Effect of ipt Gene Induction in Transgenic Tobacco Plants on Hydraulic Conductance, Formation of Apoplastic Barriers and Aquaporin Activity under Heat Shock
Abstract
:1. Introduction
2. Results
2.1. Concentration and Immunolocalization of Hormones
2.2. Hydraulic Conductivity
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Parameters of Water Relations
4.2.1. Transpiration
4.2.2. Hydraulic Conductivity
4.3. Hormone Analyses and Immunolocalization
4.3.1. Hormone Analyses
4.3.2. Immunohistochemistry
4.3.3. Lignin and Suberin Staining with Berberine Hemisulfate
4.4. RNA Extraction and Analysis of Abundance of PIP2 mRNA
4.5. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, J.; Li, Z.; Mao, Y.; Struik, P.C.; Zhang, H.; Liu, L.; Wang, Z.; Yang, J. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci. 2018, 274, 320–331. [Google Scholar] [CrossRef] [PubMed]
- Krouk, G. Hormones and nitrate: A two-way connection. Plant Mol. Biol. 2016, 91, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Sano, T.; Tamaoki, M.; Nakajima, N.; Kondo, N.; Hasezawa, S. Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J. Exp. Bot. 2006, 57, 2259–2266. [Google Scholar] [CrossRef] [Green Version]
- Veselova, S.V.; Farkhutdinov, R.G.; Veselov, D.S.; Kudoyarova, G.R. Role of cytokinins in the regulation of stomatal conductance of wheat seedlings under conditions of rapidly changing local temperature. Rus. J. Plant Physiol. 2006, 53, 756–761. [Google Scholar] [CrossRef]
- Vysotskaya, L.B.; Veselov, S.Y.; Kudoyarova, G.R. Effect on shoot water relations, and cytokinin and abscisic acid levels of inducing expression of a gene coding for isopentenyltransferase in roots of transgenic tobacco plants. J. Exp. Bot. 2010, 61, 3709–3717. [Google Scholar] [CrossRef] [Green Version]
- Daszkowska-Golec, A.; Szarejko, I. Open or close the gate—Stomata action under the control of phytohormones in drought stress conditions. Front. Plant Sci. 2013, 4, 138. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Li, C.; Kong, D.; Guo, F.; Wei, H. Light-mediated signaling and metabolic changes coordinate stomatal opening and closure. Front. Plant Sci. 2020, 11, 601478. [Google Scholar] [CrossRef]
- Song, X.-G.; She, X.P.; He, J.-M.; Huang, C.; Song, T. Cytokinin- and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba. Funct. Plant Biol. 2006, 33, 573–583. [Google Scholar] [CrossRef]
- Marchadier, E.; Hetherington, A.M. Involvement of two-component signalling systems in the regulation of stomatal aperture by light in Arabidopsis thaliana. New Phytol. 2014, 203, 462–468. [Google Scholar] [CrossRef]
- Nguyen, K.N.; Ha, C.V.; Nishiyama, R.; Watanabe, Y.; Leyva-González, M.A.; Fujita, Y.; Tran, U.T.; Li, W.; Tanaka, M.; Seki, M.; et al. Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc. Natl. Acad. Sci. USA 2016, 113, 3090–3095. [Google Scholar] [CrossRef] [Green Version]
- Montanaro, G.; Briglia, N.; Lopez, L.; Amato, D.; Panara, F.; Petrozzac, A.; Cellini, F.; Nuzzo, V. A synthetic cytokinin primes photosynthetic and growth response in grapevine under ion-independent salinity stress. J. Plant Interact. 2022, 17, 789–800. [Google Scholar] [CrossRef]
