Radiosensitizing Effects of Irinotecan versus Oxaliplatin Alone and in Combination with 5-Fluorouracil on Human Colorectal Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. Cell Growth
2.2. Clonogenic Survival
2.3. DNA DSB Repair Capacity
2.4. Metabolic Activity
2.5. Proliferation
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Drug Preparation
4.3. Cell Growth under Drug Treatment
4.4. Irradiation
4.5. Colony-Forming Assay
4.6. γH2AX Foci Assay
4.7. Metabolic Assay
4.8. BrdU Assay
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sauer, R.; Becker, H.; Hohenberger, W.; Rödel, C.; Wittekind, C.; Fietkau, R.; Martus, P.; Tschmelitsch, J.; Hager, E.; Hess, C.F.; et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N. Engl. J. Med. 2004, 351, 1731–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosset, J.-F.; Collette, L.; Calais, G.; Mineur, L.; Maingon, P.; Radosevic-Jelic, L.; Daban, A.; Bardet, E.; Beny, A.; Ollier, J.-C. Chemotherapy with preoperative radiotherapy in rectal cancer. N. Engl. J. Med. 2006, 355, 1114–1123. [Google Scholar] [CrossRef] [PubMed]
- Gérard, J.-P.; Conroy, T.; Bonnetain, F.; Bouché, O.; Chapet, O.; Closon-Dejardin, M.-T.; Untereiner, M.; Leduc, B.; Francois, E.; Maurel, J.; et al. Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3-4 rectal cancers: Results of FFCD 9203. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 4620–4625. [Google Scholar] [CrossRef] [PubMed]
- Bosset, J.-F.; Calais, G.; Mineur, L.; Maingon, P.; Radosevic-Jelic, L.; Daban, A.; Bardet, E.; Beny, A.; Briffaux, A.; Collette, L. Enhanced tumorocidal effect of chemotherapy with preoperative radiotherapy for rectal cancer: Preliminary results—EORTC 22921. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 5620–5627. [Google Scholar] [CrossRef] [PubMed]
- Rödel, C.; Liersch, T.; Hermann, R.M.; Arnold, D.; Reese, T.; Hipp, M.; Fürst, A.; Schwella, N.; Bieker, M.; Hellmich, G.; et al. Multicenter phase II trial of chemoradiation with oxaliplatin for rectal cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Sauer, R.; Liersch, T.; Merkel, S.; Fietkau, R.; Hohenberger, W.; Hess, C.; Becker, H.; Raab, H.-R.; Villanueva, M.-T.; Witzigmann, H.; et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: Results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 1926–1933. [Google Scholar] [CrossRef]
- Bahadoer, R.R.; Dijkstra, E.A.; van Etten, B.; Marijnen, C.A.M.; Putter, H.; Kranenbarg, E.M.-K.; Roodvoets, A.G.H.; Nagtegaal, I.D.; Beets-Tan, R.G.H.; Blomqvist, L.K.; et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): A randomised, open-label, phase 3 trial. The Lancet. Oncology 2021, 22, 29–42. [Google Scholar] [CrossRef]
- Conroy, T.; Bosset, J.-F.; Etienne, P.-L.; Rio, E.; François, É.; Mesgouez-Nebout, N.; Vendrely, V.; Artignan, X.; Bouché, O.; Gargot, D.; et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 702–715. [Google Scholar] [CrossRef]
- Huerta, S.; Hrom, J. Oxaliplatin as a radiosensitizing agent in rectal cancer. Anti-Cancer Drugs 2011, 22, 317–323. [Google Scholar] [CrossRef]
- Rödel, C.; Graeven, U.; Fietkau, R.; Hohenberger, W.; Hothorn, T.; Arnold, D.; Hofheinz, R.-D.; Ghadimi, M.; Wolff, H.A.; Lang-Welzenbach, M.; et al. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): Final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2015, 16, 979–989. [Google Scholar] [CrossRef]
- Aschele, C.; Cionini, L.; Lonardi, S.; Pinto, C.; Cordio, S.; Rosati, G.; Artale, S.; Tagliagambe, A.; Ambrosini, G.; Rosetti, P.; et al. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: Pathologic results of the STAR-01 randomized phase III trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 2773–2780. [Google Scholar] [CrossRef] [PubMed]
- Allegra, C.J.; Yothers, G.; O’Connell, M.J.; Beart, R.W.; Wozniak, T.F.; Pitot, H.C.; Shields, A.F.; Landry, J.C.; Ryan, D.P.; Arora, A.; et al. Neoadjuvant 5-FU or Capecitabine Plus Radiation with or without Oxaliplatin in Rectal Cancer Patients: A Phase III Randomized Clinical Trial. J. Natl. Cancer Inst. 2015, 107, djv248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azria, D.; Doyen, J.; Jarlier, M.; Martel-Lafay, I.; Hennequin, C.; Etienne, P.; Vendrely, V.; François, E.; de La Roche, G.; Bouché, O.; et al. Late toxicities and clinical outcome at 5 years of the ACCORD 12/0405-PRODIGE 02 trial comparing two neoadjuvant chemoradiotherapy regimens for intermediate-risk rectal cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 2436–2442. [Google Scholar] [CrossRef] [PubMed]
