In Vitro Study of Zirconia Surface Modification for Dental Implants by Atomic Layer Deposition
Abstract
:1. Introduction
2. Results
2.1. Scanning Transmission Electron Microscopy Observation of a Thin Film on ZR and Measurement of the Thin-Film Thickness
2.2. Contact Angle
2.3. Adhesion Strength
2.4. Eluted Element Measurements
2.5. Cell Proliferation and Cell Morphology
3. Discussion
4. Materials and Methods
4.1. Preparation of Zirconia Samples
4.2. ALD on ZR
4.3. STEM Observation
4.4. Wettability Test
4.5. Scratch Test
4.6. Immersion Test
4.7. Cell Culture and Cell Proliferation Assay
4.8. pH Measurement of Culture Medium
4.9. Cell Morphology Observation
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoque, M.E.; Showva, N.N.; Ahmed, M.; Rashid, A.B.; Sadique, S.E.; El-Bialy, T.; Xu, H. Titanium and titanium alloys in dentistry: Current trends, recent developments, and future prospects. Heliyon 2022, 8, e11300. [Google Scholar] [CrossRef]
- Jemat, A.; Ghazali, M.J.; Razali, M.; Otsuka, Y. Surface modifications and their effects on titanium dental implants. Biomed. Res. Int. 2015, 2015, 791725. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Choi, S.H.; Ryu, J.J.; Koh, S.Y.; Park, J.H.; Lee, I.S. The biocompatibility of SLA-treated titanium implants. Biomed. Mater. 2008, 3, 025011. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.E.; Huang, H.H. TiO2 nanonetwork on rough Ti enhanced osteogenesis in vitro and in vivo. J. Dent. Res. 2021, 100, 1186–1193. [Google Scholar] [CrossRef] [PubMed]
- Knabe, C.; Klar, F.; Fitzner, R.; Radlanski, R.J.; Gross, U. In vitro investigation of titanium and hydroxyapatite dental implant surfaces using a rat bone marrow stromal cell culture system. Biomaterials 2002, 23, 3235–3245. [Google Scholar] [CrossRef]
- Kaluđerović, M.R.; Schreckenbach, J.P.; Graf, H.L. Titanium dental implant surfaces obtained by anodic spark deposition—From the past to the future. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 1429–1441. [Google Scholar] [CrossRef]
- Zhou, H.; Li, F.; He, B.; Wang, J.; Sun, B. Air plasma sprayed thermal barrier coatings on titanium alloy substrates. Surf. Coat. Technol. 2007, 201, 7360–7367. [Google Scholar] [CrossRef]
- Fage, S.W.; Muris, J.; Jakobsen, S.S.; Thyssen, J.P. Titanium: A review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermat. 2016, 74, 323–345. [Google Scholar] [CrossRef] [Green Version]
- Tawil, G.; Tawil, P.; Irani, C. Zirconium implant as an alternative to titanium implant in a case of type IV titanium allergy: Case report. Int. J. Oral. Maxillofac. Implant. 2020, 35, 639–644. [Google Scholar] [CrossRef]
- Nishihara, H.; Haro Adanez, M.; Att, W. Current status of zirconia implants in dentistry: Preclinical tests. J. Prosthodont. Res. 2019, 63, 1–14. [Google Scholar] [CrossRef]
- Hafezeqoran, A.; Koodaryan, R. Effect of zirconia dental implant surfaces on bone integration: A systematic review and meta-analysis. Biomed. Res. Int. 2017, 2017, 9246721. [Google Scholar] [CrossRef] [PubMed]
