Galanin 2 Receptor: A Novel Target for a Subset of Pancreatic Ductal Adenocarcinoma
Abstract
:1. Introduction
2. Results
2.1. Treatment of PDAC–PDX Using M89b
2.2. Effect of M89b Treatment on the Markers of Tumor Progression
2.3. In Vitro and In Vivo Safety
3. Discussion
4. Materials and Methods
4.1. Animal Maintenance and Treatment
4.2. mRNA Expression Analysis
4.3. In Vitro Safety Studies
4.4. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol. 2016, 22, 9694–9705. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [Green Version]
- Parrasia, S.; Zoratti, M.; Szabò, I.; Biasutto, L. Targeting Pancreatic Ductal Adenocarcinoma (PDAC). Cell Physiol. Biochem. 2021, 55, 61–90. [Google Scholar] [CrossRef]
- Chiorean, E.G.; Coveler, A.L. Pancreatic cancer: Optimizing treatment options, new, and emerging targeted therapies. Drug Des. Devel. Ther. 2015, 9, 3529–3545. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.M.; Thomassian, S.; Gong, J.; Hendifar, A.; Osipov, A. Advances in Pancreatic Ductal Adenocarcinoma Treatment. Cancers 2021, 13, 5510. [Google Scholar] [CrossRef]
- Kamisawa, T.; Wood, L.D.; Itoi, T.; Takaori, K. Pancreatic cancer. Lancet 2016, 388, 73–85. [Google Scholar] [CrossRef] [PubMed]
- AACR Project GENIE Consortium. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017, 7, 818–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Principe, D.R.; Underwood, P.W.; Korc, M.; Trevino, J.G.; Munshi, H.G.; Rana, A. The Current Treatment Paradigm for Pancreatic Ductal Adenocarcinoma and Barriers to Therapeutic Efficacy. Front. Oncol. 2021, 11, 688377. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Melisi, D.; Macarulla, T.; Pazo-Cid, R.; Chandana, S.R.; De La Fouchardiere, C.; Dean, A.P.; Kiss, I.; Lee, W.; Goetze, T.O.; et al. NAPOLI-3: A randomized, open-label phase 3 study of liposomal irinotecan + 5-fluoro-uracil/leucovorin + oxaliplatin (NALIRIFOX) versus nab-paclitaxel + gemcitabine in treatment-naıve patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). J. Clin. Oncol. 2023, 41 (Suppl. 4), LBA661. [Google Scholar] [CrossRef]
- Lang, R.; Gundlach, A.L.; Holmes, F.E.; Hobson, S.A.; Wynick, D.; Hökfelt, T.; Kofler, B. Physiology, signaling, and pharmacology of galanin peptides and receptors: Three decades of emerging diversity. Pharmacol. Rev. 2015, 67, 118–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindskog, S.; Ahrén, B.; Dunning, B.E.; Sundler, F. Galanin-immunoreactive nerves in the mouse and rat pancreas. Cell Tissue Res. 1991, 264, 363–368. [Google Scholar] [CrossRef]
- Ahrén, B.; Ar’Rajab, A.; Böttcher, G.; Sundler, F.; Dunning, B.E. Presence of galanin in human pancreatic nerves and inhibition of insulin secretion from isolated human islets. Cell Tissue Res. 1991, 264, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Amisten, S.; Atanes, P.; Hawkes, R.; Ruz-Maldonado, I.; Liu, L.; Parandeh, F.; Zhao, M.; Huang, G.C.; Salehi, A.; Persaud, S.J. A comparative analysis of human and mouse islet G-protein coupled receptor expression. Sci. Rep. 2017, 7, 46600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manabe, T.; Okada, Y.; Sawai, H.; Funahashi, H.; Yamamoto, M.; Hayakawa, T.; Yoshimura, T. Effect of galanin on plasma glucose, insulin and pancreatic glucagon in dogs. J. Int. Med. Res. 2003, 31, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.L.; Coveñas, R. The Galaninergic System: A Target for Cancer Treatment. Cancers 2022, 14, 3755. [Google Scholar] [CrossRef]
