.00 | 1.430 (0.262) | 6.699 (0.029) * | 1.590 (0.239) |
IL-10 | 0.55 | 2.45 | 1.90 | 2.084 (0.192) | 3.159 (0.119) | 2.068 (0.194) |
IL-8 | −0.05 | 1.34 | 1.39 | 1.247 (0.301) | 1.975 (0.203) | 2.159 (0.185) |
IL-13 | −0.02 | 1.34 | 1.36 | 0.861 (0.384) | 1.469 (0.265) | 1.518 (0.258) |
IL-4 | 0.12 | 1.39 | 1.27 | 3.474 (0.105) | 1.221 (0.306) | 1.072 (0.335) |
IL-1β | 0.55 | 1.79 | 1.24 | 3.354 (0.110) | 4.803 (0.065) | 2.929 (0.131) |
IL-23 | 2.85 | 4 | 1.15 | 7.475 (0.023) * | 8.280 (0.018) * | 3.685 (0.087) |
IL-2 | −0.78 | 0.32 | 1.10 | 1.355 (0.283) | 0.023 (0.885) | 0.661 (0.443) |
IL-16 | 0.70 | 1.76 | 1.06 | 2.289 (0.169) | 1.932 (0.202) | 1.480 (0.258) |
TSLP | ∞ | 3.00 | −∞ | 1.153 (0.311) | 4.891 (0.054) * | 0.571 (0.469) |
bFGF | 2.48 | 0.80 | −1.68 | 0.649 (0.441) | 4.960 (0.053) * | 0.001 (0.979) |
IL-21 | 0.80 | −0.74 | −1.54 | 1.317 (0.281) | 0.174 (0.686) | 3.620 (0.090) |
Flt-1 | 1.5 | 0.08 | −1.42 | 0.392 (0.547) | 1.107 (0.320) | 0.787 (0.398) |
IL-1Ra | 1.42 | 0.11 | −1.31 | 11.506 (0.008) ** | 0.542 (0.481) | 0.076 (0.789) |
IL-6 | 1.41 | 0.11 | −1.30 | 6.480 (0.038) * | 0.175 (0.689) | 0.023 (0.883) |
Operated Lung | ||||||
Tie-2 | −∞ | 0.01 | ∞ | 0.601 (0.458) | 0.372 (0.557) | 0.393 (0.546) |
VEGF-C | −∞ | 0.03 | ∞ | 2.342 (0.160) | 0.040 (0.847) | 0.061 (0.811) |
MIP-3α | 1.83 | 4.1 | 2.27 | 0.881 (0.372) | 0.881 (0.372) | 0.775 (0.402) |
VEGF-D | 0.91 | 2.24 | 1.33 | 2.468 (0.151) | 4.582 (0.061) | 2.710 (0.134) |
TGF-β3 | ∞ | −∞ | −∞ | 0.215 (0.657) | 0.215 (0.657) | 1.450 (0.268) |
TSLP | ∞ | 1.82 | −∞ | 0.301 (0.597) | 3.249 (0.105) | 0.000 (0.992) |
bFGF | 3.1 | 0.44 | −2.66 | 0.668 (0.435) | 4.113 (0.073) | 0.329 (0.580) |
INF-γ | 0.29 | −2.36 | −2.65 | 4.783 (0.065) | 0.157 (0.704) | 0.780 (0.406) |
PlGF | 1.82 | −0.69 | −2.51 | 3.201 (0.107) | 0.006 (0.939) | 0.967 (0.351) |
IL-6 | 2.49 | 0.02 | −2.47 | 1.617 (0.244) | 1.165 (0.316) | 1.089 (0.331) |
TGF-β2 | 0.46 | −1.67 | −2.13 | 0.100 (0.761) | 1.246 (0.301) | 3.641 (0.098) |
IL-1β | 0.5 | −1.37 | −1.87 | 0.659 (0.444) | 0.291 (0.606) | 0.729 (0.421) |
IL-17C | 1.21 | −0.5 | −1.71 | 8.769 (0.016) * | 0.000 (0.983) | 1.680 (0.227) |
IL-1α | 1.06 | −0.52 | −1.58 | 1.890 (0.206) | 0.026 (0.877) | 0.205 (0.663) |
IL-22 | 1.24 | −0.21 | −1.45 | 0.268 (0.617) | 3.558 (0.092) | 6.630 (0.030) * |
IL-2 | 0.62 | −0.83 | −1.45 | 0.321 (0.589) | 0.000 (0.986) | 1.271 (0.297) |
IL-8 | 0.59 | −0.66 | −1.25 | 0.331 (0.583) | 0.004 (0.949) | 1.406 (0.274) |
IL-10 | 1.72 | 0.51 | −1.21 | 5.130 (0.058) | 2.913 (0.132) | 1.541 (0.254) |
IL-5 | 1.74 | 0.66 | −1.08 | 0.456 (0.519) | 0.871 (0.378) | 0.045 (0.838) |
Fold-Change (log2) | ANOVA RM F-Score (p-Value) α * ≤ 0.05 α ** ≤ 0.001 | |||||
---|---|---|---|---|---|---|
Biomarker | Complication Mean | Control Mean | Δ | PT | ST | PT:ST |
IL-10 | 3.43 | 7.13 | 3.70 | 2.279 (0.175) | 3.111 (0.121) | 2.275 (0.175) |
IL-17D | −0.04 | 2.35 | 2.39 | 0.165 (0.694) | 0.985 (0.347) | 1.038 (0.335) |
Eotaxin-3 | −0.44 | 0.57 | 1.01 | 1.340 (0.277) | 0.459 (0.515) | 1.603 (0.237) |
VEGF-C | 2.78 | −0.34 | −3.12 | 1.408 (0.266) | 1.140 (0.313) | 1.327 (0.279) |
