The Role of Cocaine- and Amphetamine-Regulated Transcript (CART) in Cancer: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
3. Results and Discussion
3.1. Results
3.2. Discussion
3.2.1. CART in Signaling Pathways
3.2.2. CART in Cell Proliferation
3.2.3. CART Activity in Breast Cancer
3.2.4. CART Activity in Neuroendocrine Tumors
3.2.5. CART Activity in Other Neoplasms
Study Participants | Scientific Design | References | |
---|---|---|---|
Case (n; M/F 1) | Control (n; M/F 1) | ||
81; no data | 16; no data | Case—CART present, control—no CART | [46] |
4 * | 1 * | Positive control performed of BRCAT54, CARTPT and HPRT-1 gene expression | [49] |
801 * | 0 | Aim—investigation of clinicopathological and genomic features of MC by comparing with IDC | [50] |
46 * | 272 * | Cohort I; case—high CART, control—low CART | [51] |
61 * | 311 * | Cohort II; case—high CART, control—low CART | [51] |
25 * | 25 * | Cohort III; case—high CART, control—low CART | [51] |
3592 * | 4182 * | Data from the Breast Cancer Health Disparities Study (4-CBCS, MBCS, SFBCS) | [52] |
265 * | 437 * | Data from the Breast Cancer Health Disparities Study (4-CBCS, MBCS) | [53] |
481; 242M/239F | 40; no data | Case—NET patients, control—healthy volunteers | [54] |
131; no data | 192; 100M/92F | Case—NET patients; control—patients with other conditions/complaints | [55] |
133; no data | 0 | Aim—to establish whether CART is expressed in NETs and, if so, the frequency, distribution and phenotype of CART-expressing cells | [56] |
400; 244M/156F | 400; 248M/152F | Stage I; case—glioma patients, control—healthy subjects | [57] |
800; 480M/320F | 800; 468M/332F | Stage II; case—glioma patients, control—healthy subjects | [57] |
380; 243M/137F | 0 | Aim—to find the possible prognosis-related genes in STAD using bioinformatics analysis (TCGA database) | [58] |
1209M/852F | 816M/576F | Total M/F from available data | |
4794 | 5228 | Total BC study participants (F) | |
345 | 56 | Total patients with gender unspecified | |
7200 | 6676 | Total number of patients |
3.2.6. CART Activity in Cancer Cell Lines
Type of Neoplasm | Study Goal | Methods | Main Outcomes | References |
---|---|---|---|---|
Breast cancer at early stage. | RNA recovery quantification from duct-washing cytology specimens of DCIS, using CARTPT and BRCAT54 mRNAs. |
|
| [49] |
Breast cancer
| Comparison of clinicopathological and genomic characteristics of MC with IDC. |
|
| [50] |
Breast cancer ER-positive, lymph node-negative. | Search for prognostic and predictive biomarkers of ER-positive, lymph node-negative breast cancer. |
|
| [51] |
Breast cancer | Assessment of link between 10 energy homeostasis genes (including CARTPT) and breast cancer risk in connection with ethnical ancestry, body size measurements and menopausal status. |
|
| [52] |
Breast cancer | Analyses of modifying effect of 10 energy homeostasis genes (including CARTPT) on the association between IGF-1 and IGFBP-3 serum levels and the risk of BC. |
|
| [53] |
Neuroendocrine tumors (NETs):
| To evaluate the comparative and combined utility of CART, CgA and CgB for diagnosis and monitoring of different NET subtypes. |
|
| [54] |
NETs:
| To investigate the potential role of plasma CART levels as a biomarker of neuroendocrine malignancies. |
|
| [55] |
NETs:
| Expression of CART in different types of NETs and analysis of the frequency, distribution and phenotype of cells expressing CART. |
|
| [56] |
Small bowel carcinoid | To assess link between CART expression and survival rates in patients with small bowel carcinoid or between CART expression and small bowel carcinoid characteristics/clinical symptoms. |
