Pathogenic Role of IL-17 and Therapeutic Targeting of IL-17F in Psoriatic Arthritis and Spondyloarthropathies
Abstract
:1. Introduction
2. Materials and Methods
3. IL-17 Family: Synthesis, Regulation, and Receptors
PsA | axSpA | Enthesitis | References | |
---|---|---|---|---|
CD4+ helper T cells (Th17) | Increased number of Th17 in blood and synovial fluid compared to healthy controls. | Increased number compared to healthy controls. | Produce IL-17A when stimulated. | [20,21,22,23] |
CD8+ cytotoxic T17 | Increased frequency of CD8+ T cells in blood and synovial fluid. | Found in blood, digestive tract, and synovial fluid of patients. | Produce IL-17A when stimulated. | [21,22,23,24,25,26,27,28,29,30,31] |
γδ T cells | Elevated frequency in synovial fluid of patients with active arthritis. | Increased number in blood and synovial fluid. | Physiologically present in entheseal tissue. Able to produce IL-17A without IL-23 stimulus. | [11,21,23,32,33,34,35,36,37,38] |
MAIT cells | Proportionally, higher levels found in joints than in peripheral blood. | Elevated number compared to healthy controls in blood and synovial fluid. | Physiologically present in blood and healthy entheses. | [7,8,10,39,40,41] |
IL-17+ Natural Killers T cells | Present in synovial fluid. | Increased levels in synovial fluid but might play an anti-inflammatory role in joints. | Unknown. | [21,37,38,39,42] |
Group 3 innate lymphoid cells | Enriched in blood and synovial fluid, which might correlate with disease activity. | Elevated levels found in blood, digestive tract, bone marrow, and synovial fluid. | Physiologically present in entheses and adjacent bone. | [21,23,37,43,44,45,46] |
Natural Killers | Present in synovial fluid, although in lower concentrations than in rheumatoid arthritis. | Increased number of IL-17 producing cells compared to healthy controls in peripheral blood. | Unknown. | [47,48] |
4. Physiological Activity of IL-17
5. IL-17: Pathogenic Role in PsA and axSpA
6. IL-17F Blockade and Therapeutic Considerations
6.1. Bimekizumab
6.1.1. Psoriatic Arthritis
6.1.2. Axial Spondyloarthritis
6.1.3. Safety
6.2. Sonelokimab
7. Conclusions
- Th17 cells, the best-known and main source of IL-17A and IL-17F, depend on IL-23 to sustain their differentiation status [14];
- Blocking both IL-17A and IL-17F simultaneously is more successful at lowering the release of pro-inflammatory mediators from target cells than blocking IL-17A alone. Nonetheless, IL-17F the blockade alone has no effect on cytokine secretion [14];
- Contrary to IL-17A, the blockade of IL-17F might be beneficial against colitis, as evidenced in murine models [12];
- Elevated serum levels of IL-17F have been found in several IMIDs, including PsA, axSpA, and HS [15];
- The lesional skin and serum of patients with PsO contain greater amounts of IL-17F than IL-17A; on the other hand, the relative concentrations are reversed in peripheral spondyloarthritis joints [53];
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goepfert, A.; Lehmann, S.; Wirth, E.; Rondeau, J.-M. The Human IL-17A/F Heterodimer: A Two-Faced Cytokine with Unique Receptor Recognition Properties. Sci. Rep. 2017, 7, 8906. [Google Scholar] [CrossRef] [PubMed]
