Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Data Extraction
2.4. Data Categorization
2.5. Statistical Analysis
2.6. Quality Assessment
3. Results
3.1. Search Results
3.2. Clinical Studies Implementing Molecular Targeted Therapies
3.3. Laboratory Studies Implementing Molecular Targeted Therapies
3.4. Laboratory Studies Identifying Novel Molecular Targets
3.5. Ongoing Clinical Trials
4. Discussion
4.1. Adult-Type Diffuse Glioma Subtypes
4.2. Protein Kinase Pathways
4.3. Cell Cycle/Apoptosis Pathways
4.4. Microenvironmental Pathways (Angiogenesis, Cell-Cell Adhesion, Ιron/Cation Regulation)
4.5. Immunotherapy Pathways
4.6. Wnt/β-Catenin Pathway
4.7. Study Design
4.8. Implications
4.9. Limitations
4.10. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Search Terms
Glioma [Mesh] OR “Glioma/drug therapy” OR “Glioblastoma/drug therapy” OR Ganglioglioma/drug therapy [MeSH] OR “adult-type diffuse glioma” OR “oligodendroglioma” OR “astrocytoma” |
AND |
Molecular targeted therapy [MeSH] OR Protein Kinase Inhibitors/administration and dosage [MeSH] OR “Antineoplastic Combined Chemotherapy Protocols/administration and dosage” OR “Receptor Protein-Tyrosine Kinases/analysis” OR “Multikinase inhibitor” OR MAP Kinases/antagonists and inhibitors [MeSH] OR “Mitogen-Activated Protein Kinase Kinases/antagonists and inhibitors” OR “Immune Checkpoint Inhibitors/therapeutic use” ** |
** Format adapted for PubMed, Web of Science-Medline, and clinicaltrials.gov advanced searches, respectively, from 1 January 1900 through 1 January 2023. |
References
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Jakola, A.S.; Skjulsvik, A.J.; Myrmel, K.S.; Sjåvik, K.; Unsgård, G.; Torp, S.H.; Aaberg, K.; Berg, T.; Dai, H.Y.; Johnsen, K.; et al. Surgical Resection versus Watchful Waiting in Low-Grade Gliomas. Ann. Oncol. 2017, 28, 1942–1948. [Google Scholar] [CrossRef]
- Chai, R.; Fang, S.; Pang, B.; Liu, Y.; Wang, Y.; Zhang, W.; Jiang, T. Molecular Pathology and Clinical Implications of Diffuse Glioma. Chin. Med. J. 2022, 135, 2914–2925. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, B.T.; Huse, J.T. Classification of Adult-type Diffuse Gliomas: Impact of the World Health Organization 2021 Update. Brain Pathol. 2022, 32, e13062. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wu, Z.; Zhang, H.; Zhang, N.; Wu, W.; Wang, Z.; Dai, Z.; Zhang, X.; Zhang, L.; Peng, Y.; et al. Glioma Targeted Therapy: Insight into Future of Molecular Approaches. Mol. Cancer 2022, 21, 39. [Google Scholar] [CrossRef] [PubMed]
- Cruz Da Silva, E.; Mercier, M.-C.; Etienne-Selloum, N.; Dontenwill, M.; Choulier, L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers 2021, 13, 1795. [Google Scholar] [CrossRef]
- Ichimura, K.; Pearson, D.M.; Kocialkowski, S.; Bäcklund, L.M.; Chan, R.; Jones, D.T.W.; Collins, V.P. IDH1 Mutations Are Present in the Majority of Common Adult Gliomas but Rare in Primary Glioblastomas. Neuro-Oncology 2009, 11, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Heinzen, D.; Divé, I.; Lorenz, N.I.; Luger, A.-L.; Steinbach, J.P.; Ronellenfitsch, M.W. Second Generation MTOR Inhibitors as a Double-Edged Sword in Malignant Glioma Treatment. Int. J. Mol. Sci. 2019, 20, 4474. [Google Scholar] [CrossRef] [Green Version]
- Garrett, M.; Fujii, Y.; Osaka, N.; Ito, D.; Hirota, Y.; Sasaki, A. Emerging Roles of Wild-Type and Mutant IDH1 in Growth, Metabolism and Therapeutics of Glioma. In Gliomas; Exon Publications: Brisbane, Australia, 2021; pp. 61–78. [Google Scholar] [CrossRef]
- Miyata, S.; Tominaga, K.; Sakashita, E.; Urabe, M.; Onuki, Y.; Gomi, A.; Yamaguchi, T.; Mieno, M.; Mizukami, H.; Kume, A.; et al. Comprehensive Metabolomic Analysis of IDH1R132H Clinical Glioma Samples Reveals Suppression of β-Oxidation Due to Carnitine Deficiency. Sci. Rep. 2019, 9, 9787. [Google Scholar] [CrossRef] [Green Version]
- Barbarisi, M.; Iaffaioli, R.V.; Armenia, E.; Schiavo, L.; De Sena, G.; Tafuto, S.; Barbarisi, A.; Quagliariello, V. Novel Nanohydrogel of Hyaluronic Acid Loaded with Quercetin Alone and in Combination with Temozolomide as New Therapeutic Tool, CD44 Targeted Based, of Glioblastoma Multiforme. J. Cell. Physiol. 2018, 233, 6550–6564. [Google Scholar] [CrossRef]
- Ackley, B.J.; Ladwig, G.B.; Swan, B.A.; Tucker, S.J. Evidence-Based Nursing Care Guidelines—E-Book: Medical-Surgical Interventions; Elsevier Health Sciences: Amsterdam, The Netherlands, 2007; ISBN 978-0-323-05933-6. [Google Scholar]
- Berzero, G.; Bellu, L.; Baldini, C.; Ducray, F.; Guyon, D.; Eoli, M.; Silvani, A.; Dehais, C.; Idbaih, A.; Younan, N.; et al. Sustained Tumor Control With MAPK Inhibition in BRAF V600-Mutant Adult Glial and Glioneuronal Tumors. Neurology 2021, 97, e673–e683. [Google Scholar] [CrossRef]
- Butowski, N.; Chang, S.M.; Lamborn, K.R.; Polley, M.Y.; Parvataneni, R.; Hristova-Kazmierski, M.; Musib, L.; Nicol, S.J.; Thornton, D.E.; Prados, M.D. Enzastaurin plus Temozolomide with Radiation Therapy in Glioblastoma Multiforme: A Phase I Study. Neuro-Oncology 2010, 12, 608–613. [Google Scholar] [CrossRef] [Green Version]
- Chinnaiyan, P.; Won, M.; Wen, P.Y.; Rojiani, A.M.; Wendland, M.; Dipetrillo, T.A.; Corn, B.W.; Mehta, M.P. RTOG 0913: A Phase I Study of Daily Everolimus (RAD001) In Combination with Radiation Therapy and Temozolomide in Patients with Newly Diagnosed Glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 880–884. [Google Scholar] [CrossRef] [Green Version]
- Drobysheva, A.; Klesse, L.J.; Bowers, D.C.; Rajaram, V.; Rakheja, D.; Timmons, C.F.; Wang, J.; Koral, K.; Gargan, L.; Ramos, E.; et al. Targeted MAPK Pathway Inhibitors in Patients With Disseminated Pilocytic Astrocytomas. J. Natl. Compr. Cancer Netw. JNCCN 2017, 15, 978–982. [Google Scholar] [CrossRef] [Green Version]