|
| [46] |
Stomach adenocarcinoma (STAD) | Study of a prognostic value of tumor microenvironment-related genes in STAD. |
| High CARTPT gene expression was associated with poor overall survival in patients with STAD. | [58] |
Glioma | To investigate the association between genetic polymorphisms in the CARTPT gene and glioma risk in the Chinese population. |
|
| [57] |
PC12 cell line | To characterize CART binding to PC12 cells. |
|
| [59] |
PC12 cell line | To study the effect of differentiation of PC12 cells on CART binding and CART-activated signaling;Characterization of the pharmacological profile of CART binding sites. |
|
| [60] |
INS-1(832/13) β-cell line and isolated rat islets | To evaluate the role of CART in β-cell viability and functioning and to investigate its signaling pathways. |
|
| [43] |
Cell lines:
| To evaluate the effect of CART55–102 on the MAPK cascade and the phosphorylation state of ERK1 and 2 in a pituitary-derived cell line. |
|
| [44] |
Pathway | Methods | Results | References |
---|---|---|---|
RAF → MEK → ERK PI3K → PDK1 → AKT ERK + AKT → promotion G0/G1/S-phase entry |
|
| [42] |
acute CART stimulation → receptor → Go/i → PKC→ MEK → activation of ERK1/2 → expression of DUSP5 → inhibition of ERK CART → impaired proteasomal degradation + increased synthesis → increased activity of DUSP5 and PP2A → inhibition of ERK and Akt pathways |
|
| [45] |
Proteasome inhibitors → induction of MPK → dephosphorylation of p44/42 MAPK → apoptosis |
|
| [47] |
Neuregulin → cAMP-mediated pathways → G1-S progression cAMP → RAF/MEK → ERK cAMP → PDK → PI3K/Akt |
|
| [48] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Douglass, J.; McKinzie, A.; Couceyro, P. PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J. Neurosci. 1995, 15, 2471–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yosten, G.L.; Haddock, C.J.; Harada, C.M.; Almeida-Pereira, G.; Kolar, G.R.; Stein, L.M.; Hayes, M.R.; Salvemini, D.; Samson, W.K. Past, present and future of cocaine- and amphetamine-regulated transcript peptide. Physiol. Behav. 2021, 235, 113380. [Google Scholar] [CrossRef] [PubMed]
- Koylu, E.O.; Couceyro, P.R.; Lambert, P.D.; Ling, N.C.; DeSouza, E.B.; Kuhar, M.J. Immunohistochemical Localization of Novel CART Peptides in Rat Hypothalamus, Pituitary and Adrenal Gland. J. Neuroendocr. 1997, 9, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Koylu, E.O.; Couceyro, P.R.; Lambert, P.D.; Kuhar, M.J. Cocaine- and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain. J. Comp. Neurol. 1998, 391, 115–132. [Google Scholar] [CrossRef]
- Couceyro, P.; Paquet, M.; Koylu, E.; Kuhar, M.J.; Smith, Y. Cocaine- and amphetamine-regulated transcript (CART) peptide immunoreactivity in myenteric plexus neurons of the rat ileum and co-localization with choline acetyltransferase. Synapse 1998, 30, 1–8. [Google Scholar] [CrossRef]
- Jensen, P.B.; Kristensen, P.; Clausen, J.T.; E Judge, M.; Hastrup, S.; Thim, L.; Wulff, B.S.; Foged, C.; Jensen, J.; Holst, J.J.; et al. The hypothalamic satiety peptide CART is expressed in anorectic and non-anorectic pancreatic islet tumors and in the normal islet of Langerhans. FEBS Lett. 1999, 447, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Ekblad, E.; Kuhar, M.; Wierup, N.; Sundler, F. Cocaine- and amphetamine-regulated transcript: Distribution and function in rat gastrointestinal tract. Neurogastroenterol. Motil. 2003, 15, 545–557. [Google Scholar] [CrossRef] [Green Version]
- Douglass, J.; Daoud, S. Characterization of the human cDNA and genomic DNA encoding CART: A cocaine- and amphetamine-regulated transcript. Gene 1996, 169, 241–245. [Google Scholar] [CrossRef]
