Intra-Varietal Diversity and Its Contribution to Wheat Evolution, Domestication, and Improvement in Wheat
Abstract
:1. Introduction
2. Results and Discussion
2.1. IVD in Their Sequence, Expression, and Function
2.1.1. Efficiency of IVD Detection
2.1.2. Increased Sequence Diversity of OPs
2.1.3. Increased Expression Diversity of OPs and SORs
2.1.4. Functional Divergence of Homologs
2.2. Important Role of IVD in Wheat Evolution, Domestication, and Improvement
2.2.1. Impacts of IVD on Wheat Evolution
2.2.2. Impact of IVD on Wheat Domestication and Improvement
3. Materials and Methods
3.1. Identification of Paralogs and Single-Copy Orthologs
3.2. Calculation of Ka/Ks Values and Homolog Diversity (HD)
3.3. Expression Divergence and Tissue Specificity
3.4. Gene Ontology Enrichment and KEGG Enrichment
3.5. Transposable Elements and Methylation Analysis
3.6. Gene Expansion and WGDPGs Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khoury, C.K.; Brush, S.; Costich, D.E.; Curry, H.A.; de Haan, S.; Engels, J.M.M.; Guarino, L.; Hoban, S.; Mercer, K.L.; Miller, A.J.; et al. Crop genetic erosion: Understanding and responding to loss of crop diversity. New Phytol. 2021, 233, 84–118. [Google Scholar] [CrossRef] [PubMed]
- Petersen, G.; Seberg, O.; Yde, M.; Berthelsen, K. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol. Phylogenet. Evol. 2006, 39, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhao, G.; Huang, D.; Jia, J. Candidate loci involved in domestication and improvement detected by a published 90K wheat SNP array. Sci. Rep. 2017, 7, 44530. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhao, X.; Li, Y.; Xu, J.; Bi, A.; Kang, L.; Xu, D.; Chen, H.; Wang, Y.; Wang, Y.-G.; et al. Triticum population sequencing provides insights into wheat adaptation. Nat. Genet. 2020, 52, 1412–1422. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Tai, S.; Li, M.; Gao, Q.; Hu, Z.; Hu, W.; Wu, Z.; Zhu, X.; Xie, J.; et al. Selective and comparative genome architecture of Asian cultivated rice (Oryza sativa L.) attributed to domestication and modern breeding. J. Adv. Res. 2022, 42, 1–16. [Google Scholar] [CrossRef]
- Koonin, E. Orthologs, Paralogs, and Evolutionary Genomics. Annu. Rev. Genet. 2005, 39, 309–338. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Nadon, B.D.; Kim, K.D.; Jackson, S.A. Genetic and epigenetic divergence of duplicate genes in two legume species. Plant Cell Environ. 2018, 41, 2033–2044. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Q.; Yin, H.; Qi, K.; Li, L.; Wang, R.; Zhang, S.; Paterson, A.H. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [Green Version]
- Panchy, N.; Lehti-Shiu, M.; Shiu, S.-H. Evolution of Gene Duplication in Plants. Plant Physiol. 2016, 171, 2294–2316. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, R.D.; Palmgren, M. Purifying selection acts on coding and non-coding sequences of paralogous genes in Arabidopsis thaliana. BMC Genom. 2016, 17, 456. [Google Scholar] [CrossRef] [Green Version]
- Hellmuth, M.; Wieseke, N.; Lechner, M.; Lenhof, H.-P.; Middendorf, M.; Stadler, P.F. Phylogenomics with paralogs. Proc. Natl. Acad. Sci. USA 2015, 112, 2058–2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Lyu, H.M.; Zhu, K.; Van de Peer, Y.; Cheng, Z. The emergence and evolution of intron-poor and intronless genes in intron-rich plant gene families. Plant J. 2020, 105, 1072–1082. [Google Scholar] [CrossRef] [PubMed]