- Franceschi, E.; Stupp, R.; Van Den Bent, M.J.; Van Herpen, C.; Laigle Donadey, F.; Gorlia, T.; Hegi, M.; Lhermitte, B.; Strauss, L.C.; Allgeier, A.; et al. EORTC 26083 Phase I/II Trial of Dasatinib in Combination with CCNU in Patients with Recurrent Glioblastoma. Neuro-Oncology 2012, 14, 1503–1510. [Google Scholar] [CrossRef] [Green Version]
- Fusco, M.J.; Piña, Y.; Macaulay, R.J.; Sahebjam, S.; Forsyth, P.A.; Peguero, E.; Walko, C.M. Durable Progression-Free Survival With the Use of BRAF and MEK Inhibitors in Four Cases With BRAF V600E-Mutated Gliomas. Cancer Control J. Moffitt Cancer Cent. 2021, 28, 10732748211040012. [Google Scholar] [CrossRef]
- Hottinger, A.F.; Bensaid, D.; De Micheli, R.; Moura, B.; Mokhtari, K.; Cardoso, E.; Idbaih, A.; Stupp, R. Leptomeningeal Tumor Response to Combined MAPK/ERK Inhibition in V600E-Mutated Gliomas despite Undetectable CSF Drug Levels. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 155–156. [Google Scholar] [CrossRef] [PubMed]
- Johanns, T.M.; Ferguson, C.J.; Grierson, P.M.; Dahiya, S.; Ansstas, G. Rapid Clinical and Radiographic Response With Combined Dabrafenib and Trametinib in Adults With BRAF-Mutated High-Grade Glioma. J. Natl. Compr. Cancer Netw. JNCCN 2018, 16, 4–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaley, T.; Touat, M.; Subbiah, V.; Hollebecque, A.; Rodon, J.; Lockhart, A.C.; Keedy, V.; Bielle, F.; Hofheinz, R.D.; Joly, F.; et al. BRAF Inhibition in BRAF(V600)-Mutant Gliomas: Results From the VE-BASKET Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 3477–3484. [Google Scholar] [CrossRef] [PubMed]
- Kanemaru, Y.; Natsumeda, M.; Okada, M.; Saito, R.; Kobayashi, D.; Eda, T.; Watanabe, J.; Saito, S.; Tsukamoto, Y.; Oishi, M.; et al. Dramatic Response of BRAF V600E-Mutant Epithelioid Glioblastoma to Combination Therapy with BRAF and MEK Inhibitor: Establishment and Xenograft of a Cell Line to Predict Clinical Efficacy. Acta Neuropathol. Commun. 2019, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Kebir, S.; Rauschenbach, L.; Radbruch, A.; Lazaridis, L.; Schmidt, T.; Stoppek, A.-K.; Pierscianek, D.; Stuschke, M.; Forsting, M.; Sure, U.; et al. Regorafenib in Patients with Recurrent High-Grade Astrocytoma. J. Cancer Res. Clin. Oncol. 2019, 145, 1037–1042. [Google Scholar] [CrossRef]
- Kleinschmidt-DeMasters, B.K.; Aisner, D.L.; Foreman, N.K. BRAF VE1 Immunoreactivity Patterns in Epithelioid Glioblastomas Positive for BRAF V600E Mutation. Am. J. Surg. Pathol. 2015, 39, 528–540. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, S.; Mason, W.; MacNeil, M.; Harlos, C.; Tsang, R.; Sederias, J.; Luchman, H.A.; Weiss, S.; Rossiter, J.P.; Tu, D.; et al. A Phase I Study of Vistusertib (Dual MTORC1/2 Inhibitor) in Patients with Previously Treated Glioblastoma Multiforme: A CCTG Study. Investig. New Drugs 2020, 38, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Fotovati, A.; Triscott, J.; Chen, J.; Venugopal, C.; Singhal, A.; Dunham, C.; Kerr, J.M.; Verreault, M.; Yip, S.; et al. Polo-like Kinase 1 Inhibition Kills Glioblastoma Multiforme Brain Tumor Cells in Part through Loss of SOX2 and Delays Tumor Progression in Mice. Stem Cells 2012, 30, 1064–1075. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, G.; De Salvo, G.L.; Brandes, A.A.; Eoli, M.; Rudà, R.; Faedi, M.; Lolli, I.; Pace, A.; Daniele, B.; Pasqualetti, F.; et al. Regorafenib Compared with Lomustine in Patients with Relapsed Glioblastoma (REGOMA): A Multicentre, Open-Label, Randomised, Controlled, Phase 2 Trial. Lancet Oncol. 2019, 20, 110–119. [Google Scholar] [CrossRef]
- Mason, W.P.; Macneil, M.; Kavan, P.; Easaw, J.; Macdonald, D.; Thiessen, B.; Urva, S.; Lwin, Z.; McIntosh, L.; Eisenhauer, E. A Phase I Study of Temozolomide and Everolimus (RAD001) in Patients with Newly Diagnosed and Progressive Glioblastoma Either Receiving or Not Receiving Enzyme-Inducing Anticonvulsants: An NCIC CTG Study. Investig. New Drugs 2012, 30, 2344–2351. [Google Scholar] [CrossRef]
- Migliorini, D.; Aguiar, D.; Vargas, M.-I.; Lobrinus, A.; Dietrich, P.-Y. BRAF/MEK Double Blockade in Refractory Anaplastic Pleomorphic Xanthoastrocytoma. Neurology 2017, 88, 1291–1293. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, T.; Yeo, K.K.; Mauguen, A.; Alexandrescu, S.; Prabhu, S.P.; Tsai, J.W.; Malinowski, S.; Joshirao, M.; Parikh, K.; Farouk Sait, S.; et al. Upfront Molecular Targeted Therapy for the Treatment of BRAF-Mutant Pediatric High-Grade Glioma. Neuro-Oncology 2022, 24, 1964–1975. [Google Scholar] [CrossRef]
- Sanai, N.; Li, J.; Boerner, J.; Stark, K.; Wu, J.; Kim, S.; Derogatis, A.; Mehta, S.; Dhruv, H.D.; Heilbrun, L.K.; et al. Phase 0 Trial of AZD1775 in First-Recurrence Glioblastoma Patients. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 3820–3828. [Google Scholar] [CrossRef] [Green Version]
- Schiff, D.; Desjardins, A.; Cloughesy, T.; Mikkelsen, T.; Glantz, M.; Chamberlain, M.C.; Reardon, D.A.; Wen, P.Y. Phase 1 Dose Escalation Trial of the Safety and Pharmacokinetics of Cabozantinib Concurrent with Temozolomide and Radiotherapy or Temozolomide after Radiotherapy in Newly Diagnosed Patients with High-Grade Gliomas. Cancer 2016, 122, 582–587. [Google Scholar] [CrossRef]
- Shah, G.D.; Silver, J.S.; Rosenfeld, S.S.; Gavrilovic, I.T.; Abrey, L.E.; Lassman, A.B. Myelosuppression in Patients Benefiting from Imatinib with Hydroxyurea for Recurrent Malignant Gliomas. J. Neurooncol. 2007, 85, 217–222. [Google Scholar] [CrossRef]
