Effects of Moringa oleifera Seed Oil on Cultured Human Sebocytes In Vitro and Comparison with Other Oil Types
Abstract
:1. Introduction
2. Results
2.1. Fatty Acid Content in the Vegetable Oils
2.2. Moringa Seed Oil Stimulates Sebaceous Lipogenesis
2.3. Moringa Seed Oil Exhibits Anti-Inflammatory Properties
2.4. Moringa Oil Leads to an Anti-Inflammatory Fatty Acid Profile in Sebocytes
2.5. Effect of Moringa Seed Oil on SZ95 Sebocyte Proliferation
3. Discussion
4. Materials and Methods
4.1. Cell Cultures and Reagents
4.2. Fatty Acid Content in the Vegetable Oils Tested
4.3. Cell Viability
4.4. Cell Proliferation
4.5. Lipid Staining
4.6. Cytokine Secretion
4.7. Lipid Extraction
4.8. Fatty Acid Determination
4.9. Gas Chromatography
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barta, C. Moringa oleifera: Die Wichtigste Pflanze in der Menschheitsgeschichte; Das Neue Licht: Venlo, The Netherlands, 2015. [Google Scholar]
- Eilert, U. Antimikrobielle Substanzen von Ruta Graveolens Sowie Moringa oleifera: Versuche zur Beeinflussung der Produktion in Kalluskulturen, Insbesondere Durch Mischkultur mit Pilzen; Technische Universitaet Braunschweig: Braunschweig, Germany, 1983. [Google Scholar]
- Xiao, X.; Wang, J.; Meng, C.; Liang, W.; Wang, T.; Zhou, B.; Wang, Y.; Luo, X.; Gao, L.; Zhang, L. Moringa oleifera Lam and Its Therapeutic Effects in Immune Disorders. Front. Pharmacol. 2020, 11, 566783. [Google Scholar] [CrossRef] [PubMed]
- Lea, M. Bioremediation of Turbid Surface Water Using Seed Extract from the Moringa oleifera Lam. (Drumstick) Tree. Curr. Protoc. Microbiol. 2010, 16, 1G.2.1–1G.2.14. [Google Scholar] [CrossRef] [PubMed]
- Bassey, K.; Mabowe, M.; Mothibe, M.; Witika, B.A. Chemical Characterization and Nutritional Markers of South African Moringa oleifera Seed Oils. Molecules 2022, 27, 5749. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Moringa oleifera Seeds and Oil: Characteristics and Uses for Human Health. Int. J. Mol. Sci. 2016, 17, 2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özcan, M. Moringa spp: Composition and Bioactive Properties. S. Afr. J. Bot. 2020, 129, 15–31. [Google Scholar] [CrossRef]
- Zouboulis, C.C.; Jourdan, E.; Picardo, M. Acne Is an Inflammatory Disease and Alterations of Sebum Composition Initiate Acne Lesions. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Lovászi, M.; Szegedi, A.; Zouboulis, C.C.; Törőcsik, D. Sebaceous-Immunobiology Is Orchestrated by Sebum Lipids. Dermatoendocrinology 2017, 9, e1375636. [Google Scholar] [CrossRef] [Green Version]
- Lovászi, M.; Mattii, M.; Eyerich, K.; Gácsi, A.; Csányi, E.; Kovács, D.; Rühl, R.; Szegedi, A.; Kemény, L.; Ståhle, M.; et al. Sebum Lipids Influence Macrophage Polarization and Activation. Br. J. Dermatol. 2017, 177, 1671–1682. [Google Scholar] [CrossRef] [Green Version]
- Letawe, C.; Boone, M.; Piérard, G.E. Digital Image Analysis of the Effect of Topically Applied Linoleic Acid on Acne Microcomedones. Clin. Exp. Dermatol. 1998, 23, 56–58. [Google Scholar] [CrossRef]