- Pappu, R.; Rutz, S.; Ouyang, W. Regulation of Epithelial Immunity by IL-17 Family Cytokines. Trends Immunol. 2012, 33, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Monin, L.; Gaffen, S.L. Interleukin 17 Family Cytokines: Signaling Mechanisms, Biological Activities, and Therapeutic Implications. Cold Spring Harb. Perspect. Biol. 2018, 10, a028522. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.-H.; Ye, X.-Q.; Iwakura, Y. Interleukin-17 Family Members in Health and Disease. Int. Immunol. 2021, 33, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Gaffen, S.L.; Jain, R.; Garg, A.V.; Cua, D.J. The IL-23–IL-17 Immune Axis: From Mechanisms to Therapeutic Testing. Nat. Rev. Immunol. 2014, 14, 585–600. [Google Scholar] [CrossRef] [Green Version]
- Cole, S.; Murray, J.; Simpson, C.; Okoye, R.; Tyson, K.; Griffiths, M.; Baeten, D.; Shaw, S.; Maroof, A. Interleukin (IL)-12 and IL-18 Synergize to Promote MAIT Cell IL-17A and IL-17F Production Independently of IL-23 Signaling. Front. Immunol. 2020, 11, 585134. [Google Scholar] [CrossRef]
- Raychaudhuri, S.K.; Abria, C.; Mitra, A.; Raychaudhuri, S.P. Functional Significance of MAIT Cells in Psoriatic Arthritis. Cytokine 2020, 125, 154855. [Google Scholar] [CrossRef]
- Gracey, E.; Qaiyum, Z.; Almaghlouth, I.; Lawson, D.; Karki, S.; Avvaru, N.; Zhang, Z.; Yao, Y.; Ranganathan, V.; Baglaenko, Y.; et al. IL-7 Primes IL-17 in Mucosal-Associated Invariant T (MAIT) Cells, Which Contribute to the Th17-Axis in Ankylosing Spondylitis. Ann. Rheum. Dis. 2016, 75, 2124–2132. [Google Scholar] [CrossRef]
- Nel, I.; Bertrand, L.; Toubal, A.; Lehuen, A. MAIT Cells, Guardians of Skin and Mucosa? Mucosal Immunol. 2021, 14, 803–814. [Google Scholar] [CrossRef]
- Dusseaux, M.; Martin, E.; Serriari, N.; Péguillet, I.; Premel, V.; Louis, D.; Milder, M.; Le Bourhis, L.; Soudais, C.; Treiner, E.; et al. Human MAIT Cells Are Xenobiotic-Resistant, Tissue-Targeted, CD161hi IL-17–Secreting T Cells. Blood 2011, 117, 1250–1259. [Google Scholar] [CrossRef] [Green Version]
- Cuthbert, R.J.; Watad, A.; Fragkakis, E.M.; Dunsmuir, R.; Loughenbury, P.; Khan, A.; Millner, P.A.; Davison, A.; Marzo-Ortega, H.; Newton, D.; et al. Evidence That Tissue Resident Human Enthesis ΓδT-Cells Can Produce IL-17A Independently of IL-23R Transcript Expression. Ann. Rheum. Dis. 2019, 78, 1559–1565. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Kakuta, S.; Shimizu, K.; Kadoki, M.; Kamiya, T.; Shimazu, T.; Kubo, S.; Saijo, S.; Ishigame, H.; Nakae, S.; et al. Suppression of IL-17F, but Not of IL-17A, Provides Protection against Colitis by Inducing Treg Cells through Modification of the Intestinal Microbiota. Nat. Immunol. 2018, 19, 755–765. [Google Scholar] [CrossRef]