- Shi, L.; Zou, Z.; Ding, Q.; Liu, Q.; Zhou, H.; Hong, X.; Peng, G. Successful Treatment of a BRAF V600E-Mutant Extracranial Metastatic Anaplastic Oligoastrocytoma with Vemurafenib and Everolimus. Cancer Biol. Ther. 2019, 20, 431–434. [Google Scholar] [CrossRef]
- Werner, J.-M.; Wolf, L.; Tscherpel, C.; Bauer, E.K.; Wollring, M.; Ceccon, G.; Deckert, M.; Brunn, A.; Pappesch, R.; Goldbrunner, R.; et al. Efficacy and Tolerability of Regorafenib in Pretreated Patients with Progressive CNS Grade 3 or 4 Gliomas. J. Neurooncol. 2022, 159, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Wick, W.; Dettmer, S.; Berberich, A.; Kessler, T.; Karapanagiotou-Schenkel, I.; Wick, A.; Winkler, F.; Pfaff, E.; Brors, B.; Debus, J.; et al. N2M2 (NOA-20) Phase I/II Trial of Molecularly Matched Targeted Therapies plus Radiotherapy in Patients with Newly Diagnosed Non-MGMT Hypermethylated Glioblastoma. Neuro-Oncology 2019, 21, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yau, W.H.; Ameratunga, M. Combination of BRAF and MEK Inhibition in BRAF V600E Mutant Low-Grade Ganglioglioma. J. Clin. Pharm. Ther. 2020, 45, 1172–1174. [Google Scholar] [CrossRef] [PubMed]
- Zustovich, F.; Landi, L.; Lombardi, G.; Porta, C.; Galli, L.; Fontana, A.; Amoroso, D.; Galli, C.; Andreuccetti, M.; Falcone, A.; et al. Sorafenib plus Daily Low-Dose Temozolomide for Relapsed Glioblastoma: A Phase II Study. Anticancer Res. 2013, 33, 3487–3494. [Google Scholar] [CrossRef]
- Badruddoja, M.A.; Pazzi, M.; Sanan, A.; Schroeder, K.; Kuzma, K.; Norton, T.; Scully, T.; Mahadevan, D.; Ahmadi, M.M. Phase II Study of Bi-Weekly Temozolomide plus Bevacizumab for Adult Patients with Recurrent Glioblastoma. Cancer Chemother. Pharmacol. 2017, 80, 715–721. [Google Scholar] [CrossRef]
- Brown, N.; McBain, C.; Nash, S.; Hopkins, K.; Sanghera, P.; Saran, F.; Phillips, M.; Dungey, F.; Clifton-Hadley, L.; Wanek, K.; et al. Multi-Center Randomized Phase II Study Comparing Cediranib plus Gefitinib with Cediranib plus Placebo in Subjects with Recurrent/Progressive Glioblastoma. PLoS ONE 2016, 11, e0156369. [Google Scholar] [CrossRef] [Green Version]
- Clarke, J.L.; Molinaro, A.M.; Phillips, J.J.; Butowski, N.A.; Chang, S.M.; Perry, A.; Costello, J.F.; DeSilva, A.A.; Rabbitt, J.E.; Prados, M.D. A Single-Institution Phase II Trial of Radiation, Temozolomide, Erlotinib, and Bevacizumab for Initial Treatment of Glioblastoma. Neuro-Oncology 2014, 16, 984–990. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandris, Q.G.; Montano, N.; Cenci, T.; Martini, M.; Lauretti, L.; Bianchi, F.; Larocca, L.M.; Maira, G.; Fernandez, E.; Pallini, R. Targeted Therapy with Bevacizumab and Erlotinib Tailored to the Molecular Profile of Patients with Recurrent Glioblastoma. Preliminary Experience. Acta Neurochir. 2013, 155, 33–40. [Google Scholar] [CrossRef]
- Desjardins, A.; Reardon, D.A.; Coan, A.; Marcello, J.; Herndon II, J.E.; Bailey, L.; Peters, K.B.; Friedman, H.S.; Vredenburgh, J.J. Bevacizumab and Daily Temozolomide for Recurrent Glioblastoma. Cancer 2012, 118, 1302–1312. [Google Scholar] [CrossRef] [PubMed]
- Hasselbalch, B.; Eriksen, J.G.; Broholm, H.; Christensen, I.J.; Grunnet, K.; Horsman, M.R.; Poulsen, H.S.; Stockhausen, M.-T.; Lassen, U. Prospective Evaluation of Angiogenic, Hypoxic and EGFR-Related Biomarkers in Recurrent Glioblastoma Multiforme Treated with Cetuximab, Bevacizumab and Irinotecan. APMIS 2010, 118, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Lassen, U.; Chinot, O.L.; McBain, C.; Mau-Sørensen, M.; Larsen, V.A.; Barrie, M.; Roth, P.; Krieter, O.; Wang, K.; Habben, K.; et al. Phase 1 Dose-Escalation Study of the Antiplacental Growth Factor Monoclonal Antibody RO5323441 Combined with Bevacizumab in Patients with Recurrent Glioblastoma. Neuro-Oncology 2015, 17, 1007–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Qi, S.; Ouyang, H.; Li, Z.; Yin, Y.; Shi, J.; Qiu, X.; Mo, Y. Preliminary clinical evaluations of bevacizumab for recurrent malignant glioma in Chinese patients. Zhonghua Yi Xue Za Zhi 2014, 94, 1165–1168. [Google Scholar] [PubMed]
- Prados, M.D.; Byron, S.A.; Tran, N.L.; Phillips, J.J.; Molinaro, A.M.; Ligon, K.L.; Wen, P.Y.; Kuhn, J.G.; Mellinghoff, I.K.; de Groot, J.F.; et al. Toward Precision Medicine in Glioblastoma: The Promise and the Challenges. Neuro-Oncology 2015, 17, 1051–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaccaro, V.; Fabi, A.; Vidiri, A.; Giannarelli, D.; Metro, G.; Telera, S.; Vari, S.; Piludu, F.; Carosi, M.A.; Villani, V.; et al. Activity and Safety of Bevacizumab plus Fotemustine for Recurrent Malignant Gliomas. BioMed Res. Int. 2014, 2014, 351252. [Google Scholar] [CrossRef] [PubMed]
- Vredenburgh, J.J.; Desjardins, A.; Kirkpatrick, J.P.; Reardon, D.A.; Peters, K.B.; Herndon, J.E.; Marcello, J.; Bailey, L.; Threatt, S.; Sampson, J.; et al. Addition of Bevacizumab to Standard Radiation Therapy and Daily Temozolomide Is Associated with Minimal Toxicity in Newly Diagnosed Glioblastoma Multiforme. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 58–66. [Google Scholar] [CrossRef]
- Wang, F.; Huang, Q.; Zhou, L.-Y. Analysis of the Treatment of Gliomas with SEC Therapy Combined with Radiochemotherapy. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 2400–2405. [Google Scholar]
- Wang, L.; Liang, L.; Yang, T.; Qiao, Y.; Xia, Y.; Liu, L.; Li, C.; Lu, P.; Jiang, X. A Pilot Clinical Study of Apatinib plus Irinotecan in Patients with Recurrent High-Grade Glioma: Clinical Trial/Experimental Study. Medicine 2017, 96, e9053. [Google Scholar] [CrossRef]
- Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO Guidelines on the Diagnosis and Treatment of Diffuse Gliomas of Adulthood. Nat. Rev. Clin. Oncol. 2021, 18, 170–186. [Google Scholar] [CrossRef]