- Dunemann, F.; Schrader, O.; Budahn, H.; Houben, A. Characterization of Centromeric Histone H3 (CENH3) Variants in Cultivated and Wild Carrots (Daucus sp.). PLoS ONE 2014, 9, e98504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.; Liu, J.; Wen, J.; Nie, X.; Xu, L.; Chen, N.; Li, Z.; Wang, Q.; Zheng, Z.; Li, M.; et al. Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol. 2019, 20, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanc, G.; Wolfe, K.H. Functional Divergence of Duplicated Genes Formed by Polyploidy during Arabidopsis Evolution. Plant Cell 2004, 16, 1679–1691. [Google Scholar] [CrossRef] [Green Version]
- Roulin, A.; Auer, P.L.; Libault, M.; Schlueter, J.; Farmer, A.; May, G.; Stacey, G.; Doerge, R.W.; Jackson, S.A. The fate of duplicated genes in a polyploid plant genome. Plant J. 2012, 73, 143–153. [Google Scholar] [CrossRef]
- Conant, G.C.; Wolfe, K.H. Turning a hobby into a job: How duplicated genes find new functions. Nat. Rev. Genet. 2008, 9, 938–950. [Google Scholar] [CrossRef]
- Soskine, M.; Tawfik, D.S. Mutational effects and the evolution of new protein functions. Nat. Rev. Genet. 2010, 11, 572–582. [Google Scholar] [CrossRef]
- Coate, J.E.; Farmer, A.D.; Schiefelbein, J.W.; Doyle, J.J. Expression Partitioning of Duplicate Genes at Single Cell Resolution in Arabidopsis Roots. Front. Genet. 2020, 11, 596150. [Google Scholar] [CrossRef]
- Martinez-Seidel, F.; Beine-Golovchuk, O.; Hsieh, Y.-C.; El Eshraky, K.; Gorka, M.; Cheong, B.-E.; Jimenez-Posada, E.V.; Walther, D.; Skirycz, A.; Roessner, U.; et al. Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis. Int. J. Mol. Sci. 2021, 22, 6160. [Google Scholar] [CrossRef]
- Dodsworth, S.; Chase, M.W.; Leitch, A.R. Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? Bot. J. Linn. Soc. 2016, 180, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Carretero-Paulet, L.; Fares, M.A. Evolutionary Dynamics and Functional Specialization of Plant Paralogs Formed by Whole and Small-Scale Genome Duplications. Mol. Biol. Evol. 2012, 29, 3541–3551. [Google Scholar] [CrossRef] [Green Version]
- Harada, K.; Yamashita, E.; Inoue, K.; Yamaguchi, K.; Fujiwara, T.; Nakagawa, A.; Kawasaki, T.; Kojima, C. Plant-specific DUF1110 protein from Oryza sativa: Expression, purification and crystallization. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2016, 72, 480–484. [Google Scholar] [CrossRef] [Green Version]
- Bukhari, S.A.; Mustafa, G.; Bashir, S.; Akram, N.A.; Rahman, M.-U.; Sadia, B.; Alyemeni, M.N.; Ahmad, P. Genetic transformation of Sr22 gene in a high yielding susceptible cultivar of commercial wheat (Triticum aestivum L.). 3 Biotech 2020, 10, 97. [Google Scholar] [CrossRef]
- Xu, J.-H.; Messing, J. Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species. Proc. Natl. Acad. Sci. USA 2008, 105, 14330–14335. [Google Scholar] [CrossRef] [Green Version]
- McCormick, R.F.; Truong, S.K.; Sreedasyam, A.; Jenkins, J.; Shu, S.; Sims, D.; Kennedy, M.; Amirebrahimi, M.; Weers, B.D.; McKinley, B.; et al. The Sorghum bicolor reference genome: Improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J. 2018, 93, 338–354. [Google Scholar] [CrossRef] [Green Version]
- De Mesa-Stonestreet, N.J.; Alavi, S.; Bean, S.R. Sorghum Proteins: The Concentration, Isolation, Modification, and Food Applications of Kafirins. J. Food Sci. 2010, 75, 90–104. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zuo, S.; Zhang, Z.; Li, Z.; Han, J.; Chu, Z.; Hasterok, R.; Wang, K. Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus. Plant J. 2018, 93, 1088–1101. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Guo, X.; Hu, J.; Lv, Z.; Han, F. Characterization of two CENH3 genes and their roles in wheat evolution. New Phytol. 2015, 206, 839–851. [Google Scholar] [CrossRef]