- Hymowitz, S.G. IL-17s Adopt a Cystine Knot Fold: Structure and Activity of a Novel Cytokine, IL-17F, and Implications for Receptor Binding. EMBO J. 2001, 20, 5332–5341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, L.A.; Maroof, A.; Marshall, D.; Steel, K.J.A.; Lalnunhlimi, S.; Cole, S.; Catrina, A.; Kirkham, B.; Taams, L.S. Presence, Function, and Regulation of IL-17F-expressing Human CD4 + T Cells. Eur. J. Immunol. 2020, 50, 568–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taams, L.S.; Steel, K.J.A.; Srenathan, U.; Burns, L.A.; Kirkham, B.W. IL-17 in the Immunopathogenesis of Spondyloarthritis. Nat. Rev. Rheumatol. 2018, 14, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Joulia, R.; Guerrero-Fonseca, I.M.; Girbl, T.; Coates, J.A.; Stein, M.; Vázquez-Martínez, L.; Lynam, E.; Whiteford, J.; Schnoor, M.; Voehringer, D.; et al. Neutrophil Breaching of the Blood Vessel Pericyte Layer during Diapedesis Requires Mast Cell-Derived IL-17A. Nat. Commun. 2022, 13, 7029. [Google Scholar] [CrossRef]
- Chen, S.; Noordenbos, T.; Blijdorp, I.; van Mens, L.; Ambarus, C.A.; Vogels, E.; te Velde, A.; Alsina, M.; Cañete, J.D.; Yeremenko, N.; et al. Histologic Evidence That Mast Cells Contribute to Local Tissue Inflammation in Peripheral Spondyloarthritis by Regulating Interleukin-17A Content. Rheumatology 2019, 58, 617–627. [Google Scholar] [CrossRef] [PubMed]
- McGonagle, D.G.; McInnes, I.B.; Kirkham, B.W.; Sherlock, J.; Moots, R. The Role of IL-17A in Axial Spondyloarthritis and Psoriatic Arthritis: Recent Advances and Controversies. Ann. Rheum. Dis. 2019, 78, 1167–1178. [Google Scholar] [CrossRef] [Green Version]
- Coletto, L.A.; Rizzo, C.; Guggino, G.; Caporali, R.; Alivernini, S.; D’Agostino, M.A. The Role of Neutrophils in Spondyloarthritis: A Journey across the Spectrum of Disease Manifestations. IJMS 2023, 24, 4108. [Google Scholar] [CrossRef]
- Benham, H.; Norris, P.; Goodall, J.; Wechalekar, M.D.; FitzGerald, O.; Szentpetery, A.; Smith, M.; Thomas, R.; Gaston, H. Th17 and Th22 Cells in Psoriatic Arthritis and Psoriasis. Arthritis Res. Ther. 2013, 15, R136. [Google Scholar] [CrossRef] [Green Version]
- Mauro, D.; Simone, D.; Bucci, L.; Ciccia, F. Novel Immune Cell Phenotypes in Spondyloarthritis Pathogenesis. Semin. Immunopathol. 2021, 43, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Dagur, P.K.; Biancotto, A.; Stansky, E.; Sen, H.N.; Nussenblatt, R.B.; McCoy, J.P. Secretion of Interleukin-17 by CD8+ T Cells Expressing CD146 (MCAM). Clin. Immunol. 2014, 152, 36–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, A.; Haroon, N. Recent Updates in the Immunopathology of Type 3 Immunity-Mediated Enthesitis. Curr. Rheumatol. Rep. 2021, 23, 31. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.-L.; Pang, D.J.; Haque, S.F.Y.; Potocnik, A.J.; Pennington, D.J.; Hayday, A.C. Interleukin 7 (IL-7) Selectively Promotes Mouse and Human IL-17–Producing Γδ Cells. Proc. Natl. Acad. Sci. USA 2012, 109, 17549–17554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leijten, E.F.; Kempen, T.S.; Olde Nordkamp, M.A.; Pouw, J.N.; Kleinrensink, N.J.; Vincken, N.L.; Mertens, J.; Balak, D.M.W.; Verhagen, F.H.; Hartgring, S.A.; et al. Tissue-Resident Memory CD8+ T Cells from Skin Differentiate Psoriatic Arthritis From Psoriasis. Arthritis Rheumatol. 2021, 73, 1220–1232. [Google Scholar] [CrossRef]
- Diani, M.; Casciano, F.; Marongiu, L.; Longhi, M.; Altomare, A.; Pigatto, P.D.; Secchiero, P.; Gambari, R.; Banfi, G.; Manfredi, A.A.; et al. Increased Frequency of Activated CD8+ T Cell Effectors in Patients with Psoriatic Arthritis. Sci. Rep. 2019, 9, 10870. [Google Scholar] [CrossRef] [Green Version]