- Schmoll, H.-J.; Stein, A.; van Cutsem, E.; Price, T.; Hofheinz, R.D.; Nordlinger, B.; Daisne, J.-F.; Janssens, J.; Brenner, B.; Reinel, H.; et al. Pre- and Postoperative Capecitabine Without or With Oxaliplatin in Locally Advanced Rectal Cancer: PETACC 6 Trial by EORTC GITCG and ROG, AIO, AGITG, BGDO, and FFCD. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 17–29. [Google Scholar] [CrossRef]
- Deng, Y.; Chi, P.; Lan, P.; Wang, L.; Chen, W.; Cui, L.; Chen, D.; Cao, J.; Wei, H.; Peng, X.; et al. Neoadjuvant Modified FOLFOX6 With or Without Radiation Versus Fluorouracil Plus Radiation for Locally Advanced Rectal Cancer: Final Results of the Chinese FOWARC Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 3223–3233. [Google Scholar] [CrossRef]
- Jiao, D.; Zhang, R.; Gong, Z.; Liu, F.; Chen, Y.; Yu, Q.; Sun, L.; Duan, H.; Zhu, S.; Liu, F.; et al. Fluorouracil-based preoperative chemoradiotherapy with or without oxaliplatin for stage II/III rectal cancer: A 3-year follow-up study. Chin. J. Cancer Res. 2015, 27, 588–596. [Google Scholar] [CrossRef]
- Illum, H. Irinotecan and radiosensitization in rectal cancer. Anti-Cancer Drugs 2011, 22, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Zhu, J.; Palmer, J.D.; Xu, Y.; Hu, W.; Gu, W.; Cai, S.; Zhang, Z. CAPIRI-IMRT: A phase II study of concurrent capecitabine and irinotecan with intensity-modulated radiation therapy for the treatment of recurrent rectal cancer. Radiat. Oncol. 2015, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Shin, S.J.; Koom, W.S.; Jung, I.; Keum, K.C.; Hur, H.; Min, B.S.; Baik, S.H.; Kim, N.K.; Kim, H.; et al. A Randomized Phase 2 Study of Neoadjuvant Chemoradiaton Therapy With 5-Fluorouracil/Leucovorin or Irinotecan/S-1 in Patients with Locally Advanced Rectal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 1015–1022. [Google Scholar] [CrossRef]
- Nakamura, T.; Yamashita, K.; Sato, T.; Ema, A.; Naito, M.; Watanabe, M. Neoadjuvant chemoradiation therapy using concurrent S-1 and irinotecan in rectal cancer: Impact on long-term clinical outcomes and prognostic factors. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.U.; Kim, D.Y.; Kim, S.Y.; Baek, J.Y.; Chang, H.J.; Kim, M.J.; Kim, T.H.; Park, J.W.; Oh, J.H. Comparison of two preoperative chemoradiotherapy regimens for locally advanced rectal cancer: Capecitabine alone versus capecitabine plus irinotecan. Radiat. Oncol. 2013, 8, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohiuddin, M.; Paulus, R.; Mitchell, E.; Hanna, N.; Yuen, A.; Nichols, R.; Yalavarthi, S.; Hayostek, C.; Willett, C. Neoadjuvant chemoradiation for distal rectal cancer: 5-year updated results of a randomized phase 2 study of neoadjuvant combined modality chemoradiation for distal rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 523–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahba, H.A.; El-Hadaad, H.A.; Roshdy, S. Combination of irinotecan and 5-fluorouracil with radiation in locally advanced rectal adenocarcinoma. J. Gastrointest. Cancer 2012, 43, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Gollins, S.; Sun Myint, A.; Haylock, B.; Wise, M.; Saunders, M.; Neupane, R.; Essapen, S.; Samuel, L.; Dougal, M.; Lloyd, A.; et al. Preoperative chemoradiotherapy using concurrent capecitabine and irinotecan in magnetic resonance imaging-defined locally advanced rectal cancer: Impact on long-term clinical outcomes. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.S.; Kim, D.Y.; Lim, S.-B.; Choi, H.S.; Jeong, S.-Y.; Jeong, J.Y.; Sohn, D.K.; Kim, D.-H.; Chang, H.J.; Park, J.-G.; et al. Preoperative chemoradiation with irinotecan and capecitabine in patients with locally advanced resectable rectal cancer: Long-term results of a Phase II study. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Ozawa, H.; Hatate, K.; Onosato, W.; Naito, M.; Nakamura, T.; Ihara, A.; Koizumi, W.; Hayakawa, K.; Okayasu, I.; et al. A Phase II trial of neoadjuvant preoperative chemoradiotherapy with S-1 plus irinotecan and radiation in patients with locally advanced rectal cancer: Clinical feasibility and response rate. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 677–683. [Google Scholar] [CrossRef]