- Lv, J.; Yu, K.; Wei, J.; Gui, H.; Liu, C.; Liang, D.; Wang, Y.; Zhou, H.; Carlin, R.; Rich, R.; et al. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat. Biotechnol. 2020, 38, 1397–1401. [Google Scholar] [CrossRef]
- Evtushenko, E.V.; Elisafenko, E.A.; Gatzkaya, S.S.; Lipikhina, Y.A.; Houben, A.; Vershinin, A.V. Conserved molecular structure of the centromeric histone CENH3 in Secale and its phylogenetic relationships. Sci. Rep. 2017, 7, 17628. [Google Scholar] [CrossRef] [Green Version]
- Maccaferri, M.; Harris, N.S.; Twardziok, S.O.; Pasam, R.K.; Gundlach, H.; Spannagl, M.; Ormanbekova, D.; Lux, T.; Prade, V.M.; Milner, S.G.; et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 2019, 51, 885–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, S.; Sharp, R.; Foote, T.N.; Bertin, I.; Wanous, M.; Reader, S.; Colas, I.; Moore, G. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 2006, 439, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Rey, M.D.; Azahara, C.M.; Janet, H.; David, S.; Cristobal, U.; Peter, S.; Graham, M. Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. Mol. Breed. 2017, 37, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, A.C.; Alabdullah, A.K.; Moore, G. A separation-of-function ZIP4 wheat mutant allows crossover between related chromosomes and is meiotically stable. Sci. Rep. 2021, 11, 21811. [Google Scholar] [CrossRef]
- Nave, M.; Avni, R.; Çakır, E.; Portnoy, V.; Sela, H.; Pourkheirandish, M.; Ozkan, H.; Hale, I.; Komatsuda, T.; Dvorak, J.; et al. Wheat domestication in light of haplotype analyses of the Brittle rachis 1 genes (BTR1-A and BTR1-B). Plant Sci. 2019, 285, 193–199. [Google Scholar] [CrossRef]
- Avni, R.; Nave, M.; Barad, O.; Baruch, K.; Twardziok, S.O.; Gundlach, H.; Hale, I.; Mascher, M.; Spannagl, M.; Wiebe, K.; et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 2017, 357, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Pearson, W.R. An Introduction to Sequence Similarity (“Homology”) Searching. Curr. Protoc. Bioinform. 2013, 13, 2178–2189. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Stoeckert, C.J., Jr.; Roos, D.S. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Res. 2003, 13, 2178–2189. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [Green Version]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- Ling, H.-Q.; Ma, B.; Shi, X.; Liu, H.; Dong, L.; Sun, H.; Cao, Y.; Gao, Q.; Zheng, S.; Li, Y.; et al. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 2018, 557, 424–428. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Zou, C.; Li, K.; Wang, K.; Li, T.; Gao, L.; Zhang, X.; Wang, H.; Yang, Z.; Liu, X.; et al. The Aegilops tauschii genome reveals multiple impacts of transposons. Nat. Plants 2017, 3, 946–955. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Wang, L.; Rodriguez, J.C.; Deal, K.R.; Avni, R.; Distelfeld, A.; McGuire, P.E.; Dvorak, J.; Luo, M.-C. Improved Genome Sequence of Wild Emmer Wheat Zavitan with the Aid of Optical Maps. G3 2019, 9, 619–624. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Abe, F.; Mascher, M.; Haberer, G.; Gundlach, H.; Spannagl, M.; Shirasawa, K.; Isobe, S. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder’. DNA Res. 2021, 28, dsab008. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Zhao, X.