- Steel, K.J.A.; Srenathan, U.; Ridley, M.; Durham, L.E.; Wu, S.; Ryan, S.E.; Hughes, C.D.; Chan, E.; Kirkham, B.W.; Taams, L.S. Polyfunctional, Proinflammatory, Tissue-Resident Memory Phenotype and Function of Synovial Interleukin-17A+ CD 8+ T Cells in Psoriatic Arthritis. Arthritis Rheumatol. 2020, 72, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Srenathan, U.; Steel, K.; Taams, L.S. IL-17+ CD8+ T Cells: Differentiation, Phenotype and Role in Inflammatory Disease. Immunol. Lett. 2016, 178, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Bowes, J.; Budu-Aggrey, A.; Huffmeier, U.; Uebe, S.; Steel, K.; Hebert, H.L.; Wallace, C.; Massey, J.; Bruce, I.N.; Bluett, J.; et al. Dense Genotyping of Immune-Related Susceptibility Loci Reveals New Insights into the Genetics of Psoriatic Arthritis. Nat. Commun. 2015, 6, 6046. [Google Scholar] [CrossRef] [Green Version]
- Winchester, R.; Minevich, G.; Steshenko, V.; Kirby, B.; Kane, D.; Greenberg, D.A.; FitzGerald, O. HLA Associations Reveal Genetic Heterogeneity in Psoriatic Arthritis and in the Psoriasis Phenotype. Arthritis Rheum. 2012, 64, 1134–1144. [Google Scholar] [CrossRef]
- Cortes, A.; Pulit, S.L.; Leo, P.J.; Pointon, J.J.; Robinson, P.C.; Weisman, M.H.; Ward, M.; Gensler, L.S.; Zhou, X.; Garchon, H.-J.; et al. Major Histocompatibility Complex Associations of Ankylosing Spondylitis Are Complex and Involve Further Epistasis with ERAP1. Nat. Commun. 2015, 6, 7146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosine, N.; Miceli-Richard, C. Innate Cells: The Alternative Source of IL-17 in Axial and Peripheral Spondyloarthritis? Front. Immunol. 2021, 11, 553742. [Google Scholar] [CrossRef] [PubMed]
- Guggino, G.; Ciccia, F.; Di Liberto, D.; Lo Pizzo, M.; Ruscitti, P.; Cipriani, P.; Ferrante, A.; Sireci, G.; Dieli, F.; Fourniè, J.J.; et al. Interleukin (IL)-9/IL-9R Axis Drives Γδ T Cells Activation in Psoriatic Arthritis Patients. Clin. Exp. Immunol. 2016, 186, 277–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, J.D.; González, F.H.M.; Schmitz, S.; Chennupati, V.; Föhse, L.; Kremmer, E.; Förster, R.; Prinz, I. CCR6 and NK1.1 Distinguish between IL-17A and IFN-γ-Producing Γδ Effector T Cells: Innate Immunity. Eur. J. Immunol. 2009, 39, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.; Hirota, K.; Cua, D.J.; Stockinger, B.; Veldhoen, M. Interleukin-17-Producing Γδ T Cells Selectively Expand in Response to Pathogen Products and Environmental Signals. Immunity 2009, 31, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Keijsers, R.R.M.C.; Joosten, I.; van Erp, P.E.J.; Koenen, H.J.P.M.; van de Kerkhof, P.C.M. Cellular Sources of IL-17 in Psoriasis: A Paradigm Shift? Exp. Dermatol. 2014, 23, 799–803. [Google Scholar] [CrossRef]