- Zouboulis, C.C.; Angres, S.; Seltmann, H. Regulation of Stearoyl-Coenzyme A Desaturase and Fatty Acid Delta-6 Desaturase-2 Expression by Linoleic Acid and Arachidonic Acid in Human Sebocytes Leads to Enhancement of Proinflammatory Activity but Does Not Affect Lipogenesis. Br. J. Dermatol. 2011, 165, 269–276. [Google Scholar] [CrossRef]
- Zouboulis, C.C. Acne and Sebaceous Gland Function. Clin. Dermatol. 2004, 22, 360–366. [Google Scholar] [CrossRef]
- Nikkari, T. Comparative Chemistry of Sebum. J. Investig. Dermatol. 1974, 62, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Seltmann, H.; Nikolakis, G.; Zouboulis, C.C. Novel Pattern of Sebaceous Differentiation and Lipogenesis Induced by the ω-9 Fatty Acid Palmitic Acid. Exp. Dermatol. 2013, 22, e18. [Google Scholar]
- Kang, J.X.; Wang, J. A Simplified Method for Analysis of Polyunsaturated Fatty Acids. BMC Biochem. 2005, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Alestas, T.; Ganceviciene, R.; Fimmel, S.; Müller-Decker, K.; Zouboulis, C.C. Enzymes Involved in the Biosynthesis of Leukotriene B4 and Prostaglandin E2 Are Active in Sebaceous Glands. J. Mol. Med. 2006, 84, 75–87. [Google Scholar] [CrossRef]
- Makrantonaki, E.; Zouboulis, C.C. Testosterone Metabolism to 5alpha-Dihydrotestosterone and Synthesis of Sebaceous Lipids Is Regulated by the Peroxisome Proliferator-Activated Receptor Ligand Linoleic Acid in Human Sebocytes. Br. J. Dermatol. 2007, 156, 428–432. [Google Scholar] [CrossRef]
- Dozsa, A.; Dezso, B.; Toth, B.I.; Bacsi, A.; Poliska, S.; Camera, E.; Picardo, M.; Zouboulis, C.C.; Bíró, T.; Schmitz, G.; et al. PPARγ-Mediated and Arachidonic Acid-Dependent Signaling Is Involved in Differentiation and Lipid Production of Human Sebocytes. J. Investig. Dermatol. 2014, 134, 910–920. [Google Scholar] [CrossRef] [Green Version]
- Nakatsuji, T.; Kao, M.C.; Zhang, L.; Zouboulis, C.C.; Gallo, R.L.; Huang, C.-M. Sebum Free Fatty Acids Enhance the Innate Immune Defense of Human Sebocytes by Upregulating Beta-Defensin-2 Expression. J. Investig. Dermatol. 2010, 130, 985–994. [Google Scholar] [CrossRef] [Green Version]
- Wróbel, A.; Seltmann, H.; Fimmel, S.; Müller-Decker, K.; Tsukada, M.; Bogdanoff, B.; Mandt, N.; Blume-Peytavi, U.; Orfanos, C.E.; Zouboulis, C.C. Differentiation and Apoptosis in Human Immortalized Sebocytes. J. Investig. Dermatol. 2003, 120, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Mattii, M.; Lovászi, M.; Garzorz, N.; Atenhan, A.; Quaranta, M.; Lauffer, F.; Konstantinow, A.; Küpper, M.; Zouboulis, C.C.; Kemeny, L.; et al. Sebocytes Contribute to Skin Inflammation by Promoting the Differentiation of T Helper 17 Cells. Br. J. Dermatol. 2018, 178, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Haile, M.; Duguma, H.T.; Chameno, G.; Kuyu, C.G. Effects of Location and Extraction Solvent on Physico Chemical Properties of Moringa Stenopetala Seed Oil. Heliyon 2019, 5, e02781. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://dreyer-stiftung.de/index.php/de/projekte/forschung (accessed on 14 June 2023).