-Q.; Wong, G.K.-S.; Yu, J. KaKs_Calculator: Calculating Ka and Ks Through Model Selection and Model Averaging. Genom. Proteom. Bioinform. 2006, 4, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Nei, M.; Li, W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 1979, 76, 5269–5273. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 2016, 45, D331–D338. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters. OMICS J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Krueger, F.; Andrews, S.R. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 2011, 27, 1571–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez, F.; Ryan, D.P.; Grüning, B.; Bhardwaj, V.; Kilpert, F.; Richter, A.S.; Heyne, S.; Dündar, F.; Manke, T. deepTools2: A next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016, 44, W160–W165. [Google Scholar] [CrossRef]
- Jia, J.; Deng, P.; Xie, Y.; Li, T.; Kong, C.; Gao, L.; Zhao, G.; Wang, M.; Wu, L.; Zhang, Y.; et al. Transposable elements driving the subgenome diploidization and divergence in hexaploidy wheat. Mol. Plant, 2022; submitted. [Google Scholar]
- Enright, A.J.; Van Dongen, S.; Ouzounis, C.A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002, 30, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Gebrewahid, T.W.; He, Z.; Li, X.; Li, Z.; Liu, D.; Liu, H.; Xia, X. QTL Mapping of Adult-Plant Resistance to Leaf and Stripe Rust in Wheat Cross SW 8588/Thatcher using the Wheat 55K SNP Array. Plant Dis. 2019, 103, 3041–3049. [Google Scholar] [CrossRef]
- Ye, X.; Li, J.; Cheng, Y.; Yao, F.; Long, L.; Yu, C.; Wang, Y.; Wu, Y.; Li, J.; Wang, J.; et al. Genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in Sichuan wheat. BMC Plant Biol. 2019, 19, 147. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Qin, N.; Cai, B.; Chen, G.; Ding, P.; Zhang, H.; Yang, C.; Huang, L.; Mu, Y.; Tang, H.; et al. Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828. Theor. Appl. Genet. 2019, 132, 1363–1373. [Google Scholar] [CrossRef]
- Wu, J.; Huang, S.; Zeng, Q.; Liu, S.; Wang, Q.; Mu, J.; Yu, S.; Han, D.; Kang, Z. Comparative genome-wide mapping versus extreme pool-genotyping and development of diagnostic SNP markers linked to QTL for adult plant resistance to stripe rust in common wheat. Theor. Appl. Genet. 2018, 131, 1777–1792. [Google Scholar] [CrossRef]
- Huang, S.; Liu, S.; Zhang, Y.; Xie, Y.; Wang, X.; Jiao, H.; Wu, S.; Zeng, Q.; Wang, Q.; Singh, R.P.; et al. Genome-Wide Wheat 55K SNP-Based Mapping of Stripe Rust Resistance Loci in Wheat Cultivar Shaannong 33 and Their Alleles Frequencies in Current Chinese Wheat Cultivars and Breeding Lines. Plant Dis. 2021, 105, 1048–1056. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Chen, N.; Yu, R.; Yu, S.; Wang, Q.; Huang, S.; Wang, H.; Singh, R.P.; Bhavani, S.; et al. Association Analysis Identifies New Loci for Resistance to Chinese Yr26-Virulent Races of the Stripe Rust Pathogen in a Diverse Panel of Wheat Germplasm. Plant Dis. 2020, 104, 1751–1762. [Google Scholar] [CrossRef]
AK58 | CS | |||||
---|---|---|---|---|---|---|
Families | Genes | Percentage (%) | Families | Genes | Percentage (%) | |
Paralogs | 12,762 | 44,568 | 37.3 | 11,360 | 40,560 | 37.9 |
IP | 3693 | 8957 | 7.5 | 2772 | 6532 | 6.1 |
Dyad | 2154 | 5649 | 4.7 | 1898 | 4748 | 4.4 |
Triplet | 6915 | 29,962 | 25.1 | 6690 | 29,280 | 27.4 |
OP | 4314 | 13,131 | 11.0 | 4299 | 13,068 | 12.2 |
SOR | 13,780 | 41,340 | 34.6 | 13,393 | 40,179 | 37.6 |
Total | 119,448 | 71.9 | 106,925 | 75.5 |