- Rauch, I.; Kofler, B. The galanin system in cancer. Exp. Suppl. 2010, 102, 223–241. [Google Scholar] [CrossRef]
- Misawa, Y.; Misawa, K.; Kanazawa, T.; Uehara, T.; Endo, S.; Mochizuki, D.; Yamatodani, T.; Carey, T.E.; Mineta, H. Tumor suppressor activity and inactivation of galanin receptor type 2 by aberrant promoter methylation in head and neck cancer. Cancer 2014, 120, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Kanazawa, T.; Misawa, K.; Misawa, Y.; Maruta, M.; Uehara, T.; Kawada, K.; Nagatomo, T.; Ichimura, K. Galanin receptor 2 utilizes distinct signaling pathways to suppress cell proliferation and induce apoptosis in HNSCC. Mol. Med. Rep. 2014, 10, 1289–1294. [Google Scholar] [CrossRef] [Green Version]
- Iishi, H.; Tatsuta, M.; Baba, M.; Yano, H.; Iseki, K.; Uehara, H.; Nakaizumi, A. Inhibition by galanin of experimental carcinogenesis induced by azaserine in rat pancreas. Int. J. Cancer 1998, 75, 396–399. [Google Scholar] [CrossRef]
- El-Salhy, M.; Tjomsland, V.; Theodorsson, E. Effects of triple treatment with octreotide, galanin and serotonin on a human pancreas cancer cell line in xenografts. Histol. Histopathol. 2005, 20, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000182687-GALR2/tissue (accessed on 13 February 2023).
- Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000182687-GALR2/pathology (accessed on 13 February 2023).
- Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000182687-GALR2/pathology/pancreatic+cancer (accessed on 13 February 2023).
- He, L.; Li, Z.; Zhou, D.; Ding, Y.; Xu, L.; Chen, Y.; Fan, J. Galanin receptor 2 mediates antifibrogenic effects of galanin on hepatic stellate cells. Exp. Ther. Med. 2016, 12, 3375–3380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pergolini, I.; Morales-Oyarvide, V.; Mino-Kenudson, M.; Honselmann, K.C.; Rosenbaum, M.W.; Nahar, S.; Kem, M.; Ferrone Cristina, R.; Lillemoe, K.D.; Bardeesy, N.; et al. Tumor engraftment in patient-derived xenografts of pancreatic ductal adenocarcinoma is associated with adverse clinicopathological features and poor survival. PLoS ONE 2017, 12, e0182855. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Li, X.; Liu, P.; Li, M.; Luo, F. Patient derived xenogaft mouse models: A high fidelity tool for individualized medicine. Oncol. Lett. 2019, 17, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rew, Y.; Malkmus, S.; Svensson, C.; Yaksh, T.L.; Chung, N.N.; Schiller, P.W.; Cassel, J.A.; DeHaven, R.N.; Taulane, J.P.; Goodman, M. Synthesis and biological activities of cyclic lanthionine enkephalin analogues: Delta-opioid receptor selective ligands. J. Med. Chem. 2002, 45, 3746–3754. [Google Scholar] [CrossRef]
- Kuipers, A.; Balaskó, M.; Pétervári, E.; Koller, A.; Brunner, S.M.; Moll, G.N.; Kofler, B. Intranasal Delivery of a Methyllanthionine-Stabilized Galanin Receptor-2-Selective Agonist Reduces Acute Food Intake. Neurotherapeutics 2021, 18, 2737–2752. [Google Scholar] [CrossRef] [PubMed]
- Rink, R.; Arkema-Meter, A.; Baudoin, I.; Post, E.; Kuipers, A.; Nelemans, S.A.; Akanbi, M.H.; Moll, G.N. To protect peptide pharmaceuticals against peptidases. J. Pharmacol. Toxicol. Methods 2010, 61, 210–218. [Google Scholar] [CrossRef]