- Shin, S.J.; Kim, N.K.; Keum, K.C.; Kim, H.G.; Im, J.S.; Choi, H.J.; Baik, S.H.; Choen, J.H.; Jeung, H.-C.; Rha, S.Y.; et al. Phase II study of preoperative chemoradiotherapy (CRT) with irinotecan plus S-1 in locally advanced rectal cancer. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2010, 95, 303–307. [Google Scholar] [CrossRef]
- Glynne-Jones, R.; Falk, S.; Maughan, T.S.; Meadows, H.M.; Sebag-Montefiore, D. A phase I/II study of irinotecan when added to 5-fluorouracil and leucovorin and pelvic radiation in locally advanced rectal cancer: A Colorectal Clinical Oncology Group Study. Br. J. Cancer 2007, 96, 551–558. [Google Scholar] [CrossRef] [Green Version]
- Willeke, F.; Horisberger, K.; Kraus-Tiefenbacher, U.; Wenz, F.; Leitner, A.; Hochhaus, A.; Grobholz, R.; Willer, A.; Kähler, G.; Post, S.; et al. A phase II study of capecitabine and irinotecan in combination with concurrent pelvic radiotherapy (CapIri-RT) as neoadjuvant treatment of locally advanced rectal cancer. Br. J. Cancer 2007, 96, 912–917. [Google Scholar] [CrossRef]
- Klautke, G.; Küchenmeister, U.; Foitzik, T.; Ludwig, K.; Prall, F.; Klar, E.; Fietkau, R. Concurrent chemoradiation with capecitabine and weekly irinotecan as preoperative treatment for rectal cancer: Results from a phase I/II study. Br. J. Cancer 2006, 94, 976–981. [Google Scholar] [CrossRef] [Green Version]
- Mohiuddin, M.; Winter, K.; Mitchell, E.; Hanna, N.; Yuen, A.; Nichols, C.; Shane, R.; Hayostek, C.; Willett, C. Randomized phase II study of neoadjuvant combined-modality chemoradiation for distal rectal cancer: Radiation Therapy Oncology Group Trial 0012. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.; Dotor, E.; Rivera, F.; Sánchez-Rovira, P.; Vega-Villegas, M.E.; Cervantes, A.; García, J.L.; Gallén, M.; Aranda, E. A Phase II study of preoperative radiotherapy and concomitant weekly irinotecan in combination with protracted venous infusion 5-fluorouracil, for resectable locally advanced rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Mehta, V.K.; Cho, C.; Ford, J.M.; Jambalos, C.; Poen, J.; Koong, A.; Lin, A.; Bastidas, J.A.; Young, H.; Dunphy, E.P.; et al. Phase II trial of preoperative 3D conformal radiotherapy, protracted venous infusion 5-fluorouracil, and weekly CPT-11, followed by surgery for ultrasound-staged T3 rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2003, 55, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fan, J.; Li, C.; Yang, L.; Wan, J.; Zhang, H.; Zhang, Z.; Zhu, J. The Impact of Chemotherapy Completion on the Efficacy of Irinotecan in the Preoperative Chemoradiotherapy of Locally Advanced Rectal Cancer: An Expanded Analysis of the CinClare Phase III Trial. Clin. Color. Cancer 2020, 19, e58–e69. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Liu, A.; Sun, X.; Liu, L.; Zhu, Y.; Zhang, T.; Jia, J.; Tan, S.; Wu, J.; Wang, X.; et al. Multicenter, Randomized, Phase III Trial of Neoadjuvant Chemoradiation With Capecitabine and Irinotecan Guided by UGT1A1 Status in Patients With Locally Advanced Rectal Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 4231–4239. [Google Scholar] [CrossRef]
- NCCN Guidelines. Rectal Cancer; Version 3.2022; NCCN: Plymouth, PA, USA, 2022.
- Leitlinienprogramm Onkologie. S3-Leitlinie Kolorektales Karzinom. Version 2.1 2019. Available online: https://www.leitlinienprogramm-onkologie.de/fileadmin/user_upload/Downloads/Leitlinien/Kolorektales_Karzinom/Version_2/LL_KRK_Langversion_2.1.pdf (accessed on 1 April 2023).
- Arbeitsgemeinschaft Internistische Onkologie (AIO). Consensus Statement of the AIO, the ACO, and the ARO; 2020; AIO Office Berlin, Kuno-Fischer-Straße 8, Germany. Available online: https://www.aio-portal.de/stellungnahmen.html?file=files/content/studien/stellungnahmen/2020/Stellungnahme_AIO_ACO_ARO_Rektumkarzinom%20_%2007_2020.pdf&cid=142 (accessed on 1 April 2023).