- Hao, G.-Y.; Holbrook, N.M.; Zwieniecki, M.A.; Gutschick, V.P.; BassiriRad, H. Coordinated responses of plant hydraulic architecture with the reduction of stomatal conductance under elevated CO2 concentration. Tree Physiol. 2018, 38, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gamir, J.; Xue, J.; Clearwater, M.J.; Meason, D.F.; Clinton, P.W.; Domec, J.C. Aquaporin regulation in roots controls plant hydraulic conductance, stomatal conductance, and leaf water potential in Pinus radiata under water stress. Plant Cell Environ. 2019, 42, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Maurel, C.; Nacry, P. Root architecture and hydraulics converge for acclimation to changing water availability. Nat. Plants 2020, 6, 744–749. [Google Scholar] [CrossRef]
- Ivanov, V.B.; Filin, A.N. Cytokinins regulate root growth through its action on meristematic cell proliferation but not on the transition to differentiation. Func. Plant Biol. 2018, 45, 215–221. [Google Scholar] [CrossRef]
- Vitali, V.; Bellati, J.; Soto, G.; Ayub, N.D.; Amodeo, G. Root hydraulic conductivity and adjustments in stomatal conductance: Hydraulic strategy in response to salt stress in a halotolerant species. AoB Plants 2015, 7, plv136. [Google Scholar] [CrossRef]
- Raines, T.; Blakley, I.C.; Tsai, Y.-C.; Worthen, J.M.; Franco-Zorrilla, J.M.; Solano, R.; Schaller, G.E.; Loraine, A.E.; Kieber, J.J. Characterization of the cytokinin-responsive transcriptome in rice. BMC Plant Biol. 2016, 16, 260. [Google Scholar] [CrossRef] [Green Version]
- Lardon, R.; Trinh, H.K.; Xu, X.; Vu, L.D.; Van De Cotte, B.; Pernisová, M.; Vanneste, S.; De Smet, I.; Geelen, D. Histidine kinase inhibitors impair shoot regeneration in Arabidopsis thaliana via cytokinin signaling and SAM patterning determinants. Front. Plant Sci. 2022, 13, 894208. [Google Scholar] [CrossRef]
- Andersen, T.G.; Naseer, S.; Ursache, R.; Wybouw, B.; Smet, W.; De Rybel, B.; Vermeer, J.E.M.; Geldner, N. Diffusible repression of cytokinin signalling produces endodermal symmetry and passage cells. Nature 2018, 555, 529–533. [Google Scholar] [CrossRef]
- Savage, D.F.; Stroud, R.M. Structural basis of aquaporins inhibition by mercury. J. Mol. Biol. 2007, 368, 607–617. [Google Scholar] [CrossRef] [Green Version]
- Timergalina, L.N.; Vysotskaya, L.B.; Kudoyarova, G.R.; Veselov, S.Y. Effect of increased irradiance on the hormone content, water relations, and leaf elongation in wheat seedlings. Russ. J. Plant Physiol. 2007, 54, 633–638. [Google Scholar] [CrossRef]
- Simonin, K.A.; Limm, E.B.; Dawson, T.E. Hydraulic conductance of leaves correlate with leaf lifespan: Implications for lifetime carbon gain. New Phytol. 2012, 193, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Maurel, C.; Boursiac, Y.; Luu, D.-T.; Santoni, V.; Shahzad, Z.; Verdoucq, L. Aquaporins in Plants. Physiol. Rev. 2015, 95, 1321–1358. [Google Scholar] [CrossRef] [PubMed]