- Wick, A.; Desjardins, A.; Suarez, C.; Forsyth, P.; Gueorguieva, I.; Burkholder, T.; Cleverly, A.L.; Estrem, S.T.; Wang, S.; Lahn, M.M.; et al. Phase 1b/2a Study of Galunisertib, a Small Molecule Inhibitor of Transforming Growth Factor-Beta Receptor I, in Combination with Standard Temozolomide-Based Radiochemotherapy in Patients with Newly Diagnosed Malignant Glioma. Investig. New Drugs 2020, 38, 1570–1579. [Google Scholar] [CrossRef] [Green Version]
- Anghileri, E.; Di Ianni, N.; Paterra, R.; Langella, T.; Zhao, J.; Eoli, M.; Patanè, M.; Pollo, B.; Cuccarini, V.; Iavarone, A.; et al. High Tumor Mutational Burden and T-Cell Activation Are Associated with Long-Term Response to Anti-PD1 Therapy in Lynch Syndrome Recurrent Glioblastoma Patient. Cancer Immunol. Immunother. CII 2021, 70, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Nayak, L.; Molinaro, A.M.; Peters, K.; Clarke, J.L.; Jordan, J.T.; de Groot, J.; Nghiemphu, L.; Kaley, T.; Colman, H.; McCluskey, C.; et al. Randomized Phase II and Biomarker Study of Pembrolizumab plus Bevacizumab versus Pembrolizumab Alone for Patients with Recurrent Glioblastoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
- Reardon, D.A.; Brandes, A.A.; Omuro, A.; Mulholland, P.; Lim, M.; Wick, A.; Baehring, J.; Ahluwalia, M.S.; Roth, P.; Bähr, O.; et al. Effect of Nivolumab vs Bevacizumab in Patients With Recurrent Glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Brachman, D.G.; Pugh, S.L.; Ashby, L.S.; Thomas, T.A.; Dunbar, E.M.; Narayan, S.; Robins, H.I.; Bovi, J.A.; Rockhill, J.K.; Won, M.; et al. Phase 1/2 Trials of Temozolomide, Motexafin Gadolinium, and 60-Gy Fractionated Radiation for Newly Diagnosed Supratentorial Glioblastoma Multiforme: Final Results of RTOG 0513. Int. J. Radiat. Oncol. 2015, 91, 961–967. [Google Scholar] [CrossRef] [Green Version]
- Kubicek, G.J.; Werner-Wasik, M.; Machtay, M.; Mallon, G.; Myers, T.; Ramirez, M.; Andrews, D.; Curran, W.J.; Dicker, A.P. A Phase I Trial Using the Proteasome Inhibitor Bortezomib and Concurrent Temozolomide and Radiotherapy for CNS Malignancies. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Yu, L.; Fu, Y.; Chen, H.; Zheng, X.; Wang, S.; Gao, C.; Cao, Y.; Lin, L. A Refractory Case of CDK4-Amplified Spinal Astrocytoma Achieving Complete Response upon Treatment with a Palbociclib-Based Regimen: A Case Report. BMC Cancer 2020, 20, 630. [Google Scholar] [CrossRef]
- Geletneky, K.; Hajda, J.; Angelova, A.L.; Leuchs, B.; Capper, D.; Bartsch, A.J.; Neumann, J.O.; Schöning, T.; Hüsing, J.; Beelte, B.; et al. Oncolytic H-1 Parvovirus Shows Safety and Signs of Immunogenic Activity in a First Phase I/IIa Glioblastoma Trial. Mol. Ther. J. Am. Soc. Gene Ther. 2017, 25, 2620–2634. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, N.; Tsuboi, A.; Kagawa, N.; Chiba, Y.; Izumoto, S.; Kinoshita, M.; Kijima, N.; Oka, Y.; Morimoto, S.; Nakajima, H.; et al. Wilms Tumor 1 Peptide Vaccination Combined with Temozolomide against Newly Diagnosed Glioblastoma: Safety and Impact on Immunological Response. Cancer Immunol. Immunother. CII 2015, 64, 707–716. [Google Scholar] [CrossRef]
- Patel, S.; DiBiase, S.; Meisenberg, B.; Flannery, T.; Patel, A.; Dhople, A.; Cheston, S.; Amin, P. Phase I Clinical Trial Assessing Temozolomide and Tamoxifen with Concomitant Radiotherapy for Treatment of High-Grade Glioma. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 739–742. [Google Scholar] [CrossRef]
- Sautter, L.; Hofheinz, R.; Tuettenberg, J.; Grimm, M.; Vajkoczy, P.; Groden, C.; Schmieder, K.; Hochhaus, A.; Wenz, F.; Giordano, F.A. Open-Label Phase II Evaluation of Imatinib in Primary Inoperable or Incompletely Resected and Recurrent Glioblastoma. Oncology 2020, 98, 16–22. [Google Scholar] [CrossRef]
- Aldea, M.D.; Petrushev, B.; Soritau, O.; Tomuleasa, C.I.; Filip, A.G.; Chereches, G.; Cenariu, M.; Tatomir, C.; Florian, I.-S.; Crivii, C.B.; et al. Metformin plus Sorafenib Highly Impacts Temozolomide Resistant Glioblastoma Stem-like Cells. J. BUON 2014, 19, 502–511. [Google Scholar] [PubMed]
- Aoki, K.; Nakamura, H.; Suzuki, H.; Matsuo, K.; Kataoka, K.; Shimamura, T.; Motomura, K.; Ohka, F.; Shiina, S.; Yamamoto, T.; et al. Prognostic Relevance of Genetic Alterations in Diffuse Lower-Grade Gliomas. Neuro-Oncology 2018, 20, 66–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arcella, A.; Biagioni, F.; Oliva, M.A.; Bucci, D.; Frati, A.; Esposito, V.; Cantore, G.; Giangaspero, F.; Fornai, F. Rapamycin Inhibits the Growth of Glioblastoma. Brain Res. 2013, 1495, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Ariey-Bonnet, J.; Carrasco, K.; Le Grand, M.; Hoffer, L.; Betzi, S.; Feracci, M.; Tsvetkov, P.; Devred, F.; Collette, Y.; Morelli, X.; et al. In Silico Molecular Target Prediction Unveils Mebendazole as a Potent MAPK14 Inhibitor. Mol. Oncol. 2020, 14, 3083–3099. [Google Scholar] [CrossRef] [PubMed]
- Balkhi, H.M.; Gul, T.; Haq, E. Anti-Neoplastic and Calcium Modulatory Action of Caffeic Acid Phenethyl Ester and Dasatinib in C6 Glial Cells: A Therapeutic Perspective. CNS Neurol. Disord.-Drug Targets 2016, 15, 54–63. [Google Scholar] [CrossRef]
- Benezra, M.; Hambardzumyan, D.; Penate-Medina, O.; Veach, D.R.; Pillarsetty, N.; Smith-Jones, P.; Phillips, E.; Ozawa, T.; Zanzonico, P.B.; Longo, V.; et al. Fluorine-Labeled Dasatinib Nanoformulations as Targeted Molecular Imaging Probes in a PDGFB-Driven Murine Glioblastoma Model. Neoplasia 2012, 14, 1132–1143. [Google Scholar] [CrossRef] [Green Version]