- Zouboulis, C.C.; Picardo, M.; Ju, Q.; Kurokawa, I.; Törőcsik, D.; Bíró, T.; Schneider, M.R. Beyond Acne: Current Aspects of Sebaceous Gland Biology and Function. Rev. Endocr. Metab. Disord. 2016, 17, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Zouboulis, C.C.; Yoshida, G.J.; Wu, Y.; Xia, L.; Schneider, M.R. Sebaceous Gland: Milestones of 30-Year Modelling Research Dedicated to the “Brain of the Skin”. Exp. Dermatol. 2020, 29, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Zouboulis, C.C. Further Evidence of Sebaceous Differentiation Uniqueness: Holocrine Secretion of Sebocytes Is a Multistep, Cell-Specific Lysosomal DNase2-Mediated Mode of Programmed Cell Death. J. Investig. Dermatol. 2017, 137, 537–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossini, A.M.; Hou, X.; Exner, T.; Fauler, B.; Eberle, J.; Rabien, A.; Makrantonaki, E.; Zouboulis, C.C. Free Fatty Acids Induce Lipid Accumulation, Autophagy and Apoptosis in Human Sebocytes. Skin Pharmacol. Physiol. 2022, 36, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, I.; Layton, A.M.; Ogawa, R. Updated Treatment for Acne: Targeted Therapy Based on Pathogenesis. Dermatol. Ther. 2021, 11, 1129–1139. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kwack, M.H.; Lee, E.H.; Lee, W.J. Effects of Black Ginseng Water Extract under the Inflammatory Conditions of Cultured Sebocytes and Outer Root Sheath Cells. Ann. Dermatol. 2022, 34, 95–104. [Google Scholar] [CrossRef]
- Calmon-Hamaty, F.; Combe, B.; Hahne, M.; Morel, J. Lymphotoxin α Revisited: General Features and Implications in Rheumatoid Arthritis. Arthritis Res. Ther. 2011, 13, 232. [Google Scholar] [CrossRef] [Green Version]
- McNairn, A.J.; Doucet, Y.; Demaude, J.; Brusadelli, M.; Gordon, C.B.; Uribe-Rivera, A.; Lambert, P.F.; Bouez, C.; Breton, L.; Guasch, G. TGFβ Signaling Regulates Lipogenesis in Human Sebaceous Glands Cells. BMC Dermatol. 2013, 13, 2. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Luna, K.; Ansorena, D.; Astiasarán, I. Fatty Acid Profile, Sterols, and Squalene Content Comparison between Two Conventional (Olive Oil and Linseed Oil) and Three Non-Conventional Vegetable Oils (Echium Oil, Hempseed Oil, and Moringa Oil). J. Food Sci. 2022, 87, 1489–1499. [Google Scholar] [CrossRef]
- Xie, W. Characterization of Lipases from Staphylococcus Aureus and Staphylococcus Epidermidis Isolated from Human Facial Sebaceous Skin. J. Microbiol. Biotechnol. 2012, 22, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Zouboulis, C.C.; Seltmann, H.; Neitzel, H.; Orfanos, C.E. Establishment and Characterization of an Immortalized Human Sebaceous Gland Cell Line (SZ95). J. Investig. Dermatol. 1999, 113, 1011–1020. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.Q.; Zouboulis, C.; Detmar, M.; Mayer-da-Silva, A.; Stadler, R.; Orfanos, C.E. Isolation of Human Sebaceous Glands and Cultivation of Sebaceous Gland-Derived Cells as an in Vitro Model. J. Investig. Dermatol. 1989, 93, 315–321. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Ostermann, A.I.; Müller, M.; Willenberg, I.; Schebb, N.H. Determining the Fatty Acid Composition in Plasma and Tissues as Fatty Acid Methyl Esters Using Gas Chromatography—A Comparison of Different Derivatization and Extraction Procedures. Prostaglandins Leukot. Essent. Fatty Acids 2014, 91, 235–241. [Google Scholar] [CrossRef]