- Clifford, R.; Govindarajah, N.; Parsons, J.L.; Gollins, S.; West, N.P.; Vimalachandran, D. Systematic review of treatment intensification using novel agents for chemoradiotherapy in rectal cancer. Br. J. Surg. 2018, 105, 1553–1572. [Google Scholar] [CrossRef] [Green Version]
- Greenhalgh, T.A.; Dearman, C.; Sharma, R.A. Combination of Novel Agents with Radiotherapy to Treat Rectal Cancer. Clin. Oncol. 2016, 28, 116–139. [Google Scholar] [CrossRef]
- Rödel, C.; Sauer, R. Integration of novel agents into combined-modality treatment for rectal cancer patients. Strahlentherapie Onkologie 2007, 183, 227–235. [Google Scholar] [CrossRef]
- Zhu, A.X.; Willett, C.G. Chemotherapeutic and biologic agents as radiosensitizers in rectal cancer. Semin. Radiat. Oncol. 2003, 13, 454–468. [Google Scholar] [CrossRef]
- Blackstock, A.W.; Hess, S.; Chaney, S.; Tepper, J.E. Oxaliplatin: In vitro evidence of its radiation sensitizing activity—Preclinical observations relevant to clinical trials. (Abstract 202). Int. J. Radiat. Oncol. Biol. Phys. 1999, 45, 253–254. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, G.; Fu, Y.; Han, Y.; Guo, C.; Yin, L.; Cai, C.; Shen, H.; Wu, S.; Zeng, S. FOXC2 Promotes Oxaliplatin Resistance by Inducing Epithelial-Mesenchymal Transition via MAPK/ERK Signaling in Colorectal Cancer. OncoTargets Ther. 2020, 13, 1625–1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerda, M.B.; Lloyd, R.; Batalla, M.; Giannoni, F.; Casal, M.; Policastro, L. Silencing peroxiredoxin-2 sensitizes human colorectal cancer cells to ionizing radiation and oxaliplatin. Cancer Lett. 2017, 388, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Ma, J.; Deng, G.; Qu, Y.; Yin, L.; Li, Y.; Han, Y.; Cai, C.; Shen, H.; Zeng, S. ZEB1 Promotes Oxaliplatin Resistance through the Induction of Epithelial-Mesenchymal Transition in Colon Cancer Cells. J. Cancer 2017, 8, 3555–3566. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Lei, K.; Du, W.; Yang, L.; Shi, H.; Gao, Y.; Yin, P.; Liang, X.; Liu, J. Enhancement of oxaliplatin sensitivity in human colorectal cancer by hypericin mediated photodynamic therapy via ROS-related mechanism. Int. J. Biochem. Cell Biol. 2016, 71, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.-Y.; Deng, J.; Xiang, X.-J.; Zhang, L.; Yu, F.; Chen, J.; Sun, Z.; Feng, M.; Xiong, J.-P. miR-320 enhances the sensitivity of human colon cancer cells to chemoradiotherapy in vitro by targeting FOXM1. Biochem. Biophys. Res. Commun. 2015, 457, 125–132. [Google Scholar] [CrossRef]
- Hristova, N.R.; Tagscherer, K.E.; Fassl, A.; Kopitz, J.; Roth, W. Notch1-dependent regulation of p27 determines cell fate in colorectal cancer. Int. J. Oncol. 2013, 43, 1967–1975. [Google Scholar] [CrossRef] [Green Version]
- Folkvord, S.; Flatmark, K.; Seierstad, T.; Røe, K.; Rasmussen, H.; Ree, A.H. Inhibitory effects of oxaliplatin in experimental radiation treatment of colorectal carcinoma: Does oxaliplatin improve 5-fluorouracil-dependent radiosensitivity? Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2008, 86, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Noordhuis, P.; Laan, A.C.; van de Born, K.; Losekoot, N.; Kathmann, I.; Peters, G.J. Oxaliplatin activity in selected and unselected human ovarian and colorectal cancer cell lines. Biochem. Pharmacol. 2008, 76, 53–61. [Google Scholar] [CrossRef]
- Toscano, F.; Parmentier, B.; Fajoui, Z.E.; Estornes, Y.; Chayvialle, J.-A.; Saurin, J.-C.; Abello, J. p53 dependent and independent sensitivity to oxaliplatin of colon cancer cells. Biochem. Pharmacol. 2007, 74, 392–406. [Google Scholar] [CrossRef]
- William-Faltaos, S.; Rouillard, D.; Lechat, P.; Bastian, G. Cell cycle arrest by oxaliplatin on cancer cells. Fundam. Clin. Pharmacol. 2007, 21, 165–172. [Google Scholar] [CrossRef]
- Voland, C.; Bord, A.; Péleraux, A.; Pénarier, G.; Carrière, D.; Galiègue, S.; Cvitkovic, E.; Jbilo, O.; Casellas, P. Repression of cell cycle-related proteins by oxaliplatin but not cisplatin in human colon cancer cells. Mol. Cancer Ther. 2006, 5, 2149–2157. [Google Scholar] [CrossRef] [Green Version]