- Camorani, S.; Crescenzi, E.; Colecchia, D.; Carpentieri, A.; Amoresano, A.; Fedele, M.; Chiariello, M.; Cerchia, L. Aptamer Targeting EGFRvIII Mutant Hampers Its Constitutive Autophosphorylation and Affects Migration, Invasion and Proliferation of Glioblastoma Cells. Oncotarget 2015, 6, 37570–37587. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Chen, J.; Zhu, Y.; Li, Y.; Wang, Y.; Chen, H.; Wang, J.; Li, X.; Liu, Y.; Li, B.; et al. CD163, a Novel Therapeutic Target, Regulates the Proliferation and Stemness of Glioma Cells via Casein Kinase 2. Oncogene 2019, 38, 1183–1199. [Google Scholar] [CrossRef]
- Cheng, X.; Ren, Z.; Liu, Z.; Sun, X.; Qian, R.; Cao, C.; Liu, B.; Wang, J.; Wang, H.; Guo, Y.; et al. Cysteine Cathepsin C: A Novel Potential Biomarker for the Diagnosis and Prognosis of Glioma. Cancer Cell Int. 2022, 22, 53. [Google Scholar] [CrossRef]
- Ciesielski, M.J.; Bu, Y.; Munich, S.A.; Teegarden, P.; Smolinski, M.P.; Clements, J.L.; Lau, J.Y.N.; Hangauer, D.G.; Fenstermaker, R.A. KX2-361: A Novel Orally Bioavailable Small Molecule Dual Src/Tubulin Inhibitor That Provides Long Term Survival in a Murine Model of Glioblastoma. J. Neurooncol. 2018, 140, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Cloninger, C.; Bernath, A.; Bashir, T.; Holmes, B.; Artinian, N.; Ruegg, T.; Anderson, L.; Masri, J.; Lichtenstein, A.; Gera, J. Inhibition of SAPK2/P38 Enhances Sensitivity to MTORC1 Inhibition by Blocking IRES-Mediated Translation Initiation in Glioblastoma. Mol. Cancer Ther. 2011, 10, 2244–2256. [Google Scholar] [CrossRef] [Green Version]
- Combs, S.E.; Schulz-Ertner, D.; Roth, W.; Herold-Mende, C.; Debus, J.; Weber, K.-J. In Vitro Responsiveness of Glioma Cell Lines to Multimodality Treatment with Radiotherapy, Temozolomide, and Epidermal Growth Factor Receptor Inhibition with Cetuximab. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, T.; Olow, A.K.; Yang, X.; Hashizume, R.; Nicolaides, T.P.; Tom, M.; Aoki, Y.; Berger, M.S.; Weiss, W.A.; Stalpers, L.J.A.; et al. Survival Advantage Combining a BRAF Inhibitor and Radiation in BRAF V600E-Mutant Glioma. J. Neurooncol. 2016, 126, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Dantas-Barbosa, C.; Bergthold, G.; Daudigeos-Dubus, E.; Blockus, H.; Boylan, J.F.; Ferreira, C.; Puget, S.; Abely, M.; Vassal, G.; Grill, J.; et al. Inhibition of the NOTCH Pathway Using γ-Secretase Inhibitor RO4929097 Has Limited Antitumor Activity in Established Glial Tumors. Anticancer Drugs 2015, 26, 272–283. [Google Scholar] [CrossRef]
- Davare, M.A.; Henderson, J.J.; Agarwal, A.; Wagner, J.P.; Iyer, S.R.; Shah, N.; Woltjer, R.; Somwar, R.; Gilheeney, S.W.; DeCarvalo, A.; et al. Rare but Recurrent ROS1 Fusions Resulting From Chromosome 6q22 Microdeletions Are Targetable Oncogenes in Glioma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 6471–6482. [Google Scholar] [CrossRef] [Green Version]
- Di Stefano, A.L.; Fucci, A.; Frattini, V.; Labussiere, M.; Mokhtari, K.; Zoppoli, P.; Marie, Y.; Bruno, A.; Boisselier, B.; Giry, M.; et al. Detection, Characterization, and Inhibition of FGFR-TACC Fusions in IDH Wild-Type Glioma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015, 21, 3307–3317. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, C.L.; Floyd, D.H.; Xiao, A.; Mullins, G.R.; Kefas, B.A.; Xin, W.; Yacur, M.N.; Abounader, R.; Lee, J.K.; Wilson, G.M.; et al. Diacylglycerol Kinase α Is a Critical Signaling Node and Novel Therapeutic Target in Glioblastoma and Other Cancers. Cancer Discov. 2013, 3, 782–797. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Zhou, J.; Wang, D.; Gong, K.; Zhang, Q. Vitamin K1 Enhances Sorafenib-Induced Growth Inhibition and Apoptosis of Human Malignant Glioma Cells by Blocking the Raf/MEK/ERK Pathway. World J. Surg. Oncol. 2012, 10, 60. [Google Scholar] [CrossRef] [Green Version]
- Emlet, D.R.; Gupta, P.; Holgado-Madruga, M.; Del Vecchio, C.A.; Mitra, S.S.; Han, S.Y.; Li, G.; Jensen, K.C.; Vogel, H.; Xu, L.W.; et al. Targeting a Glioblastoma Cancer Stem-Cell Population Defined by EGF Receptor Variant III. Cancer Res. 2014, 74, 1238–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, P.J.; Matuszkiewicz, J.; Balakrishna, D.; Pandya, S.; Hixon, M.S.; Kamran, R.; Chu, S.; Lawson, J.D.; Okada, K.; Hori, A.; et al. MET Tyrosine Kinase Inhibition Enhances the Antitumor Efficacy of an HGF Antibody. Mol. Cancer Ther. 2017, 16, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Huang, J.; Ding, Y.; Xie, F.; Shen, X. Tamoxifen-Induced Apoptosis of Rat C6 Glioma Cells via PI3K/Akt, JNK and ERK Activation. Oncol. Rep. 2010, 24, 1561–1567. [Google Scholar] [PubMed] [Green Version]
- Glassmann, A.; Reichmann, K.; Scheffler, B.; Glas, M.; Veit, N.; Probstmeier, R. Pharmacological Targeting of the Constitutively Activated MEK/MAPK-Dependent Signaling Pathway in Glioma Cells Inhibits Cell Proliferation and Migration. Int. J. Oncol. 2011, 39, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Goker Bagca, B.; Ozates, N.P.; Asik, A.; Caglar, H.O.; Gunduz, C.; Biray Avci, C. Temozolomide Treatment Combined with AZD3463 Shows Synergistic Effect in Glioblastoma Cells. Biochem. Biophys. Res. Commun. 2020, 533, 1497–1504. [Google Scholar] [CrossRef]
- Golubovskaya, V.M.; Huang, G.; Ho, B.; Yemma, M.; Morrison, C.D.; Lee, J.; Eliceiri, B.P.; Cance, W.G. Pharmacologic Blockade of FAK Autophosphorylation Decreases Human Glioblastoma Tumor Growth and Synergizes with Temozolomide. Mol. Cancer Ther. 2013, 12, 162–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossen, A.; Gavula, T.; Chrusciel, D.; Evans, A.; McNall-Knapp, R.; Taylor, A.; Fossey, B.; Brakefield, M.; Carter, C.; Schwartz, N.; et al. Multidisciplinary Neurocutaneous Syndrome Clinics: A Systematic Review and Institutional Experience. Neurosurg. Focus 2022, 52, E2. [Google Scholar] [CrossRef]