- Quehenberger, O.; Armando, A.M.; Dennis, E.A. High Sensitivity Quantitative Lipidomics Analysis of Fatty Acids in Biological Samples by Gas Chromatography-Mass Spectrometry. Biochim. Biophys. Acta 2011, 1811, 648–656. [Google Scholar] [CrossRef] [Green Version]
- Taheri, M.; Amiri-Farahani, L. Anti-Inflammatory and Restorative Effects of Olives in Topical Application. Dermatol. Res. Pract. 2021, 2021, 9927976. [Google Scholar] [CrossRef]
- Hueso-Montoro, C.; Moya-Muñoz, N.; Martín-Cebrián, J.; Huertas-Fernández, R.; Sánchez-Crisol, I.; García-Fernández, F.P.; Capilla-Díaz, C. Efficacy of Gel Containing Organic Extra Virgin Olive Oil for Peristomal Skin Hygiene: A Pilot Randomised Controlled Trial. J. Tissue Viability 2023, 32, 188–193. [Google Scholar] [CrossRef]
- Aksucu, G.; Azak, M.; Çağlar, S. Effects of Topical Oils on Neonatal Skin: A Systematic Review. Adv. Skin Wound Care 2022, 35, 1–9. [Google Scholar] [CrossRef]
- Al-Samydai, A.; Abu Hajleh, M.N.; Mayyas, A.; Al-Mamoori, F.; Al-Tawalbe, D.M.; Alqaraleh, M.; Mousa, M.A.; Aladwan, H.; Alazab, B.; Selwadi, D.; et al. Ethnopharmacological Study of Medicinal Plants Used in the Treatment of Skin Burns in Arab World. J. Burn Care Res. 2023, irad030. [Google Scholar] [CrossRef] [PubMed]
- Poursadra, E.; Anvari-Tafti, M.; Dehghani, A.; Eghbali-Babadi, M.; Rafiei, Z. Comparing the Effect of Henna Oil and Olive Oil on Pressure Ulcer Grade One in Intensive Care Units Patients. Adv. Biomed. Res. 2019, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Behroozian, T.; Goldshtein, D.; Ryan Wolf, J.; van den Hurk, C.; Finkelstein, S.; Lam, H.; Patel, P.; Kanee, L.; Lee, S.F.; Chan, A.W.; et al. MASCC Clinical Practice Guidelines for the Prevention and Management of Acute Radiation Dermatitis: Part 1) Systematic Review. EClinicalMedicine 2023, 58, 101886. [Google Scholar] [CrossRef] [PubMed]
Fatty Acid | Moringa Seed Oil | Olive Oil | Sunflower Oil |
---|---|---|---|
Saturated fatty acids | 23 | 15 | 9 |
Monounsaturated fatty acids | 75 | 70 | 27 |
Polyunsaturated fatty acids | 1 | 6 | 65 |
Oleic acid (C18:1n-9) | 66 | 72 | 14–37 |
Palmitic acid (C16:0) | 6 | 11 | 5–8 |
Linoleic acid (C18:2n-6) | 1 | 8 | 48–74 |
Stearic acid (C18:0) | 6 | 2 | 3–6 |
Palmitoleic acid (C16:1n-7) | 2 | 0–4 |
Fatty Acids | Control | Moringa Seed Oil | Olive Oil | Sunflower Oil | Linoleic Acid | |||||
---|---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | 24 h | 48 h | |
SFA | 31.9 | 20.0 | 26.5 | 29.1 | 30.4 | 25.7 | 13.6 | 15.7 | 16.8 | 14.2 |
C12:0 | - | - | - | - | - | - | 0.17 | 0.1 | - | - |
C13:0 | 0.8 | 0.5 | 0.2 | 0.5 | 0.2 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 |
C14:0 | 0.7 | 0.4 | 0.6 | 0.5 | 0.6 | 0.5 | 0.3 | 0.4 | 0.5 | 0.5 |
C16:0 | 20.3 | 12.7 | 14.2 | 15.1 | 16.4 | 13.6 | 7.3 | 8.2 | 8.7 | 6.9 |
C17:0 | 2.5 | 1.9 | 1.4 | 1.8 | 1.6 | 1.5 | 1.0 | 0.8 | 0.7 | 0.7 |
C18:0 | 7.6 | 4.5 | 8.5 | 9.0 | 9.7 | 8.6 | 3.9 | 5.6 | 6.3 | 5.6 |
C24:0 | 0 | 0 | 1.5 | 2.2 | 1.8 | 1.3 | 0.7 | 0.4 | 0.5 | 0.5 |
ΣMUFA | 48.1 | 55.3 | 56.6 | 53.0 | 50.0 | 54.3 | 65.8 | 65.7 | 20.2 | 14.5 |
C16:1n-7 | 2.1 | 2.7 | 2.2 | 2.5 | 2.1 | 1.9 | 1.2 | 0.8 | 0.9 | 0.7 |
C18:1n-9t | 8.4 | 1.2 | 0.5 | 2.3 | - | - | 0.5 | 0.3 | 0.3 | 0.3 |
C18:1n-9c | 32.5 | 44.5 | 45.8 | 39.6 | 40.8 | 45.5 | 59.4 | 60.7 | 15.8 | 10.9 |