- Blauvelt, A.; Chiricozzi, A. The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis. Clin. Rev. Allergy Immunol. 2018, 55, 379–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venken, K.; Jacques, P.; Mortier, C.; Labadia, M.E.; Decruy, T.; Coudenys, J.; Hoyt, K.; Wayne, A.L.; Hughes, R.; Turner, M.; et al. RORγt Inhibition Selectively Targets IL-17 Producing INKT and Γδ-T Cells Enriched in Spondyloarthritis Patients. Nat. Commun. 2019, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Rosine, N.; Rowe, H.; Koturan, S.; Yahia-Cherbal, H.; Leloup, C.; Watad, A.; Berenbaum, F.; Sellam, J.; Dougados, M.; Aimanianda, V.; et al. Characterization of Blood Mucosal-Associated Invariant T Cells in Patients with Axial Spondyloarthritis and of Resident Mucosal-Associated Invariant T Cells From the Axial Entheses of Non-Axial Spondyloarthritis Control Patients. Arthritis Rheumatol. 2022, 74, 1786–1795. [Google Scholar] [CrossRef]
- Pisarska, M.M.; Dunne, M.R.; O’Shea, D.; Hogan, A.E. Interleukin-17 Producing Mucosal Associated Invariant T Cells - Emerging Players in Chronic Inflammatory Diseases? Eur. J. Immunol. 2020, 50, 1098–1108. [Google Scholar] [CrossRef]
- Toussirot, É.; Laheurte, C.; Gaugler, B.; Gabriel, D.; Saas, P. Increased IL-22- and IL-17A-Producing Mucosal-Associated Invariant T Cells in the Peripheral Blood of Patients with Ankylosing Spondylitis. Front. Immunol. 2018, 9, 1610. [Google Scholar] [CrossRef] [PubMed]
- Menon, B.; Gullick, N.J.; Walter, G.J.; Rajasekhar, M.; Garrood, T.; Evans, H.G.; Taams, L.S.; Kirkham, B.W. Interleukin-17+CD8+ T Cells Are Enriched in the Joints of Patients with Psoriatic Arthritis and Correlate With Disease Activity and Joint Damage Progression: IL-17+CD8+ T Cell Enrichment in the PsA Joint. Arthritis Rheumatol. 2014, 66, 1272–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leijten, E.F.A.; van Kempen, T.S.; Boes, M.; Michels-van Amelsfort, J.M.R.; Hijnen, D.; Hartgring, S.A.Y.; van Roon, J.A.G.; Wenink, M.H.; Radstake, T.R.D.J. Brief Report: Enrichment of Activated Group 3 Innate Lymphoid Cells in Psoriatic Arthritis Synovial Fluid: Enrichment of Activated Group 3 ILCs in PsA Synovial Fluid. Arthritis Rheumatol. 2015, 67, 2673–2678. [Google Scholar] [CrossRef] [Green Version]
- Soare, A.; Weber, S.; Maul, L.; Rauber, S.; Gheorghiu, A.M.; Luber, M.; Houssni, I.; Kleyer, A.; von Pickardt, G.; Gado, M.; et al. Cutting Edge: Homeostasis of Innate Lymphoid Cells Is Imbalanced in Psoriatic Arthritis. J. Immunol. 2018, 200, 1249–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuthbert, R.J.; Fragkakis, E.M.; Dunsmuir, R.; Li, Z.; Coles, M.; Marzo-Ortega, H.; Giannoudis, P.V.; Jones, E.; El-Sherbiny, Y.M.; McGonagle, D. Brief Report: Group 3 Innate Lymphoid Cells in Human Enthesis: HUMAN ENTHESIS ILC3. Arthritis Rheumatol. 2017, 69, 1816–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciccia, F.; Guggino, G.; Rizzo, A.; Saieva, L.; Peralta, S.; Giardina, A.; Cannizzaro, A.; Sireci, G.; De Leo, G.; Alessandro, R.; et al. Type 3 Innate Lymphoid Cells Producing IL-17 and IL-22 Are Expanded in the Gut, in the Peripheral Blood, Synovial Fluid and Bone Marrow of Patients with Ankylosing Spondylitis. Ann. Rheum. Dis. 2015, 74, 1739–1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, A.C.; Chaurasia, S.; Mishra, S.K.; Aggarwal, A.; Misra, R. IL-17 and IFN-γ Producing NK and Γδ-T Cells Are Preferentially Expanded in Synovial Fluid of Patients with Reactive Arthritis and Undifferentiated Spondyloarthritis. Clin. Immunol. 2017, 183, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Kucuksezer, U.C.; Aktas Cetin, E.; Esen, F.; Tahrali, I.; Akdeniz, N.; Gelmez, M.Y.; Deniz, G. The Role of Natural Killer Cells in Autoimmune Diseases. Front. Immunol. 2021, 12, 622306. [Google Scholar] [CrossRef]