- Péret, B.; Li, G.; Zhao, J.; Band, L.R.; Voß, U.; Postaire, O.; Luu, D.-T.; Da Ines, O.; Casimiro, I.; Lucas, M.; et al. Auxin regulates aquaporin function to facilitate lateral root emergence. Nat Cell Biol. 2012, 14, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.K.; Li, X.; Zhang, J.; Ge, H.; Yin, X.R.; Chen, K.S. Regulation of loquat fruit low temperature response and lignification involves interaction of heat shock factors and genes associated with lignin biosynthesis. Plant Cell Environ. 2016, 39, 1780–1789. [Google Scholar] [CrossRef]
- Li, L.; Pan, S.; Melzer, R.; Fricke, W. Apoplastic barriers, aquaporin gene expression and root and cell hydraulic conductivity in phosphate-limited sheepgrass plants. Physiol. Plant. 2020, 168, 118–132. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Li, P.; Li, H.; Xu, C.; Cohen, H.; Aharoni, A.; Wu, S. Developmental programs interact with abscisic acid to coordinate root suberization in Arabidopsis. Plant J. 2020, 104, 241–251. [Google Scholar] [CrossRef]
- Akhiyarova, G.R.; Ivanov, R.S.; Ivanov, I.I.; Finkina, E.I.; Melnikova, D.N.; Bogdanov, I.V.; Nuzhnaya, T.; Ovchinnikova, T.V.; Veselov, D.S.; Kudoyarova, G.R. Effects of salinity and abscisic acid on lipid transfer protein accumulation, suberin deposition and hydraulic conductance in pea roots. Membranes 2021, 11, 762. [Google Scholar] [CrossRef]
- Woolfson, K.N.; Esfandiari, M.; Bernards, M.A. Suberin Biosynthesis, Assembly, and Regulation. Plants 2022, 11, 555. [Google Scholar] [CrossRef]
- Ursache, R.; De Jesus, V.T.C.; Tendon, V.D.; Gully, K.; De Bellis, D.; Schmid-Siegert, E.; Andersen, T.G.; Shekhar, V.; Calderon, S.; Pradervand, S.; et al. GDSL-domain proteins have key roles in suberin polymerization and degradation. Nat. Plants 2021, 7, 353–364. [Google Scholar] [CrossRef]
- Didi, V.; Jackson, P.; Hejatko, J. Hormonal regulation of secondary cell wall formation. J. Exp. Bot. 2015, 66, 5015–5027. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.W.; Oh, S.I.; Kim, Y.Y.; Yoo, K.S.; Cui, M.H.; Shin, J.S. Arabidopsis histidine-containing phosphotransfer factor 4 (AHP4) negatively regulates secondary wall thickening of the anther endothecium during flowering. Mol. Cells 2008, 25, 294–300. [Google Scholar]
- Schmulling, T.; Beinsberger, S.; De Greef, J.; Schell, J.; Van Onkelen, H.; Spena, A.l. Construction of a heat-inducible chimaeric gene to increase the cytokinin content in transgenic plant tissue. FEBS Lett. 1989, 249, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Bunce, J.A.; Ziska, L.H. Decreased hydraulic conductance in plants at elevated carbon dioxide. Plant Cell Environ. 1998, 21, 121–126. [Google Scholar] [CrossRef]
- Vysotskaya, L.B.; Trekozova, A.W.; Kudoyarova, G.R. Effect of phosphorus starvation on hormone content and growth of barley plants. Acta Physiol. Plant. 2016, 38, 108. [Google Scholar] [CrossRef]
- Veselov, S.U.; Kudoyarova, G.R.; Egutkin, N.L.; Gyuli-Zade, V.G.; Mustafina, A.R.; Kof, E.K. Modified solvent partitioning scheme providing increased specificity and rapidity of immunoassay for indole 3-acetic acid. Physiol. Plant. 1992, 86, 93–96. [Google Scholar] [CrossRef]
- Vysotskaya, L.; Akhiyarova, G.; Feoktistova, A.; Akhtyamova, Z.; Korobova, A.; Ivanov, I.; Dodd, I.; Kuluev, B.; Kudoyarova, G. Effects of phosphate shortage on root growth and hormone content of barley depend on capacity of the roots to accumulate ABA. Plants 2020, 9, 1722. [Google Scholar] [CrossRef]