- Hata, T.; Yamamoto, H.; Ngan, C.Y.; Koi, M.; Takagi, A.; Damdinsuren, B.; Yasui, M.; Fujie, Y.; Matsuzaki, T.; Hemmi, H.; et al. Role of p21waf1/cip1 in effects of oxaliplatin in colorectal cancer cells. Mol. Cancer Ther. 2005, 4, 1585–1594. [Google Scholar] [CrossRef] [Green Version]
- Kjellström, J.; Kjellén, E.; Johnsson, A. In vitro radiosensitization by oxaliplatin and 5-fluorouracil in a human colon cancer cell line. Acta Oncol. 2005, 44, 687–693. [Google Scholar] [CrossRef]
- Arango, D.; Wilson, A.J.; Shi, Q.; Corner, G.A.; Arañes, M.J.; Nicholas, C.; Lesser, M.; Mariadason, J.M.; Augenlicht, L.H. Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br. J. Cancer 2004, 91, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Magné, N.; Fischel, J.L.; Formento, P.; Etienne, M.-C.; Dubreuil, A.; Marcié, S.; Lagrange, J.-L.; Milano, G. Oxaliplatin-5-fluorouracil and ionizing radiation. Importance of the sequence and influence of p53 status. Oncology 2003, 64, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimpour, M.; Mohammadian, M.; Pourheydar, B.; Moradi, Z.; Behrouzkia, Z. Effects of Radiotherapy in Combination with Irinotecan and 17-AAG on Bcl-2 and Caspase 3 Gene Expression in Colorectal Cancer Cells. J. Lasers Med. Sci. 2022, 13, e9. [Google Scholar] [CrossRef]
- Kimura, K.; Beppu, N.; Doi, H.; Kataoka, K.; Yamano, T.; Uchino, M.; Ikeda, M.; Ikeuchi, H.; Tomita, N. Impact of preoperative chemoradiotherapy using concurrent S-1 and CPT-11 on long-term clinical outcomes in locally advanced rectal cancer. World J. Gastrointest. Oncol. 2020, 12, 311–322. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Zhang, J.; Zhou, M.; Shen, L.; Deng, W.; Liang, L.; Hu, R.; Yang, W.; Yao, Y.; et al. Radiosensitization by irinotecan is attributed to G2/M phase arrest, followed by enhanced apoptosis, probably through the ATM/Chk/Cdc25C/Cdc2 pathway in p53-mutant colorectal cancer cells. Int. J. Oncol. 2018, 53, 1667–1680. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Shen, Q.; Tao, R.; Chang, W.; Li, R.; Xie, G.; Liu, W.; Zhang, P.; Tao, K. Wee1 inhibition can suppress tumor proliferation and sensitize p53 mutant colonic cancer cells to the anticancer effect of irinotecan. Mol. Med. Rep. 2018, 17, 3344–3349. [Google Scholar] [CrossRef] [PubMed]
- Paillas, S.; Causse, A.; Marzi, L.; de Medina, P.; Poirot, M.; Denis, V.; Vezzio-Vie, N.; Espert, L.; Arzouk, H.; Coquelle, A.; et al. MAPK14/p38α confers irinotecan resistance to TP53-defective cells by inducing survival autophagy. Autophagy 2012, 8, 1098–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, A.; Borghouts, C.; Delis, N.; Mack, L.; Brill, B.; Bernard, A.-C.; Coqueret, O.; Groner, B. Inhibition of Stat3 by peptide aptamer rS3-PA enhances growth suppressive effects of irinotecan on colorectal cancer cells. Horm. Mol. Biol. Clin. Investig. 2012, 10, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Mans, D.R.; Grivicich, I.; Peters, G.J.; Schwartsmann, G. Sequence-dependent growth inhibition and DNA damage formation by the irinotecan-5-fluorouracil combination in human colon carcinoma cell lines. Eur. J. Cancer 1999, 35, 1851–1861. [Google Scholar] [CrossRef]
- Pavillard, V.; Formento, P.; Rostagno, P.; Formento, J.L.; Fischel, J.L.; Francoual, M.; Etienne, M.C.; Milano, G. Combination of irinotecan (CPT11) and 5-fluorouracil with an analysis of cellular determinants of drug activity. Biochem. Pharmacol. 1998, 56, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Omura, M.; Torigoe, S.; Kubota, N. SN-38, a metabolite of the camptothecin derivative CPT-11, potentiates the cytotoxic effect of radiation in human colon adenocarcinoma cells grown as spheroids. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 1997, 43, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Amorino, G.P.; Hercules, S.K.; Mohr, P.J.; Pyo, H.; Choy, H. Preclinical evaluation of the orally active camptothecin analog, RFS-2000 (9-nitro-20(S)-camptothecin) as a radiation enhancer. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 503–509. [Google Scholar] [CrossRef]