- Peters, B.M.; Coleman, B.M.; Willems, H.M.E.; Barker, K.S.; Aggor, F.E.Y.; Cipolla, E.; Verma, A.H.; Bishu, S.; Huppler, A.H.; Bruno, V.M.; et al. The Interleukin (IL) 17R/IL-22R Signaling Axis Is Dispensable for Vulvovaginal Candidiasis Regardless of Estrogen Status. J. Infect. Dis. 2020, 221, 1554–1563. [Google Scholar] [CrossRef]
- van der Heijde, D.; Deodhar, A.; Baraliakos, X.; Brown, M.A.; Dobashi, H.; Dougados, M.; Elewaut, D.; Ellis, A.M.; Fleurinck, C.; Gaffney, K.; et al. Efficacy and Safety of Bimekizumab in Axial Spondyloarthritis: Results of Two Parallel Phase 3 Randomised Controlled Trials. Ann. Rheum. Dis. 2023, 82, 515–526. [Google Scholar] [CrossRef]
- Glatt, S.; Baeten, D.; Baker, T.; Griffiths, M.; Ionescu, L.; Lawson, A.D.G.; Maroof, A.; Oliver, R.; Popa, S.; Strimenopoulou, F.; et al. Dual IL-17A and IL-17F Neutralisation by Bimekizumab in Psoriatic Arthritis: Evidence from Preclinical Experiments and a Randomised Placebo-Controlled Clinical Trial That IL-17F Contributes to Human Chronic Tissue Inflammation. Ann. Rheum. Dis. 2018, 77, 523–532. [Google Scholar] [CrossRef]
- Reinhardt, A.; Yevsa, T.; Worbs, T.; Lienenklaus, S.; Sandrock, I.; Oberdörfer, L.; Korn, T.; Weiss, S.; Förster, R.; Prinz, I. Interleukin-23-Dependent γ/δ T Cells Produce Interleukin-17 and Accumulate in the Enthesis, Aortic Valve, and Ciliary Body in Mice: ENTHESIS-RESIDENT γ/δ T CELLS. Arthritis Rheumatol. 2016, 68, 2476–2486. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Blijdorp, I.C.; van Mens, L.J.J.; Bowcutt, R.; Latuhihin, T.E.; van de Sande, M.G.H.; Shaw, S.; Yeremenko, N.G.; Baeten, D.L.P. Interleukin 17A and IL-17F Expression and Functional Responses in Rheumatoid Arthritis and Peripheral Spondyloarthritis. J. Rheumatol. 2020, 47, 1606–1613. [Google Scholar] [CrossRef] [PubMed]
- Novatchkova, M.; Leibbrandt, A.; Werzowa, J.; Neubüser, A.; Eisenhaber, F. The STIR-Domain Superfamily in Signal Transduction, Development and Immunity. Trends Biochem. Sci. 2003, 28, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Klose, C.S.N.; Artis, D. Innate Lymphoid Cells as Regulators of Immunity, Inflammation and Tissue Homeostasis. Nat. Immunol. 2016, 17, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Mcdermott, N.; Macleod, T.; Rao, A.S.; Borse, V.; Loughenbury, P.; Dunsmuir, R.; Khan, A.; Maroof, A.; Mcgonagle, D. AB0011 CYTOMETRIC ANALYSIS OF ACTIVATED ENTHESEAL TISSUE RESIDENT T-CELLS REVEALS IL-17F AS THE DOMINANT IL-17 ISOFORM EXPRESSED BY INNATE AND ADAPTIVE LYMPHOCYTES. Ann. Rheum. Dis. 2023, 82, 1184–1185. [Google Scholar] [CrossRef]
- Baeten, D.; Østergaard, M.; Wei, J.C.-C.; Sieper, J.; Järvinen, P.; Tam, L.-S.; Salvarani, C.; Kim, T.-H.; Solinger, A.; Datsenko, Y.; et al. Risankizumab, an IL-23 Inhibitor, for Ankylosing Spondylitis: Results of a Randomised, Double-Blind, Placebo-Controlled, Proof-of-Concept, Dose-Finding Phase 2 Study. Ann. Rheum. Dis. 2018, 77, 1295–1302. [Google Scholar] [CrossRef] [Green Version]