- Echwald, S.M.; Thorkild, A.I.; Andersen, T.; Hansen, C.; Tommerup, N.; Pedersen, O. Sequence Variants in the Human Cocaine and Amphetamine-Regulated Transcript (CART) Gene in Subjects with Early Onset Obesity. Obes. Res. 1999, 7, 532–536. [Google Scholar] [CrossRef]
- Adams, L.D.; Gong, W.; Vechia, S.D.; Hunter, R.G.; Kuhar, M.J. CART: From gene to function. Brain Res. 1999, 848, 137–140. [Google Scholar] [CrossRef]
- Stein, J.; Steiner, D.F.; Dey, A. Processing of cocaine- and amphetamine-regulated transcript (CART) precursor proteins by prohormone convertases (PCs) and its implications. Peptides 2006, 27, 1919–1925. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; de Araujo, A.M.; Krieger, J.-P.; Vergara, M.; Ip, C.K.; de Lartigue, G. Demystifying functional role of cocaine- and amphetamine-related transcript (CART) peptide in control of energy homeostasis: A twenty-five year expedition. Peptides 2021, 140, 170534. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, P.; Judge, M.E.; Thim, L.; Ribel, U.; Christjansen, K.N.; Wulff, B.S.; Clausen, J.T.; Jensen, P.B.; Madsen, O.D.; Vrang, N.; et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 1998, 393, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Koylu, E.O.; Balkan, B.; Kuhar, M.J.; Pogun, S. Cocaine and amphetamine regulated transcript (CART) and the stress response. Peptides 2006, 27, 1956–1969. [Google Scholar] [CrossRef] [PubMed]
- Miraglia del Giudice, E.; Santoro, N.; Fiumani, P.; Dominguez, G.; Kuhar, M.J.; Perrone, L. Adolescents carrying a missense mutation in the CART gene exhibit increased anxiety and depression. Depress. Anxiety 2006, 23, 90–92. [Google Scholar] [CrossRef]
- Yoon, H.S.; Hattori, K.; Sasayama, D.; Kunugi, H. Low cocaine- and amphetamine-regulated transcript (CART) peptide levels in human cerebrospinal fluid of major depressive disorder (MDD) patients. J. Affect. Disord. 2018, 232, 134–138. [Google Scholar] [CrossRef]
- Ahmadian-Moghadam, H.; Sadat-Shirazi, M.-S.; Zarrindast, M.-R. Cocaine- and amphetamine-regulated transcript (CART): A multifaceted neuropeptide. Peptides 2018, 110, 56–77. [Google Scholar] [CrossRef]
- Yosten, G.L.; Harada, C.M.; Haddock, C.J.; Giancotti, L.A.; Kolar, G.R.; Patel, R.; Guo, C.; Chen, Z.; Zhang, J.; Doyle, T.M.; et al. GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents. J. Clin. Investig. 2020, 130, 2587–2592. [Google Scholar] [CrossRef] [Green Version]
- Damaj, M.I.; Zheng, J.; Martin, B.R.; Kuhar, M.J. Intrathecal CART (55–102) attenuates hyperlagesia and allodynia in a mouse model of neuropathic but not inflammatory pain. Peptides 2006, 27, 2019–2023. [Google Scholar] [CrossRef]
- Mao, P.; Meshul, C.K.; Thuillier, P.; Goldberg, N.R.S.; Reddy, P.H. CART Peptide Is a Potential Endogenous Antioxidant and Preferentially Localized in Mitochondria. PLoS ONE 2012, 7, e29343. [Google Scholar] [CrossRef] [Green Version]
- Sha, D.; Wang, L.; Zhang, J.; Qian, L.; Li, Q.; Li, J.; Qian, J.; Gu, S.; Han, L.; Xu, P.; et al. Cocaine- and amphetamine-regulated transcript peptide increases mitochondrial respiratory chain complex II activity and protects against oxygen–glucose deprivation in neurons. Brain Res. 2014, 1582, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Dai, X.; Chen, Y.; Shen, Y.; Lei, S.; Xiao, T.; Bartfai, T.; Ding, J.; Wang, M.-W. G protein-coupled receptor GPR160 is associated with apoptosis and cell cycle arrest of prostate cancer cells. Oncotarget 2016, 7, 12823–12839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, A.; Jun, P.; Yuan, J.Y.; Sun, L.; Jiang, J.; Yuan, S. Downregulation of GPR160 inhibits the progression of glioma through suppressing epithelial to mesenchymal transition (EMT) biomarkers. Basic Clin. Pharmacol. Toxicol. 