Regions | Upstream 2 Kb | 5’UTR | CDS | 3’UTR | Average | |
---|---|---|---|---|---|---|
IPs | AK58 | 0.2852 | 0.1002 | 0.0699 | 0.1105 | 0.1414 |
CS | 0.3477 | 0.1552 | 0.0791 | 0.1744 | 0.1891 | |
Average | 0.3165 | 0.1277 | 0.0745 | 0.1424 | 0.1653 | |
p-Value | <2.2 × 10−16 | <2.2 × 10−16 | 3.77 × 10−8 | <2.2 × 10−16 | 0 | |
OPs | AK58 | 0.4675 | 0.3774 | 0.2451 | 0.3965 | 0.3716 |
CS | 0.4720 | 0.3734 | 0.2467 | 0.3966 | 0.3722 | |
Average | 0.4698 | 0.3754 | 0.2459 | 0.3965 | 0.3719 | |
p-Value | 1.23 × 10−6 | 0.3791 | 0.3502 | 0.7882 | 0.3794 | |
SORs | AK58 | 0.2974 | 0.0802 | 0.0343 | 0.0851 | 0.1243 |
CS | 0.3242 | 0.0822 | 0.0344 | 0.0913 | 0.133 | |
Average | 0.3108 | 0.0812 | 0.0344 | 0.0882 | 0.1286 | |
p-Value | <2.2 × 10−16 | <2.2 × 10−16 | 0.0017 | <2.2 × 10−16 | 0 | |
Average | AK58 | 0.3501 | 0.1859 | 0.1164 | 0.1973 | 0.2124 |
CS | 0.3813 | 0.2036 | 0.1200 | 0.2208 | 0.2314 |
Regions | Ips | Ops | SORs | Average | |
---|---|---|---|---|---|
Upstream 2 Kb | 0.4354 | - | - | 0.4354 | |
T. uratu | CDS | 0.1303 | - | - | 0.1303 |
Gene body | 0.1722 | - | - | 0.1722 | |
Upstream 2 Kb | 0.5613 | - | - | 0.5613 | |
Ae. Tauschii | CDS | 0.2006 | - | - | 0.2006 |
Gene body | 0.2106 | - | - | 0.2106 | |
Upstream 2 Kb | 0.4799 | 0.5559 | 0.4511 | 0.4956 | |
T. dicoccoides | CDS | 0.1277 | 0.1565 | 0.0428 | 0.1090 |
Gene body | 0.1587 | 0.2535 | 0.0871 | 0.1664 | |
Upstream 2 Kb | 0.2758 | 0.5440 | 0.3898 | 0.4032 | |
Fielder | CDS | 0.0449 | 0.1209 | 0.0300 | 0.0653 |
Gene body | 0.0532 | 0.2120 | 0.0603 | 0.1085 |
OPs | SORs | IPs | Singletons | Total | |||||
---|---|---|---|---|---|---|---|---|---|
No. | Ratio | No. | Ratio | No. | Ratio | No. | Ratio | No. | |
Abiotic stress | 18 | 0.217 | 32 | 0.323 | 0 | 0 | 0 | 0 | 50 |
Biotic stress | 31 | 0.373 | 15 | 0.152 | 1 | 1 | 3 | 0.75 | 50 |
Architecture | 3 | 0.036 | 6 | 0.061 | 0 | 0 | 0 | 0 | 9 |
Heading | 3 | 0.036 | 6 | 0.061 | 0 | 0 | 0 | 0 | 9 |
Quality | 6 | 0.072 | 9 | 0.091 | 0 | 0 | 1 | 0.25 | 16 |
Yield | 19 | 0.229 | 27 | 0.273 | 0 | 0 | 0 | 0 | 46 |
Other | 3 | 0.036 | 4 | 0.04 | 0 | 0 | 0 | 0 | 7 |
Total genes | 83 | 1 | 99 | 1 | 1 | 1 | 4 | 1 | 187 |
Ratio 1 | 0.444 | 0.529 | 0.005 | 0.021 | |||||
Ratio 2 | 0.111 | 0.346 | 0.075 | 0.281 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Kong, C.; Deng, P.; Li, C.; Zhao, G.; Li, H.; Gao, L.; Cui, D.; Jia, J. Intra-Varietal Diversity and Its Contribution to Wheat Evolution, Domestication, and Improvement in Wheat. Int. J. Mol. Sci. 2023, 24, 10217. https://doi.org/10.3390/ijms241210217
Li T, Kong C, Deng P, Li C, Zhao G, Li H, Gao L, Cui D, Jia J. Intra-Varietal Diversity and Its Contribution to Wheat Evolution, Domestication, and Improvement in Wheat. International Journal of Molecular Sciences. 2023; 24(12):10217. https://doi.org/10.3390/ijms241210217
Chicago/Turabian StyleLi, Tianbao, Chuizheng Kong, Pingchuan Deng, Chengdao Li, Guangyao Zhao, Hongjie Li, Lifeng Gao, Dangqun Cui, and Jizeng Jia. 2023. "Intra-Varietal Diversity and Its Contribution to Wheat Evolution, Domestication, and Improvement in Wheat" International Journal of Molecular Sciences 24, no. 12: 10217. https://doi.org/10.3390/ijms241210217
APA StyleLi, T., Kong, C., Deng, P., Li, C., Zhao, G., Li, H., Gao, L., Cui, D., & Jia, J. (2023). Intra-Varietal Diversity and Its Contribution to Wheat Evolution, Domestication, and Improvement in Wheat. International Journal of Molecular Sciences, 24(12), 10217. https://doi.org/10.3390/ijms241210217