- Chen, A.Y.; Scruggs, P.B.; Geng, L.; Rothenberg, M.L.; Hallahan, D.E. p53 and p21 are major cellular determinants for DNA topoisomerase I-mediated radiation sensitization in mammalian cells. Ann. New York Acad. Sci. 2000, 922, 298–300. [Google Scholar] [CrossRef]
- Chen, A.Y.; Okunieff, P.; Pommier, Y.; Mitchell, J.B. Mammalian DNA topoisomerase I mediates the enhancement of radiation cytotoxicity by camptothecin derivatives. Cancer Res. 1997, 57, 1529–1536. [Google Scholar]
- Tamura, K.; Takada, M.; Kawase, I.; Tada, T.; Kudoh, S.; Okishio, K.; Fukuoka, M.; Yamaoka, N.; Fujiwara, Y.; Yamakido, M. Enhancement of tumor radio-response by irinotecan in human lung tumor xenografts. Jpn. J. Cancer Res. Gann 1997, 88, 218–223. [Google Scholar] [CrossRef]
- Lamond, J.P.; Wang, M.; Kinsella, T.J.; Boothman, D.A. Radiation lethality enhancement with 9-aminocamptothecin: Comparison to other topoisomerase I inhibitors. Int. J. Radiat. Oncol. Biol. Phys. 1996, 36, 369–376. [Google Scholar] [CrossRef]
- Hennequin, C.; Giocanti, N.; Balosso, J.; Favaudon, V. Interaction of ionizing radiation with the topoisomerase I poison camptothecin in growing V-79 and HeLa cells. Cancer Res. 1994, 54, 1720–1728. [Google Scholar] [PubMed]
- Boothman, D.A.; Wang, M.; Schea, R.A.; Burrows, H.L.; Strickfaden, S.; Owens, J.K. Posttreatment exposure to camptothecin enhances the lethal effects of x-rays on radioresistant human malignant melanoma cells. Int. J. Radiat. Oncol. Biol. Phys. 1992, 24, 939–948. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.H.; Kolozsvary, A.; Khil, M.S. Potentiation of radiation response in human carcinoma cells in vitro and murine fibrosarcoma in vivo by topotecan, an inhibitor of DNA topoisomerase I. Int. J. Radiat. Oncol. Biol. Phys. 1992, 22, 515–518. [Google Scholar] [CrossRef]
- Mattern, M.R.; Hofmann, G.A.; McCabe, F.L.; Johnson, R.K. Synergistic cell killing by ionizing radiation and topoisomerase I inhibitor topotecan (SK&F 104864). Cancer research 1991, 51, 5813–5816. [Google Scholar]
- Okuno, T.; Kawai, K.; Hata, K.; Murono, K.; Emoto, S.; Kaneko, M.; Sasaki, K.; Nishikawa, T.; Tanaka, T.; Nozawa, H. SN-38 Acts as a Radiosensitizer for Colorectal Cancer by Inhibiting the Radiation-induced Up-regulation of HIF-1α. Anticancer. Res. 2018, 38, 3323–3331. [Google Scholar] [CrossRef]
- Meisenberg, C.; Ashour, M.E.; El-Shafie, L.; Liao, C.; Hodgson, A.; Pilborough, A.; Khurram, S.A.; Downs, J.A.; Ward, S.E.; El-Khamisy, S.F. Epigenetic changes in histone acetylation underpin resistance to the topoisomerase I inhibitor irinotecan. Nucleic Acids Res. 2017, 45, 1159–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krbal, L.; Hanušová, V.; Soukup, J.; John, S.; Matoušková, P.; Ryška, A. Contribution of in vitro comparison of colorectal carcinoma cells from primary and metastatic lesions to elucidation of mechanisms of tumor progression and response to anticancer therapy. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2016, 37, 9565–9578. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Huang, S.; Tougeron, D.; Sinicrope, F.A. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells. PloS ONE 2013, 8, e65369. [Google Scholar] [CrossRef] [Green Version]
- Shelton, J.W.; Waxweiler, T.V.; Landry, J.; Gao, H.; Xu, Y.; Wang, L.; El-Rayes, B.; Shu, H.-K.G. In vitro and in vivo enhancement of chemoradiation using the oral PARP inhibitor ABT-888 in colorectal cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 469–476. [Google Scholar] [CrossRef]
- Davidson, D.; Coulombe, Y.; Martinez-Marignac, V.L.; Amrein, L.; Grenier, J.; Hodkinson, K.; Masson, J.-Y.; Aloyz, R.; Panasci, L. Irinotecan and DNA-PKcs inhibitors synergize in killing of colon cancer cells. Investig. New Drugs 2012, 30, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Frey, B.; Stache, C.; Rubner, Y.; Werthmöller, N.; Schulz, K.; Sieber, R.; Semrau, S.; Rödel, F.; Fietkau, R.; Gaipl, U.S. Combined treatment of human colorectal tumor cell lines with chemotherapeutic agents and ionizing irradiation can in vitro induce tumor cell death forms with immunogenic potential. J. Immunotoxicol. 2012, 9, 301–313. [Google Scholar] [CrossRef]