C18:1n-7 | 5.1 | 7.0 | 6.2 | 6.0 | 5.4 | 5.2 | 3.2 | 2.3 | 2.8 | 2.1 |
C20:1n-9 | 0 | 0 | 0.8 | 1.2 | 0.8 | 0.7 | 0.7 | 1.0 | 0 | 0 |
C24:1n-9 | 0 | 0 | 1.1 | 1.5 | 1.0 | 1.1 | 0.8 | 0.6 | 0.4 | 0.5 |
ΣPUFA | 20.1 | 24.7 | 16.9 | 17.9 | 19.6 | 20.0 | 20.6 | 18.6 | 63.1 | 71.3 |
Σn-3-PUFA | 9.1 | 12.1 | 7.6 | 7.9 | 8.1 | 7.7 | 5.8 | 4.4 | 4.5 | 4.0 |
C20:5n-3 | 1.9 | 1.7 | 1.0 | 1.2 | 1.0 | 1.1 | 0.6 | 0.5 | 0.6 | 0.5 |
C22:5n-3 | 2.7 | 3.8 | 2.7 | 2.7 | 2.7 | 2.6 | 2.3 | 1.7 | 1.6 | 1.5 |
C22:6n-3 | 4.5 | 6.6 | 3.9 | 4.0 | 4.3 | 4.0 | 2.9 | 2.3 | 2.3 | 2.0 |
Σn-6-PUFA | 10.9 | 12.6 | 9.4 | 10.0 | 11.5 | 12.3 | 14.1 | 13.4 | 58.6 | 67.3 |
C18:2n-6c | 2.9 | 2.1 | 1.7 | 2.0 | 2.4 | 3.5 | 5.6 | 6.0 | 43.7 | 52.9 |
C18:3n-6 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.4 | 1.6 | 1.3 |
C20:2n-6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.3 | 2.1 |
C20:3n-6 | 0 | 0 | 0 | 0 | 0.9 | 0.8 | 0.7 | 0.6 | 2.4 | 2.2 |
C20:4n-6 | 8.0 | 10.5 | 7.7 | 8.1 | 8.3 | 8.0 | 6.5 | 5.7 | 8.5 | 7.6 |
C22:4n-6 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9 | 0.7 | 1.2 | 1.4 |
Σn-9-PUFA | ||||||||||
C20:3n-9 | 0 | 0 | 0 | 0 | 0 | 0 | 0.7 | 0.8 | 0 | 0 |
n-6/n-3 | 1.20 | 1.04 | 1.24 | 1.28 | 1.43 | 1.59 | 2.42 | 3.02 | 13.11 | 16.81 |
Saturated Fatty Acids | Monounsaturated Fatty Acids | Polyunsaturated Fatty Acids | |||
---|---|---|---|---|---|
C12:0 | Lauric acid | ||||
C13:0 | Tridecanoic acid | ||||
C14:0 | Myristic acid | ||||
C16:0 | Palmitic acid | C16:1n-7 | Palmitoleic acid | ||
C17:0 | Margaric acid | ||||
C18:0 | Stearic acid | C18:1n-9t | Elaidic acid | C18:2n-6c | Linoleic acid |
C18:1n-9c | Oleic acid | C18:3n-6 | γ-Linolenic acid | ||
C18:1n-7 | cis-Vaccenic acid | ||||
C20:1n-9 | 11-Eicosenoic acid | C20:2n-6 | 11,14-Eicosadienoic acid | ||
C20:3n-6 | homo-γ-Linolenic acid | ||||
C20:3n-9 | 5,8,11-Eicosatrienoic acid (Mead acid) | ||||
C20:4n-6 | Arachidonic acid | ||||
C20:5n-3 | Eicosapentaenoic acid | ||||
C22:6n-3 | Docosahexaenoic acid | ||||
C24:0 | Lignoceric acid | C24:1n-9 | Nervonic acid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zouboulis, C.C.; Hossini, A.M.; Hou, X.; Wang, C.; Weylandt, K.H.; Pietzner, A. Effects of Moringa oleifera Seed Oil on Cultured Human Sebocytes In Vitro and Comparison with Other Oil Types. Int. J. Mol. Sci. 2023, 24, 10332. https://doi.org/10.3390/ijms241210332
Zouboulis CC, Hossini AM, Hou X, Wang C, Weylandt KH, Pietzner A. Effects of Moringa oleifera Seed Oil on Cultured Human Sebocytes In Vitro and Comparison with Other Oil Types. International Journal of Molecular Sciences. 2023; 24(12):10332. https://doi.org/10.3390/ijms241210332
Chicago/Turabian StyleZouboulis, Christos C., Amir M. Hossini, Xiaoxiao Hou, Chaoxuan Wang, Karsten H. Weylandt, and Anne Pietzner. 2023. "Effects of Moringa oleifera Seed Oil on Cultured Human Sebocytes In Vitro and Comparison with Other Oil Types" International Journal of Molecular Sciences 24, no. 12: 10332. https://doi.org/10.3390/ijms241210332
APA StyleZouboulis, C. C., Hossini, A. M., Hou, X., Wang, C., Weylandt, K. H., & Pietzner, A. (2023). Effects of Moringa oleifera Seed Oil on Cultured Human Sebocytes In Vitro and Comparison with Other Oil Types. International Journal of Molecular Sciences, 24(12), 10332. https://doi.org/10.3390/ijms241210332