- Namsolleck, P.; Richardson, A.; Moll, G.N.; Mescheder, A. LP2, the first lanthipeptide GPCR agonist in a human pharmacokinetics and safety study. Peptides 2021, 136, 170468. [Google Scholar] [CrossRef]
- Donato, L.; Coli, A.; Pasqualini, R.; Duc, T. Metabolic clearance of radioiodinated angiotensin II in normal men. Am. J. Physiol. 1972, 223, 1250–1256. [Google Scholar] [CrossRef] [Green Version]
- De Vries, L.; Reitzema-Klein, C.E.; Meter-Arkema, A.; van Dam, A.; Rink, R.; Moll, G.N.; Akanbi, M.H. Oral and pulmonary delivery of thioether-bridged angiotensin-(1-7). Peptides 2010, 31, 893–898. [Google Scholar] [CrossRef]
- Geurs, S.; Clarisse, D.; Baele, F.; Franceus, J.; Desmet, T.; De Bosscher, K.; D’hooghe, M. Identification of mercaptoacetamide-based HDAC6 inhibitors via a lean inhibitor strategy: Screening, synthesis, and biological evaluation. Chem. Commun. 2022, 58, 6239–6242. [Google Scholar] [CrossRef] [PubMed]
- Costa de Medeiros, M.; Liu, M.; Banerjee, R.; Bellile, E.; D’Silva, N.J.; Rossa, C., Jr. Galanin mediates tumor-induced immunosuppression in head and neck squamous cell carcinoma. Cell. Oncol. 2022, 45, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Carlucci, G.; Kuipers, A.; Ananias, H.J.K.; de Paula Faria, D.; Dierckx, R.A.J.O.; Helfrich, W.; Rink, R.; Moll, G.N.; de Jong, I.J.; Elsinga, P.H. GRPR-selective PET imaging of prostate cancer using [(18)F]-lanthionine-bombesin analogs. Peptides 2015, 67, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Workman, P.; Aboagye, E.O.; Balkwill, F.; Balmain, A.; Bruder, G.; Chaplin, D.J.; Double, J.A.; Everitt, J.; Farningham, D.A.H.; Glennie, M.J.; et al. Committee of the National Cancer Research Institute Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer 2010, 102, 1555–1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Sabadell, P.; Romero, P.O.; Arribas, J.; Arenas, E.J. Protocol to generate a patient derived xenograft model of acquired resistance to immunotherapy in humanized mice. STAR Protoc. 2022, 3, 101712. [Google Scholar] [CrossRef] [PubMed]
PDX | Mutation Status | GAL1R | GAL2R | GAL3R |
---|---|---|---|---|
Panc11074 | KDR, KRAS, SMAD4, CTNNB, TP53 | 0.0 | 16.7 | 0.1 |
Panc11056 | KRAS | 0.0 | 0.7 | 0.0 |
Panc11495 | KRAS | 0.0 | 0.3 | 0.0 |
Panc9759 | KDR, KRAS, SMAD4, SRC, TP53 | 0.0 | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namsolleck, P.; Kofler, B.; Moll, G.N. Galanin 2 Receptor: A Novel Target for a Subset of Pancreatic Ductal Adenocarcinoma. Int. J. Mol. Sci. 2023, 24, 10193. https://doi.org/10.3390/ijms241210193
Namsolleck P, Kofler B, Moll GN. Galanin 2 Receptor: A Novel Target for a Subset of Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences. 2023; 24(12):10193. https://doi.org/10.3390/ijms241210193
Chicago/Turabian StyleNamsolleck, Pawel, Barbara Kofler, and Gert N. Moll. 2023. "Galanin 2 Receptor: A Novel Target for a Subset of Pancreatic Ductal Adenocarcinoma" International Journal of Molecular Sciences 24, no. 12: 10193. https://doi.org/10.3390/ijms241210193
APA StyleNamsolleck, P., Kofler, B., & Moll, G. N. (2023). Galanin 2 Receptor: A Novel Target for a Subset of Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 24(12), 10193. https://doi.org/10.3390/ijms241210193