- Ban, S. Classification and properties of dental zirconia as implant fixtures and superstructures. Materials 2021, 14, 4879. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Schott, A.; Martin, S. Surface micro-structuring of zirconia dental implants. Clin. Oral. Implants Res. 2016, 27, 162–166. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Lin, D.H.; Jiang, C.P.; Lin, Y.M. Dental implant customization using numerical optimization design and 3-dimensional printing fabrication of zirconia ceramic. Int. J. Numer. Method Biomed. Eng. 2017, 33, e2820. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, N.M.; Hasegawa, M.; Ishijima, M.; Nakhaei, K.; Okubo, T.; Taniyama, T.; Ghassemi, A.; Tahsili, T.; Park, W.; Hirota, M.; et al. Biological and osseointegration capabilities of hierarchically (meso-/micro-/nano-scale) roughened zirconia. Int. J. Nanomed. 2018, 13, 3381–3395. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, D.; Aboushelib, M. Bioactive-hybrid-zirconia implant surface for enhancing osseointegration: An in vivo study. Int. J. Implant. Dent. 2018, 4, 20. [Google Scholar] [CrossRef]
- Altmann, B.; Kohal, R.J.; Steinberg, T.; Tomakidi, P.; Bächle-Haas, M.; Wennerberg, A.; Att, W. Distinct cell functions of osteoblasts on UV-functionalized titanium- and zirconia-based implant materials are modulated by surface topography. Tissue Eng. Part C Methods 2013, 19, 850–863. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Wang, Z.; Li, C.; Yin, K.; Hao, D.; Lan, J. Application of plasma sprayed-zirconia coating in dental implants: Study in implants. J. Oral Implantol. 2018, 44, 102–109. [Google Scholar] [CrossRef]
- Kirsten, A.; Hausmann, A.; Weber, M.; Fischer, J.; Fischer, H. Bioactive and thermally compatible glass coating on zirconia dental implants. J. Dent. Res. 2015, 94, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.; Hong, J.; Ryoo, H.; Kim, D.; Park, J.; Han, J. Osteogenic responses to zirconia with hydroxyapatite coating by aerosol deposition. J. Dent. Res. 2015, 94, 491–499. [Google Scholar] [CrossRef] [Green Version]
- George, S.M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- Shahmohammadi, M.; Yang, B.; Takoudis, C.G. Applications of titania atomic layer deposition in the biomedical field and recent updates. Am. J. Biomed. Sci. Res. 2020, 8, 465–468. [Google Scholar] [CrossRef]
- Jo, Y.; Kim, Y.T.; Cho, H.; Ji, M.K.; Heo, J.; Lim, H.P. Atomic layer deposition of ZrO2 on titanium inhibits bacterial adhesion and enhances osteoblast viability. Int. J. Nanomed. 2021, 16, 1509–1523. [Google Scholar] [CrossRef]
- Kylmaoja, E.; Holopainen, J.; Abushahba, F.; Ritala, M.; Tuukkanen, J. Osteoblast Attachment on titanium coated with hydroxyapatite by atomic layer deposition. Biomolecules 2022, 12, 654. [Google Scholar] [CrossRef]
- Bishal, A.K.; Butt, A.; Selvaraj, S.K.; Joshi, B.; Patel, S.B.; Huang, S.; Yang, B.; Shukohfar, T.; Sukotjo, C.; Takoudis, C.G. Atomic layer deposition in bio-nanotechnology: A brief overview. Crit. Rev. Biomed. Eng. 2015, 43, 255–276. [Google Scholar] [CrossRef]
- Liu, L.; Bhatia, R.; Webster, T.J. Atomic layer deposition of nano-TiO2 thin films with enhanced biocompatibility and antimicrobial activity for orthopedic implants. Int. J. Nanomed. 2017, 12, 8711–8723. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Chang, R.; Webster, T.J. Atomic layer deposition coating of TiO2 nano-thin films on magnesium-zinc alloys to enhance cytocompatibility for bioresorbable vascular stents. Int. J. Nanomed. 2019, 14, 9955–9970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpagavalli, R.; Zhou, A.; Chellamuthu, P.; Nguyen, K. Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6Al4V. J. Biomed. Mater. Res. A 2007, 83, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Blendinger, F.; Seitz, D.; Ottenschlager, A.; Fleischer, M.; Bucher, V. Atomic layer deposition of bioactive TiO2 thin films on polyetheretherketone for orthopedic implants. ACS Appl. Mater. Interfaces 2021, 13, 3536–3546. [Google Scholar] [CrossRef]