- Priego, S.; Feddi, F.; Ferrer, P.; Mena, S.; Benlloch, M.; Ortega, A.; Carretero, J.; Obrador, E.; Asensi, M.; Estrela, J.M. Natural polyphenols facilitate elimination of HT-29 colorectal cancer xenografts by chemoradiotherapy: A Bcl-2- and superoxide dismutase 2-dependent mechanism. Mol. Cancer Ther. 2008, 7, 3330–3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnould, S.; Guichard, S.; Hennebelle, I.; Cassar, G.; Bugat, R.; Canal, P. Contribution of apoptosis in the cytotoxicity of the oxaliplatin-irinotecan combination in the HT29 human colon adenocarcinoma cell line. Biochem. Pharmacol. 2002, 64, 1215–1226. [Google Scholar] [CrossRef] [PubMed]
- Fischel, J.L.; Rostagno, P.; Formento, P.; Dubreuil, A.; Etienne, M.C.; Milano, G. Ternary combination of irinotecan, fluorouracil-folinic acid and oxaliplatin: Results on human colon cancer cell lines. Br. J. Cancer 2001, 84, 579–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeghari-Squalli, N.; Raymond, E.; Cvitkovic, E.; Goldwasser, F. Cellular pharmacology of the combination of the DNA topoisomerase I inhibitor SN-38 and the diaminocyclohexane platinum derivative oxaliplatin. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1999, 5, 1189–1196. [Google Scholar]
- Zhou, J.; Zhou, Y.; Yin, B.; Hao, W.; Zhao, L.; Ju, W.; Bai, C. 5-Fluorouracil and oxaliplatin modify the expression profiles of microRNAs in human colon cancer cells in vitro. Oncol. Rep. 2010, 23, 121–128. [Google Scholar]
- El-Awady, R.A.; Saleh, E.M.; Dahm-Daphi, J. Targeting DNA double-strand break repair: Is it the right way for sensitizing cells to 5-fluorouracil? Anti-Cancer Drugs 2010, 21, 277–287. [Google Scholar] [CrossRef]
- Grivicich, I.; Regner, A.; Da Rocha, A.B.; Grass, L.B.; Alves, P.A.G.; Kayser, G.B.; Schwartsmann, G.; Henriques, J.A. Irinotecan/5-fluorouracil combination induces alterations in mitochondrial membrane potential and caspases on colon cancer cell lines. Oncol. Res. 2005, 15, 385–392. [Google Scholar] [CrossRef]
- Veatch, W.; Okada, S. Radiation-induced breaks of DNA in cultured mammalian cells. Biophys. J. 1969, 9, 330–346. [Google Scholar] [CrossRef] [Green Version]
- Rogakou, E.P.; Pilch, D.R.; Orr, A.H.; Ivanova, V.S.; Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 1998, 273, 5858–5868. [Google Scholar] [CrossRef] [Green Version]
- Sedelnikova, O.A.; Rogakou, E.P.; Panyutin, I.G.; Bonner, W.M. Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. Radiat. Res. 2002, 158, 486–492. [Google Scholar] [CrossRef]
- Kuo, L.J.; Yang, L.-X. Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo 2008, 22, 305–309. [Google Scholar]
- Xu, J.; Li, X.; Lv, X. Effect of oxaliplatin combined with 5-fluorouracil on treatment efficacy of radiotherapy in the treatment of elderly patients with rectal cancer. Exp. Ther. Med. 2019, 17, 1517–1522. [Google Scholar] [CrossRef] [Green Version]
- de Gramont, A.; Figer, A.; Seymour, M.; Homerin, M.; Hmissi, A.; Cassidy, J.; Boni, C.; Cortes-Funes, H.; Cervantes, A.; Freyer, G.; et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2000, 18, 2938–2947. [Google Scholar] [CrossRef]
- André, T.; Louvet, C.; Maindrault-Goebel, F.; Couteau, C.; Mabro, M.; Lotz, J.P.; Gilles-Amar, V.; Krulik, M.; Carola, E.; Izrael, V.; et al. CPT-11 (irinotecan) addition to bimonthly, high-dose leucovorin and bolus and continuous-infusion 5-fluorouracil (FOLFIRI) for pretreated metastatic colorectal cancer. GERCOR. Eur. J. Cancer 1999, 35, 1343–1347. [Google Scholar] [CrossRef]
- André, T.; Boni, C.; Mounedji-Boudiaf, L.; Navarro, M.; Tabernero, J.; Hickish, T.; Topham, C.; Zaninelli, M.; Clingan, P.; Bridgewater, J.; et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N. Engl. J. Med. 2004, 350, 2343–2351. [Google Scholar] [CrossRef] [Green Version]