2022, 131, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, H.; Ma, J.; Fang, T.; Li, X.; Liu, J.; Afewerky, H.K.; Li, X.; Gao, Q. Integrated Bioinformatics Data Analysis Reveals Prognostic Significance Of SIDT1 In Triple-Negative Breast Cancer. OncoTargets Ther. 2019, 12, 8401–8410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheu, J.J.-C.; Lee, C.-H.; Ko, J.-Y.; Tsao, G.S.; Wu, C.-C.; Fang, C.-Y.; Tsai, F.-J.; Hua, C.-H.; Chen, C.-L.; Chen, J.-Y. Chromosome 3p12.3-p14.2 and 3q26.2-q26.32 Are Genomic Markers for Prognosis of Advanced Nasopharyngeal Carcinoma. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2709–2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Y.; Verdegaal, E.M.E.; Siderius, M.; Bebelman, J.P.; Smit, M.J.; Leurs, R.; Willemze, R.; Tensen, C.P.; Osanto, S. Quantitative expression profiling of G-protein-coupled receptors (GPCRs) in metastatic melanoma: The constitutively active orphan GPCR GPR18 as novel drug target. Pigment. Cell Melanoma Res. 2010, 24, 207–218. [Google Scholar] [CrossRef]
- Dijkman, R.; Van Doorn, R.; Szuhai, K.; Willemze, R.; Vermeer, M.; Tensen, C.P. Gene-expression profiling and array-based CGH classify CD4+CD56+ hematodermic neoplasm and cutaneous myelomonocytic leukemia as distinct disease entities. Blood 2006, 109, 1720–1727. [Google Scholar] [CrossRef] [Green Version]
- Somalwar, A.R.; Choudhary, A.G.; Sharma, P.R.; B., N.; Sagarkar, S.; Sakharkar, A.J.; Subhedar, N.K.; Kokare, D.M. Cocaine- and amphetamine-regulated transcript peptide (CART) induced reward behavior is mediated via Gi/o dependent phosphorylation of PKA/ERK/CREB pathway. Behav. Brain Res. 2018, 348, 9–21. [Google Scholar] [CrossRef]
- Wierup, N.; Björkqvist, M.; Kuhar, M.J.; Mulder, H.; Sundler, F. CART Regulates Islet Hormone Secretion and Is Expressed in the β-Cells of Type 2 Diabetic Rats. Diabetes 2006, 55, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Liu, W.-Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.-F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. 2015, 35, 600–604. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Lazarovici, P.; Quirion, R.; Zheng, W. cAMP Response Element-Binding Protein (CREB): A Possible Signaling Molecule Link in the Pathophysiology of Schizophrenia. Front. Mol. Neurosci. 2018, 11, 255. [Google Scholar] [CrossRef] [Green Version]
- McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.T.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta Mol. Cell Res. 2007, 1773, 1263–1284. [Google Scholar] [CrossRef] [Green Version]
- Laresgoiti, U.; Apraiz, A.; Olea, M.; Mitxelena, J.; Osinalde, N.; Rodriguez, J.A.; Fullaondo, A.; Zubiaga, A.M. E2F2 and CREB cooperatively regulate transcriptional activity of cell cycle genes. Nucleic Acids Res. 2013, 41, 10185–10198. [Google Scholar] [CrossRef]
- Ullah, R.; Yin, Q.; Snell, A.H.; Wan, L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin. Cancer Biol. 2022, 85, 123–154. [Google Scholar] [CrossRef]
- Degirmenci, U.; Wang, M.; Hu, J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells 2020, 9, 198. [Google Scholar] [CrossRef] [Green Version]
- Stallaert, W.; Kedziora, K.M.; Taylor, C.D.; Zikry, T.M.; Ranek, J.S.; Sobon, H.K.; Taylor, S.R.; Young, C.L.; Cook, J.G.; Purvis, J.E. The structure of the human cell cycle. Cell Syst. 2021, 13, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Uzbekov, R.; Prigent, C. A Journey through Time on the Discovery of Cell Cycle Regulation. Cells 2022, 11, 704. [Google Scholar] [CrossRef] [PubMed]