- Gürsel, D.B.; Connell-Albert, Y.S.; Tuskan, R.G.; Anastassiadis, T.; Walrath, J.C.; Hawes, J.J.; Amlin-Van Schaick, J.C.; Reilly, K.M. Control of Proliferation in Astrocytoma Cells by the Receptor Tyrosine Kinase/PI3K/AKT Signaling Axis and the Use of PI-103 and TCN as Potential Anti-Astrocytoma Therapies. Neuro-Oncology 2011, 13, 610–621. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Yao, M.; Zhang, W.; Tao, B.; Liu, F.; Li, S.; Dong, Y.; Zhang, C.; Meng, Y.; Li, Y.; et al. MEK2 Is a Prognostic Marker and Potential Chemo-Sensitizing Target for Glioma Patients Undergoing Temozolomide Treatment. Cell. Mol. Immunol. 2016, 13, 658–668. [Google Scholar] [CrossRef] [Green Version]
- Hjelmeland, A.B.; Lattimore, K.P.; Fee, B.E.; Shi, Q.; Wickman, S.; Keir, S.T.; Hjelmeland, M.D.; Batt, D.; Bigner, D.D.; Friedman, H.S.; et al. The Combination of Novel Low Molecular Weight Inhibitors of RAF (LBT613) and Target of Rapamycin (RAD001) Decreases Glioma Proliferation and Invasion. Mol. Cancer Ther. 2007, 6, 2449–2457. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Stastny, M.; Brown, C.; Chang, W.C.; Ostberg, J.R.; Forman, S.J.; Jensen, M.C. Diverse Solid Tumors Expressing a Restricted Epitope of L1-CAM Can Be Targeted by Chimeric Antigen Receptor Redirected T Lymphocytes. J. Immunother. 2014, 37, 93–104. [Google Scholar] [CrossRef]
- Jiang, H.; Gao, H.; Kong, J.; Song, B.; Wang, P.; Shi, B.; Wang, H.; Li, Z. Selective Targeting of Glioblastoma with EGFRvIII/EGFR Bitargeted Chimeric Antigen Receptor T Cell. Cancer Immunol. Res. 2018, 6, 1314–1326. [Google Scholar] [CrossRef]
- Jin, R.; Nakada, M.; Teng, L.; Furuta, T.; Sabit, H.; Hayashi, Y.; Demuth, T.; Hirao, A.; Sato, H.; Zhao, G.; et al. Combination Therapy Using Notch and Akt Inhibitors Is Effective for Suppressing Invasion but Not Proliferation in Glioma Cells. Neurosci. Lett. 2013, 534, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Joel, M.; Mughal, A.A.; Grieg, Z.; Murrell, W.; Palmero, S.; Mikkelsen, B.; Fjerdingstad, H.B.; Sandberg, C.J.; Behnan, J.; Glover, J.C.; et al. Targeting PBK/TOPK Decreases Growth and Survival of Glioma Initiating Cells in Vitro and Attenuates Tumor Growth in Vivo. Mol. Cancer 2015, 14, 121. [Google Scholar] [CrossRef] [Green Version]
- Joshi, A.D.; Botham, R.C.; Schlein, L.J.; Roth, H.S.; Mangraviti, A.; Borodovsky, A.; Tyler, B.; Joslyn, S.; Looper, J.S.; Podell, M.; et al. Synergistic and Targeted Therapy with a Procaspase-3 Activator and Temozolomide Extends Survival in Glioma Rodent Models and Is Feasible for the Treatment of Canine Malignant Glioma Patients. Oncotarget 2017, 8, 80124–80138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, R.-J.; Zeng, F.; Liu, L.; Mu, L.-M.; Xie, H.-J.; Zhao, Y.; Yan, Y.; Wu, J.-S.; Hu, Y.-J.; Lu, W.-L. Destruction of Vasculogenic Mimicry Channels by Targeting Epirubicin plus Celecoxib Liposomes in Treatment of Brain Glioma. Int. J. Nanomed. 2016, 11, 1131–1146. [Google Scholar] [CrossRef] [Green Version]
- Junca, A.; Villalva, C.; Tachon, G.; Rivet, P.; Cortes, U.; Guilloteau, K.; Balbous, A.; Godet, J.; Wager, M.; Karayan-Tapon, L. Crizotinib Targets in Glioblastoma Stem Cells. Cancer Med. 2017, 6, 2625–2634. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.; Park, H.; Zhao, H.Y.; Jeon, R.; Ryu, J.H.; Kim, W.Y. Systemic Approaches Identify a Garlic-Derived Chemical, Z-Ajoene, as a Glioblastoma Multiforme Cancer Stem Cell-Specific Targeting Agent. Mol. Cells 2014, 37, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Kawauchi, D.; Takahashi, M.; Satomi, K.; Yamamuro, S.; Kobayashi, T.; Uchida, E.; Honda-Kitahara, M.; Narita, Y.; Iwadate, Y.; Ichimura, K.; et al. The ALK Inhibitors, Alectinib and Ceritinib, Induce ALK-Independent and STAT3-Dependent Glioblastoma Cell Death. Cancer Sci. 2021, 112, 2442–2453. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.-K.; Kim, M.-J.; Yoon, C.-H.; Lim, E.-J.; Yoo, K.-C.; Lee, G.-H.; Kim, Y.-H.; Kim, H.; Jin, Y.B.; Lee, Y.-J.; et al. A New 2-Pyrone Derivative, 5-Bromo-3-(3-Hydroxyprop-1-Ynyl)-2H-Pyran-2-One, Suppresses Stemness in Glioma Stem-Like Cells. Mol. Pharmacol. 2012, 82, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Koul, D.; Shen, R.; Bergh, S.; Lu, Y.; de Groot, J.; Liu, T.; Mills, G.; Yung, W. Targeting Integrin-Linked Kinase Inhibits Akt Signaling Pathways and Decreases Tumor Progression of Human Glioblastoma. Mol. Cancer Ther. 2005, 4, 1681–1688. [Google Scholar] [CrossRef] [Green Version]
- Koul, D.; Shen, R.; Kim, Y.-W.; Kondo, Y.; Lu, Y.; Bankson, J.; Ronen, S.M.; Kirkpatrick, D.L.; Powis, G.; Yung, W.K.A. Cellular and in Vivo Activity of a Novel PI3K Inhibitor, PX-866, against Human Glioblastoma. Neuro-Oncology 2010, 12, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, X.; Feng, X.; Zhang, B.; Wang, J. Adenovirus-Mediated Delivery of BFGF Small Interfering RNA Reduces STAT3 Phosphorylation and Induces the Depolarization of Mitochondria and Apoptosis in Glioma Cells U251. J. Exp. Clin. Cancer Res. 2011, 30, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Zhou, L.; Shi, S.; Wang, Y.; Ni, X.; Xiao, F.; Wang, S.; Li, P.; Ding, K. Oligosaccharide G19 Inhibits U-87 MG Human Glioma Cells Growth in Vitro and in Vivo by Targeting Epidermal Growth Factor (EGF) and Activating P53/P21 Signaling. Glycobiology 2014, 24, 748–765. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chhipa, R.R.; Nakano, I.; Dasgupta, B. The AMPK Inhibitor Compound C Is a Potent AMPK-Independent Anti-Glioma Agent. Mol. Cancer Ther. 2014, 13, 596–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luchman, H.A.; Stechishin, O.D.; Dang, N.H.; Blough, M.D.; Chesnelong, C.; Kelly, J.J.; Nguyen, S.A.; Chan, J.A.; Weljie, A.M.; Cairncross, J.G.; et al. An in Vivo Patient-Derived Model of Endogenous IDH1-Mutant Glioma. Neuro-Oncology 2012, 14, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Zhang, Y.; Li, R.; Ye, J.; Li, H.; Zhang, Y.; Ma, Z.; Li, J.; Zhong, X.; Yang, X. Tetrandrine Suppresses Human Glioma Growth by Inhibiting Cell Survival, Proliferation and Tumour Angiogenesis through Attenuating STAT3 Phosphorylation. Eur. J. Pharmacol. 2015, 764, 228–239. [Google Scholar] [CrossRef]