- Finch, D.S.; Oreskovic, T.; Ramadurai, K.; Herrmann, C.F.; George, S.M.; Mahajan, R.L. Biocompatibility of atomic layer-deposited alumina thin films. J. Biomed. Mater. Res. A 2008, 87, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Jeon, H.; Haidar, A.; Abdul-Khaliq, H.; Veith, M.; Aktas, C.; Kim, Y. Recombinant phage coated 1D Al2O3 nanostructures for controlling the adhesion and proliferation of endothelial cells. Biomed. Res. Int. 2015, 2015, 909807. [Google Scholar] [CrossRef] [Green Version]
- Areva, S.; Aaritalo, V.; Tuusa, S.; Jokinen, M.; Linden, M.; Peltola, T. Sol-Gel-derived TiO2-SiO2 implant coatings for direct tissue attachment. Part II: Evaluation of cell response. J. Mater. Sci. Mater. Med. 2007, 18, 1633–1642. [Google Scholar] [CrossRef] [PubMed]
- Ottoni, J.M.P.; Oliveria, Z.F.L.; Mansini, R.; Carbal, A.M. Correlation between placement torque and survival of single-tooth implants. Int. J. Oral. Maxillofac. Implant. 2005, 20, 769–776. [Google Scholar]
- Atieh, M.A.; Baqain, Z.H.; Tawse-Smith, A.; Ma, S.; Almoselli, M.; Lin, L.; Alsabeeha, N.H.M. The influence of insertion torque values on the failure and complication rates of dental implants: A systematic review and meta-analysis. Clin. Implant. Dent. Relat. Res. 2021, 23, 341–360. [Google Scholar] [CrossRef] [PubMed]
- Baba, S.; Kikuchi, A.; Kinbara, A. Friction measurement of coated surfaces with a vibrated diamond stylus. J. Vac. Sci. Technol. A 1987, 5, 1860. [Google Scholar] [CrossRef]
- Kinbara, A.; Baba, S.; Kikuchi, A.; Kajiwara, T.; Watanabe, K. Adhesion measurement of thin films on glass substrates. Thin Solid Film. 1989, 171, 93–98. [Google Scholar] [CrossRef]
- Koie, S.; Asakura, M.; Hasegawa, S.; Hayashi, T.; Kawai, T.; Nagao, T. Proliferation of mouse fibroblasts and osteoblastic cells on ZrO2-, SiO2-, and ZnO-deposited pure titanium discs using atomic layer deposition. Mater. Lett. 2021, 303, 130525. [Google Scholar] [CrossRef]
- Chang, Y.Y.; Lai, C.H.; Hsu, J.T.; Tang, C.H.; Liao, W.C.; Huang, H.L. Antibacterial properties and human gingival fibroblast cell compatibility of TiO2/Ag compound coatings and ZnO films on titanium-based material. Clin. Oral. Investig. 2012, 16, 95–100. [Google Scholar] [CrossRef]
- Wang, M.; Gao, J. Atomic layer deposition of ZnO thin film on ZrO2 dental implant surface for enhanced antibacterial and bioactive performance. Mater. Lett. 2021, 285, 128854. [Google Scholar] [CrossRef]
- Yao, L.; Wu, X.; Wu, S.; Pan, X.; Tu, J.; Chen, M.; Al-Bishari, A.M.; Al-Baadani, M.A.; Yao, L.; Shen, X.; et al. Atomic layer deposition of zinc oxide on microrough zirconia to enhance osteogenesis and antibiosis. Ceram. Int. 2019, 45, 24757–24767. [Google Scholar] [CrossRef]