- Barnum, K.J.; O’Connell, M.J. Cell cycle regulation by checkpoints. Methods Mol. Biol. 2014, 1170, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2022, 23, 74–88. [Google Scholar] [CrossRef]
- Daniel, P.; Filiz, G.; Brown, D.V.; Hollande, F.; Gonzales, M.; D’abaco, G.; Papalexis, N.; A Phillips, W.; Malaterre, J.; Ramsay, R.G.; et al. Selective CREB-dependent cyclin expression mediated by the PI3K and MAPK pathways supports glioma cell proliferation. Oncogenesis 2014, 3, e108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Mirza, A.M.; Gysin, S.; Malek, N.; Nakayama, K.-I.; Roberts, J.M.; McMahon, M. Cooperative Regulation of the Cell Division Cycle by the Protein Kinases RAF and AKT. Mol. Cell. Biol. 2004, 24, 10868–10881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sathanoori, R.; Olde, B.; Erlinge, D.; Göransson, O.; Wierup, N. Cocaine- and Amphetamine-regulated Transcript (CART) Protects Beta Cells against Glucotoxicity and Increases Cell Proliferation. J. Biol. Chem. 2013, 288, 3208–3218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakatos, A.; Prinster, S.; Vicentic, A.; Hall, R.A.; Kuhar, M.J. Cocaine- and amphetamine-regulated transcript (CART) peptide activates the extracellular signal-regulated kinase (ERK) pathway in AtT20 cells via putative G-protein coupled receptors. Neurosci. Lett. 2005, 384, 198–202. [Google Scholar] [CrossRef]
- Sen, A.; Lv, L.; Bello, N.; Ireland, J.J.; Smith, G.W. Cocaine- and Amphetamine-Regulated Transcript Accelerates Termination of Follicle-Stimulating Hormone-Induced Extracellularly Regulated Kinase 1/2 and Akt Activation by Regulating the Expression and Degradation of Specific Mitogen-Activated Protein Kinase Phosphatases in Bovine Granulosa Cells. Mol. Endocrinol. 2008, 22, 2655–2676. [Google Scholar] [CrossRef] [Green Version]
- Landerholm, K.; Shcherbina, L.; Falkmer, S.E.; Järhult, J.; Wierup, N. Expression of Cocaine- and Amphetamine-Regulated Transcript Is Associated with Worse Survival in Small Bowel Carcinoid Tumors. Clin. Cancer Res. 2012, 18, 3668–3676. [Google Scholar] [CrossRef] [Green Version]
- Orlowski, R.Z.; Small, G.W.; Shi, Y.Y. Evidence That Inhibition of p44/42 Mitogen-activated Protein Kinase Signaling Is a Factor in Proteasome Inhibitor-mediated Apoptosis. J. Biol. Chem. 2002, 277, 27864–27871. [Google Scholar] [CrossRef] [Green Version]
- Monje, P.V.; Bunge, M.B.; Wood, P.M. Cyclic AMP synergistically enhances neuregulin-dependent ERK and Akt activation and cell cycle progression in Schwann cells. Glia 2006, 53, 649–659. [Google Scholar] [CrossRef]
- Jikuzono, T.; Manabe, E.; Kure, S.; Akasu, H.; Ishikawa, T.; Fujiwara, Y.; Makita, M.; Ishibashi, O. RNA recovery from specimens of duct-washing cytology performed contemporaneously with mammary ductoscopy. BMC Res. Notes 2022, 15, 34. [Google Scholar] [CrossRef]
- Lu, K.; Wang, X.; Zhang, W.; Ye, H.; Lao, L.; Zhou, X.; Yao, S.; Lv, F. Clinicopathological and genomic features of breast mucinous carcinoma. Breast 2020, 53, 130–137. [Google Scholar] [CrossRef]
- Brennan, D.J.; O’Connor, D.P.; Laursen, H.; McGee, S.F.; McCarthy, S.; Zagozdzon, R.; Rexhepaj, E.; Culhane, A.C.; Martin, F.M.; Duffy, M.J.; et al. The cocaine- and amphetamine-regulated transcript mediates ligand-independent activation of ERα, and is an independent prognostic factor in node-negative breast cancer. Oncogene 2011, 31, 3483–3494. [Google Scholar] [CrossRef] [Green Version]