- Matsuda, K.; Sato, A.; Okada, M.; Shibuya, K.; Seino, S.; Suzuki, K.; Watanabe, E.; Narita, Y.; Shibui, S.; Kayama, T.; et al. Targeting JNK for Therapeutic Depletion of Stem-like Glioblastoma Cells. Sci. Rep. 2012, 2, 516. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, M.J.; Arnold, A.; Sweeney, H.; Chen, L.; Lih, T.-S.M.; Schnaubelt, M.; Eberhart, C.G.; Rubens, J.A.; Zhang, H.; Clark, D.J.; et al. Unbiased Proteomic and Phosphoproteomic Analysis Identifies Response Signatures and Novel Susceptibilities After Combined MEK and MTOR Inhibition in BRAFV600E Mutant Glioma. Mol. Cell. Proteom. 2021, 20, 100123. [Google Scholar] [CrossRef]
- Nicolaides, T.P.; Li, H.; Solomon, D.A.; Hariono, S.; Hashizume, R.; Barkovich, K.; Baker, S.J.; Paugh, B.S.; Jones, C.; Forshew, T.; et al. Targeted Therapy for BRAFV600E Malignant Astrocytoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 7595–7604. [Google Scholar] [CrossRef] [Green Version]
- Paternot, S.; Roger, P.P. Combined Inhibition of MEK and Mammalian Target of Rapamycin Abolishes Phosphorylation of Cyclin-Dependent Kinase 4 in Glioblastoma Cell Lines and Prevents Their Proliferation. Cancer Res. 2009, 69, 4577–4581. [Google Scholar] [CrossRef] [Green Version]
- Peng, R.; Jiang, B.; Ma, J.; Ma, Z.; Wan, X.; Liu, H.; Chen, Z.; Cheng, Q.; Chen, R. Forced Downregulation of RACK1 Inhibits Glioma Development by Suppressing Src/Akt Signaling Activity. Oncol. Rep. 2013, 30, 2195–2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pezuk, J.A.; Brassesco, M.S.; Morales, A.G.; de Oliveira, J.C.; de Paula Queiroz, R.G.; Machado, H.R.; Carlotti, C.G.; Neder, L.; Scrideli, C.A.; Tone, L.G. Polo-like Kinase 1 Inhibition Causes Decreased Proliferation by Cell Cycle Arrest, Leading to Cell Death in Glioblastoma. Cancer Gene Ther. 2013, 20, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Phillips, A.C.; Boghaert, E.R.; Vaidya, K.S.; Mitten, M.J.; Norvell, S.; Falls, H.D.; DeVries, P.J.; Cheng, D.; Meulbroek, J.A.; Buchanan, F.G.; et al. ABT-414, an Antibody-Drug Conjugate Targeting a Tumor-Selective EGFR Epitope. Mol. Cancer Ther. 2016, 15, 661–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Premkumar, D.R.; Jane, E.P.; Pollack, I.F. Co-Administration of NVP-AEW541 and Dasatinib Induces Mitochondrial-Mediated Apoptosis through Bax Activation in Malignant Human Glioma Cell Lines. Int. J. Oncol. 2010, 37, 633–643. [Google Scholar] [CrossRef]
- Qin, Y.; Fu, M.; Takahashi, M.; Iwanami, A.; Kuga, D.; Rao, R.G.; Sudhakar, D.; Huang, T.; Kiyohara, M.; Torres, K.; et al. Epithelial Membrane Protein-2 (EMP2) Activates Src Protein and Is a Novel Therapeutic Target for Glioblastoma. J. Biol. Chem. 2014, 289, 13974–13985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raub, T.J.; Wishart, G.N.; Kulanthaivel, P.; Staton, B.A.; Ajamie, R.T.; Sawada, G.A.; Gelbert, L.M.; Shannon, H.E.; Sanchez-Martinez, C.; De Dios, A. Brain Exposure of Two Selective Dual CDK4 and CDK6 Inhibitors and the Antitumor Activity of CDK4 and CDK6 Inhibition in Combination with Temozolomide in an Intracranial Glioblastoma Xenograft. Drug Metab. Dispos. Biol. Fate Chem. 2015, 43, 1360–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salphati, L.; Heffron, T.P.; Alicke, B.; Nishimura, M.; Barck, K.; Carano, R.A.; Cheong, J.; Edgar, K.A.; Greve, J.; Kharbanda, S.; et al. Targeting the PI3K Pathway in the Brain—Efficacy of a PI3K Inhibitor Optimized to Cross the Blood-Brain Barrier. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012, 18, 6239–6248. [Google Scholar] [CrossRef] [Green Version]
- Sathornsumetee, S.; Hjelmeland, A.B.; Keir, S.T.; McLendon, R.E.; Batt, D.; Ramsey, T.; Yusuff, N.; Rasheed, B.K.A.; Kieran, M.W.; Laforme, A.; et al. AAL881, a Novel Small Molecule Inhibitor of RAF and Vascular Endothelial Growth Factor Receptor Activities, Blocks the Growth of Malignant Glioma. Cancer Res. 2006, 66, 8722–8730. [Google Scholar] [CrossRef] [Green Version]
- See, W.L.; Tan, I.-L.; Mukherjee, J.; Nicolaides, T.; Pieper, R.O. Sensitivity of Glioblastomas to Clinically Available MEK Inhibitors Is Defined by Neurofibromin 1 Deficiency. Cancer Res. 2012, 72, 3350–3359. [Google Scholar] [CrossRef] [Green Version]
- Selvasaravanan, K.D.; Wiederspohn, N.; Hadzalic, A.; Strobel, H.; Payer, C.; Schuster, A.; Karpel-Massler, G.; Siegelin, M.D.; Halatsch, M.-E.; Debatin, K.-M.; et al. The Limitations of Targeting MEK Signalling in Glioblastoma Therapy. Sci. Rep. 2020, 10, 7401. [Google Scholar] [CrossRef]
- Shingu, T.; Holmes, L.; Henry, V.; Wang, Q.; Latha, K.; Gururaj, A.E.; Gibson, L.A.; Doucette, T.; Lang, F.F.; Rao, G.; et al. Suppression of RAF/MEK or PI3K Synergizes Cytotoxicity of Receptor Tyrosine Kinase Inhibitors in Glioma Tumor-Initiating Cells. J. Transl. Med. 2016, 14, 46. [Google Scholar] [CrossRef] [Green Version]
- Siegelin, M.D.; Raskett, C.M.; Gilbert, C.A.; Ross, A.H.; Altieri, D.C. Sorafenib Exerts Anti-Glioma Activity in Vitro and in Vivo. Neurosci. Lett. 2010, 478, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Signore, M.; Pelacchi, F.; di Martino, S.; Runci, D.; Biffoni, M.; Giannetti, S.; Morgante, L.; De Majo, M.; Petricoin, E.F.; Stancato, L.; et al. Combined PDK1 and CHK1 Inhibition Is Required to Kill Glioblastoma Stem-like Cells in Vitro and in Vivo. Cell Death Dis. 2014, 5, e1223. [Google Scholar] [CrossRef]