GM-CSF | 1.7 | −0.33 | −2.03 | 0.009 (0.926) | 0.590 (0.465) | 1.562 (0.247) |
IL-1Ra | 1.79 | 0 | −1.79 | 0.046 (0.834) | 1.733 (0.221) | 1.714 (0.223) |
IL-6 | 2.45 | 0.73 | −1.72 | 2.385 (0.166) | 6.654 (0.036) * | 0.141 (0.718) |
IL-1β | −0.07 | −1.47 | −1.4 | 1.218 (0.306) | 15.207 (0.006) ** | 13.379 (0.008) ** |
IFN-γ | −0.81 | −2.1 | −1.29 | 2.637 (0.148) | 12.899 (0.009) ** | 0.126 (0.733) |
Patient ID | Surgery Type | OLV 1 | TLV 1 | Sex | Age | BMI | DLCO | FEV1 | %FEV1/FVC | Smoking Status (PY) |
---|---|---|---|---|---|---|---|---|---|---|
9 | VATS RLL-WR | 1:06 | 0:38 | M | 77 | 33.8 | 61 | 114 | 113 | 125 |
44 | VATS RLL-L | 3:11 | 1:12 | M | 78 | 23.9 | 80 | 70 | 58 | 30.5 |
47 | VATS RUL-L 2 | 5:35 | 1:16 | M | 59 | 29.7 | 46 | 73 | 83 | 27 |
54 | VATS RUL-L 3 | 2:55 | 1:13 | F | 69 | 20.6 | 47 | 97 | 79 | 33 |
64 | VATS RUL-L | 1:49 | 0:43 | F | 74 | 21.1 | 53 | 88 | 100 | 16.8 |
66 | VATS LLL-L | 3:52 | 0:41 | M | 78 | 27.4 | 82 | 70 | 77 | 20 |
76 | VATS LUL-L | 4:14 | 1:19 | M | 51 | 44.6 | 58 | 71 | 102 | 95 |
145 | VATS LLL-L | 3:17 | 1:08 | F | 72 | 21.8 | 47 | 58 | 77 | 12.5 |
146 | VATS RUL-L | 1:32 4 | NA | F | 72 | 30.4 | 56 | 69 | 81 | 18 |
182 | VATS LLL-L | 2:58 | 1:05 | F | 80 | 21.6 | 51 | 106 | 72 | 40 |
183 | VATS RUL-L | 4:16 | 0:55 | M | 66 | 29.2 | 52 | 74 | 80 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kormish, J.; Ghuman, T.; Liu, R.Y.; Srinathan, S.K.; Tan, L.; Graham, K.; Enns, S.; Buduhan, G.; Halayko, A.J.; Pascoe, C.D.; et al. Temporal and Spatial Patterns of Inflammation and Tissue Injury in Patients with Postoperative Respiratory Failure after Lung Resection Surgery: A Nested Case–Control Study. Int. J. Mol. Sci. 2023, 24, 10051. https://doi.org/10.3390/ijms241210051
Kormish J, Ghuman T, Liu RY, Srinathan SK, Tan L, Graham K, Enns S, Buduhan G, Halayko AJ, Pascoe CD, et al. Temporal and Spatial Patterns of Inflammation and Tissue Injury in Patients with Postoperative Respiratory Failure after Lung Resection Surgery: A Nested Case–Control Study. International Journal of Molecular Sciences. 2023; 24(12):10051. https://doi.org/10.3390/ijms241210051
Chicago/Turabian StyleKormish, Jay, Tejas Ghuman, Richard Y. Liu, Sadeesh K. Srinathan, Lawrence Tan, Kristen Graham, Stephanie Enns, Gordon Buduhan, Andrew J. Halayko, Christopher D. Pascoe, and et al. 2023. "Temporal and Spatial Patterns of Inflammation and Tissue Injury in Patients with Postoperative Respiratory Failure after Lung Resection Surgery: A Nested Case–Control Study" International Journal of Molecular Sciences 24, no. 12: 10051. https://doi.org/10.3390/ijms241210051
APA StyleKormish, J., Ghuman, T., Liu, R. Y., Srinathan, S. K., Tan, L., Graham, K., Enns, S., Buduhan, G., Halayko, A. J., Pascoe, C. D., & Kidane, B. (2023). Temporal and Spatial Patterns of Inflammation and Tissue Injury in Patients with Postoperative Respiratory Failure after Lung Resection Surgery: A Nested Case–Control Study. International Journal of Molecular Sciences, 24(12), 10051. https://doi.org/10.3390/ijms241210051