- Yusa, K.; Yamamoto, O.; Fukuda, M.; Koyota, S.; Koizumi, Y.; Sugiyama, T. In vitro prominent bone regeneration by release zinc ion from Zn-modified implant. Biochem. Biophys. Res. Commun. 2011, 412, 273–278. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, N.; Liu, X.; Yang, X.; Yan, H.; Ma, J.; Feng, Q.; Shen, Z. Micro/nanostructured TiO2/ZnO coating enhances osteogenic activity of SaOS-2 cells. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2838–2845. [Google Scholar] [CrossRef] [Green Version]
- Lautenschlager, E.P.; Monaghan, P. Titanium and titanium alloys as dental materials. Int. Dent. J. 1993, 43, 245–253. [Google Scholar]
- Delgado-Ruíz, R.A.; Calvo-Guirado, J.L.; Moreno, P.; Guardia, J.; Gomez-Moreno, G.; Mate-Sánchez, J.E.; Ramirez-Fernández, P.; Chiva, F. Femtosecond laser microstructuring of zirconia dental implants. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 96, 91–100. [Google Scholar] [CrossRef]
- Tzanakakis, E.; Kontonasaki, E.; Voyiatzis, G.; Andrikopoulos, K.; Tzoutzas, I. Surface characterization of monolithic zirconia submitted to different surface treatments applying optical interferometry and raman spectrometry. Dent. Mater. J. 2020, 39, 111–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawase, M.; Hayashi, T.; Asakura, M.; Tomino, M.; Mieki, A.; Kawai, T. Proliferation of mouse fibroblast-like and osteoblast-like cells on pure titanium films manufactured by electron beam melting. Cell Biol. Int. 2016, 40, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Asai, T.; Hayashi, T.; Asakura, M.; Fujimoto, K.; MIeki, A.; Kawai, T. Dextrin promotes proliferation of cultured MC3T3-E1 mouse osteoblast-like cells and their alkaline phosphatase activity implications for potential application of dextrin as a binder of bone. J. Hard Tissue Biol. 2018, 27, 65–68. [Google Scholar] [CrossRef] [Green Version]
Thin Films | Precursor/Pre-Heating Temp. (°C) | Pulse (s) × Times | N2 Purge (s) | Cycles (Times) | Deposition Temp. (°C) |
---|---|---|---|---|---|
Oxidizing Agent | |||||
TiO2 | TDMATi/83 | 2.35 × 3 | 8 | 667 | 180 |
H2O | 2.35 × 2 | 10 | |||
Al2O3 | TMA/RT | 2.35 × 3 | 11 | 300 | 150 |
H2O | 2.35 × 2 | 13 | |||
SiO2 | TDMASi/54 | 2.35 × 3 | 12 | 536 | 175 |
O3 | 2.35 × 2 | 10 | |||
ZnO | DEZ/RT | 2.35 × 2 | 8 | 300 | 175 |
H2O | 2.35 × 2 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, T.; Asakura, M.; Koie, S.; Hasegawa, S.; Mieki, A.; Aimu, K.; Kawai, T. In Vitro Study of Zirconia Surface Modification for Dental Implants by Atomic Layer Deposition. Int. J. Mol. Sci. 2023, 24, 10101. https://doi.org/10.3390/ijms241210101
Hayashi T, Asakura M, Koie S, Hasegawa S, Mieki A, Aimu K, Kawai T. In Vitro Study of Zirconia Surface Modification for Dental Implants by Atomic Layer Deposition. International Journal of Molecular Sciences. 2023; 24(12):10101. https://doi.org/10.3390/ijms241210101
Chicago/Turabian StyleHayashi, Tatsuhide, Masaki Asakura, Shin Koie, Shogo Hasegawa, Akimichi Mieki, Koki Aimu, and Tatsushi Kawai. 2023. "In Vitro Study of Zirconia Surface Modification for Dental Implants by Atomic Layer Deposition" International Journal of Molecular Sciences 24, no. 12: 10101. https://doi.org/10.3390/ijms241210101
APA StyleHayashi, T., Asakura, M., Koie, S., Hasegawa, S., Mieki, A., Aimu, K., & Kawai, T. (2023). In Vitro Study of Zirconia Surface Modification for Dental Implants by Atomic Layer Deposition. International Journal of Molecular Sciences, 24(12), 10101. https://doi.org/10.3390/ijms241210101