- Hermann, R.M.; Rave-Fränk, M.; Pradier, O. Combining radiation with oxaliplatin: A review of experimental results. Cancer Radiother. 2008, 12, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Rich, T.A.; Kirichenko, A.V. Camptothecin schedule and timing of administration with irradiation. Oncology 2001, 15, 37–41. [Google Scholar] [PubMed]
- Chen, A.Y.; Choy, H.; Rothenberg, M.L. DNA topoisomerase I-targeting drugs as radiation sensitizers. Oncology 1999, 13, 39–46. [Google Scholar] [PubMed]
- Fischel, J.L.; Etienne, M.C.; Formento, P.; Milano, G. Search for the optimal schedule for the oxaliplatin/5-fluorouracil association modulated or not by folinic acid: Preclinical data. Clin. Cancer Res. 1998, 4, 2529–2535. [Google Scholar] [PubMed]
- Raymond, E.; Lawrence, R.; Izbicka, E.; Faivre, S.; von Hoff, D.D. Activity of oxaliplatin against human tumor colony-forming units. Clin. Cancer Res. 1998, 4, 1021–1029. [Google Scholar] [PubMed]
- Rich, T.A.; Kirichenko, A.V. Camptothecin radiation sensitization: Mechanisms, schedules, and timing. Oncology 1998, 12, 114–120. [Google Scholar] [PubMed]
- Wong, S.J.; Winter, K.; Meropol, N.J.; Anne, P.R.; Kachnic, L.; Rashid, A.; Watson, J.C.; Mitchell, E.; Pollock, J.; Lee, R.J.; et al. Radiation Therapy Oncology Group 0247: A randomized Phase II study of neoadjuvant capecitabine and irinotecan or capecitabine and oxaliplatin with concurrent radiotherapy for patients with locally advanced rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 1367–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, S.J.; Moughan, J.; Meropol, N.J.; Anne, P.R.; Kachnic, L.A.; Rashid, A.; Watson, J.C.; Mitchell, E.P.; Pollock, J.; Lee, R.J.; et al. Efficacy endpoints of radiation therapy group protocol 0247: A randomized, phase 2 study of neoadjuvant radiation therapy plus concurrent capecitabine and irinotecan or capecitabine and oxaliplatin for patients with locally advanced rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Maindrault-Goebel, F.; de Gramont, A.; Louvet, C.; André, T.; Carola, E.; Gilles, V.; Lotz, J.P.; Tournigand, C.; Mabro, M.; Molitor, J.L.; et al. Evaluation of oxaliplatin dose intensity in bimonthly leucovorin and 48-hour 5-fluorouracil continuous infusion regimens (FOLFOX) in pretreated metastatic colorectal cancer. Oncology Multidisciplinary Research Group (GERCOR). Ann. Oncol. 2000, 11, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.S.; Marshall, J.; Mitchell, E.; Wierzbicki, R.; Ganju, V.; Jeffery, M.; Schulz, J.; Richards, D.; Soufi-Mahjoubi, R.; Wang, B.; et al. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: Results from the BICC-C Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 4779–4786. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frerker, B.; Bock, F.; Cappel, M.-L.; Kriesen, S.; Klautke, G.; Hildebrandt, G.; Manda, K. Radiosensitizing Effects of Irinotecan versus Oxaliplatin Alone and in Combination with 5-Fluorouracil on Human Colorectal Cancer Cells. Int. J. Mol. Sci. 2023, 24, 10385. https://doi.org/10.3390/ijms241210385
Frerker B, Bock F, Cappel M-L, Kriesen S, Klautke G, Hildebrandt G, Manda K. Radiosensitizing Effects of Irinotecan versus Oxaliplatin Alone and in Combination with 5-Fluorouracil on Human Colorectal Cancer Cells. International Journal of Molecular Sciences. 2023; 24(12):10385. https://doi.org/10.3390/ijms241210385
Chicago/Turabian StyleFrerker, Bernd, Felix Bock, Marie-Louise Cappel, Stephan Kriesen, Gunther Klautke, Guido Hildebrandt, and Katrin Manda. 2023. "Radiosensitizing Effects of Irinotecan versus Oxaliplatin Alone and in Combination with 5-Fluorouracil on Human Colorectal Cancer Cells" International Journal of Molecular Sciences 24, no. 12: 10385. https://doi.org/10.3390/ijms241210385
APA StyleFrerker, B., Bock, F., Cappel, M. -L., Kriesen, S., Klautke, G., Hildebrandt, G., & Manda, K. (2023). Radiosensitizing Effects of Irinotecan versus Oxaliplatin Alone and in Combination with 5-Fluorouracil on Human Colorectal Cancer Cells. International Journal of Molecular Sciences, 24(12), 10385. https://doi.org/10.3390/ijms241210385