- van der Heijde, D.; Cheng-Chung Wei, J.; Dougados, M.; Mease, P.; Deodhar, A.; Maksymowych, W.P.; Van den Bosch, F.; Sieper, J.; Tomita, T.; Landewé, R.; et al. Ixekizumab, an Interleukin-17A Antagonist in the Treatment of Ankylosing Spondylitis or Radiographic Axial Spondyloarthritis in Patients Previously Untreated with Biological Disease-Modifying Anti-Rheumatic Drugs (COAST-V): 16 Week Results of a Phase 3 Randomised, Double-Blind, Active-Controlled and Placebo-Controlled Trial. Lancet 2018, 392, 2441–2451. [Google Scholar] [CrossRef] [Green Version]
- Baeten, D.; Sieper, J.; Braun, J.; Baraliakos, X.; Dougados, M.; Emery, P.; Deodhar, A.; Porter, B.; Martin, R.; Andersson, M.; et al. Secukinumab, an Interleukin-17A Inhibitor, in Ankylosing Spondylitis. N. Engl. J. Med. 2015, 373, 2534–2548. [Google Scholar] [CrossRef] [Green Version]
- Deodhar, A.; Blanco, R.; Dokoupilová, E.; Hall, S.; Kameda, H.; Kivitz, A.J.; Poddubnyy, D.; Sande, M.; Wiksten, A.S.; Porter, B.O.; et al. Improvement of Signs and Symptoms of Nonradiographic Axial Spondyloarthritis in Patients Treated With Secukinumab: Primary Results of a Randomized, Placebo-Controlled Phase III Study. Arthritis Rheumatol. 2021, 73, 110–120. [Google Scholar] [CrossRef]
- Deodhar, A.; Helliwell, P.S.; Boehncke, W.-H.; Kollmeier, A.P.; Hsia, E.C.; Subramanian, R.A.; Xu, X.L.; Sheng, S.; Agarwal, P.; Zhou, B.; et al. Guselkumab in Patients with Active Psoriatic Arthritis Who Were Biologic-Naive or Had Previously Received TNFα Inhibitor Treatment (DISCOVER-1): A Double-Blind, Randomised, Placebo-Controlled Phase 3 Trial. Lancet 2020, 395, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Chong, W.P.; Mattapallil, M.J.; Raychaudhuri, K.; Bing, S.J.; Wu, S.; Zhong, Y.; Wang, W.; Chen, Z.; Silver, P.B.; Jittayasothorn, Y.; et al. The Cytokine IL-17A Limits Th17 Pathogenicity via a Negative Feedback Loop Driven by Autocrine Induction of IL-24. Immunity 2020, 53, 384–397e5. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.; Fahrbach, K.; Leonardi, C.; Augustin, M.; Neupane, B.; Kazmierska, P.; Betts, M.; Freitag, A.; Kiri, S.; Taieb, V.; et al. Efficacy of Bimekizumab and Other Biologics in Moderate to Severe Plaque Psoriasis: A Systematic Literature Review and a Network Meta-Analysis. Dermatol. Ther. 2022, 12, 1777–1792. [Google Scholar] [CrossRef] [PubMed]
- Iznardo, H.; Puig, L. Dual Inhibition of IL-17A and IL-17F in Psoriatic Disease. Ther. Adv. Chronic Dis. 2021, 12, 204062232110378. [Google Scholar] [CrossRef] [PubMed]
- Freitas, E.; Torres, T. Bimekizumab: The new drug in the biologics armamentarium for psoriasis. Drugs Context 2021, 10, 2021-4-1. [Google Scholar] [CrossRef]
- Mease, P.J.; Asahina, A.; Gladman, D.D.; Tanaka, Y.; Tillett, W.; Ink, B.; Assudani, D.; de la Loge, C.; Coarse, J.; Eells, J.; et al. Effect of Bimekizumab on Symptoms and Impact of Disease in Patients with Psoriatic Arthritis over 3 Years: Results from BE ACTIVE. Rheumatology 2023, 62, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Merola, J.F.; Landewé, R.; McInnes, I.B.; Mease, P.J.; Ritchlin, C.T.; Tanaka, Y.; Asahina, A.; Behrens, F.; Gladman, D.D.; Gossec, L.; et al. Bimekizumab in Patients with Active Psoriatic Arthritis and Previous Inadequate Response or Intolerance to Tumour Necrosis Factor-α Inhibitors: A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial (BE COMPLETE). Lancet 2023, 401, 38–48. [Google Scholar] [CrossRef]