- Slattery, M.L.; Lundgreen, A.; Hines, L.; Wolff, R.K.; Torres-Mejia, G.; Baumgartner, K.N.; John, E.M. Energy homeostasis genes and breast cancer risk: The influence of ancestry, body size, and menopausal status, the breast cancer health disparities study. Cancer Epidemiol. 2015, 39, 1113–1122. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Valentín, R.; Torres-Mejía, G.; Martínez-Matsushita, L.; Angeles-Llerenas, A.; Gómez-Flores-Ramos, L.; Wolff, R.K.; Baumgartner, K.B.; Hines, L.M.; Ziv, E.; Flores-Luna, L.; et al. Energy homeostasis genes modify the association between serum concentrations of IGF-1 and IGFBP-3 and breast cancer risk. Sci. Rep. 2022, 12, 1837. [Google Scholar] [CrossRef]
- Ramachandran, R.; Bech, P.; Murphy, K.; Caplin, M.; Patel, M.; Vohra, S.; Khan, M.; Dhillo, W.; Sharma, R.; Palazzo, F.; et al. Comparison of the Utility of Cocaine- and Amphetamine-Regulated Transcript (CART), Chromogranin A, and Chromogranin B in Neuroendocrine Tumor Diagnosis and Assessment of Disease Progression. J. Clin. Endocrinol. Metab. 2015, 100, 1520–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bech, P.; Winstanley, V.; Murphy, K.G.; Sam, A.H.; Meeran, K.; Ghatei, M.A.; Bloom, S.R. Elevated Cocaine- and Amphetamine-Regulated Transcript Immunoreactivity in the Circulation of Patients with Neuroendocrine Malignancy. J. Clin. Endocrinol. Metab. 2008, 93, 1246–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landerholm, K.; Falkmer, S.E.; Järhult, J.; Sundler, F.; Wierup, N. Cocaine- and Amphetamine-Regulated Transcript in Neuroendocrine Tumors. Neuroendocrinology 2011, 94, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, G.; Liu, N.; Wang, Z.; Xu, X.; Qi, J.; Ren, D.; Zhang, P.; Zhang, Y.; Tu, Y. Association of genetic variants in the CART gene with glioma susceptibility in a Chinese population. Oncotarget 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Huang, W.; Yu, H.-F.; Feng, Y.-J.; Teng, X. Exploring TCGA database for identification of potential prognostic genes in stomach adenocarcinoma. Cancer Cell Int. 2020, 20, 264. [Google Scholar] [CrossRef]
- Maletínská, L.; Maixnerová, J.; Matyšková, R.; Haugvicová, R.; Šloncová, E.; Elbert, T.; Slaninová, J.; Železná, B. Cocaine- and amphetamine-regulated transcript (CART) peptide specific binding in pheochromocytoma cells PC12. Eur. J. Pharmacol. 2007, 559, 109–114. [Google Scholar] [CrossRef]
- Lin, Y.; Hall, R.A.; Kuhar, M.J. CART peptide stimulation of G protein-mediated signaling in differentiated PC12 Cells: Identification of PACAP 6–38 as a CART receptor antagonist. Neuropeptides 2011, 45, 351–358. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owe-Larsson, M.; Pawłasek, J.; Piecha, T.; Sztokfisz-Ignasiak, A.; Pater, M.; Janiuk, I.R. The Role of Cocaine- and Amphetamine-Regulated Transcript (CART) in Cancer: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 9986. https://doi.org/10.3390/ijms24129986
Owe-Larsson M, Pawłasek J, Piecha T, Sztokfisz-Ignasiak A, Pater M, Janiuk IR. The Role of Cocaine- and Amphetamine-Regulated Transcript (CART) in Cancer: A Systematic Review. International Journal of Molecular Sciences. 2023; 24(12):9986. https://doi.org/10.3390/ijms24129986
Chicago/Turabian StyleOwe-Larsson, Maja, Jan Pawłasek, Tomasz Piecha, Alicja Sztokfisz-Ignasiak, Mikołaj Pater, and Izabela R. Janiuk. 2023. "The Role of Cocaine- and Amphetamine-Regulated Transcript (CART) in Cancer: A Systematic Review" International Journal of Molecular Sciences 24, no. 12: 9986. https://doi.org/10.3390/ijms24129986
APA StyleOwe-Larsson, M., Pawłasek, J., Piecha, T., Sztokfisz-Ignasiak, A., Pater, M., & Janiuk, I. R. (2023). The Role of Cocaine- and Amphetamine-Regulated Transcript (CART) in Cancer: A Systematic Review. International Journal of Molecular Sciences, 24(12), 9986. https://doi.org/10.3390/ijms24129986