- Vysotskaya, L.; Timergalina, L.; Akhiyarova, G.; Korobova, A.; Fedyaev, V.; Ivanov, I.; Kudoyarova, G.; Veselov, D. Association of barley root elongation with ABA-dependent transport of cytokinins from roots and shoots under supra-optimal concentrations of nitrates and phosphates. Cells 2021, 10, 3110. [Google Scholar] [CrossRef]
- Akhtyamova, Z.; Martynenko, E.; Arkhipova, T.; Seldimirova, O.; Galin, I.; Belimov, A.; Vysotskaya, L.; Kudoyarova, G. Influence of plant growth-promoting rhizobacteria on the formation of apoplastic barriers and uptake of water and potassium by wheat plants. Microorganisms 2023, 11, 1227. [Google Scholar] [CrossRef]
- Groszmann, M.; De Rosa, A.; Ahmed, J.; Chaumont, F.; Evans, J.R. A consensus on the aquaporin gene family in the allotetraploid plant, Nicotiana tabacum. Plant Direct 2021, 5, e00321. [Google Scholar] [CrossRef]
- Schmidt, G.W.; Delaney, S.K. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol. Genet. Genom. 2010, 283, 233–241. [Google Scholar] [CrossRef] [PubMed]
Genes | Strand | 5′ to 3′ Primer Sequences | GenBank Accession Number |
---|---|---|---|
NtPIP2;1 | Forward | AACAGCACGGGAAGGATTAC | AF440272.1 |
Reverse | GAGTAGCAATGAACTCAGCAATAAG | ||
NtPIP2;4 | Forward | GGTATGGTGGAGGTGCTAATG | BK011406 |
Reverse | GTGGCAGAGAAGACAGTGTAAA | ||
NtPIP2;5 | Forward | GGACATATTAACCCAGCAGTGA | BK011408 |
Reverse | CAACCACAAATGGCTCCTAAAC | ||
NtPIP2;6 | Forward | TTCTCTGCTACTGACCCTAAGA | BK011410 |
Reverse | TGGCAAGGTGAACCATGAATA | ||
NtL25 | Forward | GGCTGTCAAGTCAGGATCAA | L18908.1 |
Reverse | GTTCCTTCCAGGTGCACTAATA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vysotskaya, L.; Akhiyarova, G.; Seldimirova, O.; Nuzhnaya, T.; Galin, I.; Ivanov, R.; Kudoyarova, G. Effect of ipt Gene Induction in Transgenic Tobacco Plants on Hydraulic Conductance, Formation of Apoplastic Barriers and Aquaporin Activity under Heat Shock. Int. J. Mol. Sci. 2023, 24, 9860. https://doi.org/10.3390/ijms24129860
Vysotskaya L, Akhiyarova G, Seldimirova O, Nuzhnaya T, Galin I, Ivanov R, Kudoyarova G. Effect of ipt Gene Induction in Transgenic Tobacco Plants on Hydraulic Conductance, Formation of Apoplastic Barriers and Aquaporin Activity under Heat Shock. International Journal of Molecular Sciences. 2023; 24(12):9860. https://doi.org/10.3390/ijms24129860
Chicago/Turabian StyleVysotskaya, Lidiya, Guzel Akhiyarova, Oksana Seldimirova, Tatiana Nuzhnaya, Ilshat Galin, Ruslan Ivanov, and Guzel Kudoyarova. 2023. "Effect of ipt Gene Induction in Transgenic Tobacco Plants on Hydraulic Conductance, Formation of Apoplastic Barriers and Aquaporin Activity under Heat Shock" International Journal of Molecular Sciences 24, no. 12: 9860. https://doi.org/10.3390/ijms24129860
APA StyleVysotskaya, L., Akhiyarova, G., Seldimirova, O., Nuzhnaya, T., Galin, I., Ivanov, R., & Kudoyarova, G. (2023). Effect of ipt Gene Induction in Transgenic Tobacco Plants on Hydraulic Conductance, Formation of Apoplastic Barriers and Aquaporin Activity under Heat Shock. International Journal of Molecular Sciences, 24(12), 9860. https://doi.org/10.3390/ijms24129860