- Coates, L.C.; McInnes, I.B.; Merola, J.F.; Warren, R.B.; Kavanaugh, A.; Gottlieb, A.B.; Gossec, L.; Assudani, D.; Bajracharya, R.; Coarse, J.; et al. Safety and Efficacy of Bimekizumab in Patients With Active Psoriatic Arthritis: Three-Year Results From a Phase IIb Randomized Controlled Trial and Its Open-Label Extension Study. Arthritis Rheumatol. 2022, 74, 1959–1970. [Google Scholar] [CrossRef]
- McInnes, I.B.; Asahina, A.; Coates, L.C.; Landewé, R.; Merola, J.F.; Ritchlin, C.T.; Tanaka, Y.; Gossec, L.; Gottlieb, A.B.; Warren, R.B.; et al. Bimekizumab in Patients with Psoriatic Arthritis, Naive to Biologic Treatment: A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial (BE OPTIMAL). Lancet 2023, 401, 25–37. [Google Scholar] [CrossRef]
- Ruggiero, A.; Potestio, L.; Camela Snr, E.; Fabbrocini, G.; Megna, M. Bimekizumab for the Treatment of Psoriasis: A Review of the Current Knowledge. PTT 2022, 12, 127–137. [Google Scholar] [CrossRef]
- Vanheusden, K.; Detalle, L.; Hemeryck, A.; Vicari, A.; Grenningloh, R.; Poelmans, S.; Wouters, H.; Stöhr, T. Pre-Clinical Proof-Of-Concept Of ALX-0761, a Nanobody® Neutralizing Both IL-17A and F in a Cynomolgus Monkey Collagen Induced Arthritis Model. In Proceedings of the 2013 ACR/ARHP Annual Meeting [Internet], San Diego, CA, USA, 25–30 October 2013; Available online: https://acrabstracts.org/abstract/pre-clinical-proof-of-concept-of-alx-0761-a-nanobody-neutralizing-both-il-17a-and-f-in-a-cynomolgus-monkey-collagen-induced-arthritis-model/ (accessed on 8 May 2023).
|
Study | Duration | Branches | PASI90 Week 16 | PASI100 Week 16 |
---|---|---|---|---|
BE-VIVID | 52 weeks | Bimekizumab | 85% | 59% |
Ustekinumab | 50% | 21% | ||
Placebo | 5% | 0% | ||
BE-READY | 56 weeks | Bimekizumab | 91% | 68% |
Placebo | 1% | 1% | ||
BE-SURE | 56 weeks | Bimekizumab | 86% | 61% |
Adalimumab | 47% | 24% | ||
BE-RADIANT | 48 weeks | Bimekizumab | 86% | 62% |
Secukinumab | 74% | 49% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Rodríguez, G.; Puig, L. Pathogenic Role of IL-17 and Therapeutic Targeting of IL-17F in Psoriatic Arthritis and Spondyloarthropathies. Int. J. Mol. Sci. 2023, 24, 10305. https://doi.org/10.3390/ijms241210305
Sánchez-Rodríguez G, Puig L. Pathogenic Role of IL-17 and Therapeutic Targeting of IL-17F in Psoriatic Arthritis and Spondyloarthropathies. International Journal of Molecular Sciences. 2023; 24(12):10305. https://doi.org/10.3390/ijms241210305
Chicago/Turabian StyleSánchez-Rodríguez, Guillermo, and Lluís Puig. 2023. "Pathogenic Role of IL-17 and Therapeutic Targeting of IL-17F in Psoriatic Arthritis and Spondyloarthropathies" International Journal of Molecular Sciences 24, no. 12: 10305. https://doi.org/10.3390/ijms241210305
APA StyleSánchez-Rodríguez, G., & Puig, L. (2023). Pathogenic Role of IL-17 and Therapeutic Targeting of IL-17F in Psoriatic Arthritis and Spondyloarthropathies. International Journal of Molecular Sciences, 24(12), 10305. https://doi.org/10.3390/ijms241210305