- Spino, M.; Kurz, S.C.; Chiriboga, L.; Serrano, J.; Zeck, B.; Sen, N.; Patel, S.; Shen, G.; Vasudevaraja, V.; Tsirigos, A.; et al. Cell Surface Notch Ligand DLL3 Is a Therapeutic Target in Isocitrate Dehydrogenase-Mutant Glioma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 1261–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanasupawat, T.; Glogowska, A.; Burg, M.; Krcek, J.; Beiko, J.; Pitz, M.; Zhang, G.J.; Hombach-Klonisch, S.; Klonisch, T. C1q/TNF-Related Peptide 8 (CTRP8) Promotes Temozolomide Resistance in Human Glioblastoma. Mol. Oncol. 2018, 12, 1464–1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, E.M.; Landi, D.; Ashley, D.; Keir, S.T.; Bigner, D. Bevacizumab, Irinotecan, Temozolomide, Tyrosine Kinase Inhibition, and MEK Inhibition Are Effective against Pleomorphic Xanthoastrocytoma Regardless of V600E Status. J. Neurooncol. 2018, 140, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Tsigelny, I.F.; Mukthavaram, R.; Kouznetsova, V.L.; Chao, Y.; Babic, I.; Nurmemmedov, E.; Pastorino, S.; Jiang, P.; Calligaris, D.; Agar, N.; et al. Multiple Spatially Related Pharmacophores Define Small Molecule Inhibitors of OLIG2 in Glioblastoma. Oncotarget 2017, 8, 22370–22384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Heuvel, C.N.A.M.; Navis, A.C.; de Bitter, T.; Amiri, H.; Verrijp, K.; Heerschap, A.; Rex, K.; Dussault, I.; Caenepeel, S.; Coxon, A.; et al. Selective MET Kinase Inhibition in MET-Dependent Glioma Models Alters Gene Expression and Induces Tumor Plasticity. Mol. Cancer Res. MCR 2017, 15, 1587–1597. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Sai, K.; Chen, F.; Chen, Z. MiR-181b Modulates Glioma Cell Sensitivity to Temozolomide by Targeting MEK1. Cancer Chemother. Pharmacol. 2013, 72, 147–158. [Google Scholar] [CrossRef]
- Wang, L.; Shi, Z.M.; Jiang, C.F.; Liu, X.; Chen, Q.D.; Qian, X.; Li, D.M.; Ge, X.; Wang, X.F.; Liu, L.Z.; et al. MiR-143 Acts as a Tumor Suppressor by Targeting N-RAS and Enhances Temozolomide-Induced Apoptosis in Glioma. Oncotarget 2014, 5, 5416–5427. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, K.; Wu, Q.; Kim, L.J.Y.; Morton, A.R.; Gimple, R.C.; Prager, B.C.; Shi, Y.; Zhou, W.; Bhargava, S.; et al. Targeting Pyrimidine Synthesis Accentuates Molecular Therapy Response in Glioblastoma Stem Cells. Sci. Transl. Med. 2019, 11, eaau4972. [Google Scholar] [CrossRef]
- Wichmann, H.; Güttler, A.; Bache, M.; Taubert, H.; Rot, S.; Kessler, J.; Eckert, A.W.; Kappler, M.; Vordermark, D. Targeting of EGFR and HER2 with Therapeutic Antibodies and SiRNA: A Comparative Study in Glioblastoma Cells. Strahlenther. Onkol. Organ Dtsch. Rontgengesellschaft Al 2015, 191, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Kowal, J.; Akkari, L.; Schuhmacher, A.J.; Huse, J.T.; West, B.L.; Joyce, J.A. Inhibition of Colony Stimulating Factor-1 Receptor Abrogates Microenvironment-Mediated Therapeutic Resistance in Gliomas. Oncogene 2017, 36, 6049–6058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Barth, R.F.; Wu, G.; Kawabata, S.; Sferra, T.J.; Bandyopadhyaya, A.K.; Tjarks, W.; Ferketich, A.K.; Moeschberger, M.L.; Binns, P.J.; et al. Molecular Targeting and Treatment of EGFRvIII-Positive Gliomas Using Boronated Monoclonal Antibody L8A4. Clin. Cancer Res. 2006, 12, 3792–3802. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.W.; Zhang, J.; Prados, M.; Weiss, W.A.; James, C.D.; Nicolaides, T. EGFR Blockade Prevents Glioma Escape from BRAFV600E Targeted Therapy. Oncotarget 2015, 6, 21993–22005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavalhia, L.S.; Romitti, M.; Netto, G.C.; dos Santos, G.T.; Meurer, R.T.; Hilbig, A.; Michalowski, M.B.; Barbosa Coutinho, L.M.; de Castro Ribeiro, M. Evaluation of the Expression of C-Kit (CD117) in Ependymomas and Oligodendrogliomas. Dis. Markers 2012, 33, 61–68. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, X.R.; Li, H.Y.; Zhao, Z.J.; Liao, Y.W.; Wang, X.Y.; Su, J.; Sang, S.S.; Liu, Q. Anti-Cancer Effect of Metabotropic Glutamate Receptor 1 Inhibition in Human Glioma U87 Cells: Involvement of PI3K/Akt/MTOR Pathway. Cell. Physiol. Biochem. 2015, 35, 419–432. [Google Scholar] [CrossRef]
- Zhang, C.; Burger, M.C.; Jennewein, L.; Genßler, S.; Schönfeld, K.; Zeiner, P.; Hattingen, E.; Harter, P.N.; Mittelbronn, M.; Tonn, T.; et al. ErbB2/HER2-Specific NK Cells for Targeted Therapy of Glioblastoma. J. Natl. Cancer Inst. 2016, 108, djv375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bychkov, M.; Shulepko, M.; Osmakov, D.; Andreev, Y.; Sudarikova, A.; Vasileva, V.; Pavlyukov, M.S.; Latyshev, Y.A.; Potapov, A.A.; Kirpichnikov, M.; et al. Mambalgin-2 Induces Cell Cycle Arrest and Apoptosis in Glioma Cells via Interaction with ASIC1a. Cancers 2020, 12, 1837. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, H.; Deng, J.; Liao, P.; Xu, Z.; Cheng, Y. Comparative Proteomics of Glioma Stem Cells and Differentiated Tumor Cells Identifies S100A9 as a Potential Therapeutic Target. J. Cell. Biochem. 2013, 114, 2795–2808. [Google Scholar] [CrossRef]
- Chen, C.H.; Chen, P.Y.; Lin, Y.Y.; Feng, L.Y.; Chen, S.H.; Chen, C.Y.; Huang, Y.C.; Huang, C.Y.; Jung, S.M.; Chen, L.Y.; et al. Suppression of Tumor Growth via IGFBP3 Depletion as a Potential Treatment in Glioma. J. Neurosurg. 2019, 132, 168–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grinshtein, N.; Rioseco, C.C.; Marcellus, R.; Uehling, D.; Aman, A.; Lun, X.; Muto, O.; Podmore, L.; Lever, J.; Shen, Y.; et al. Small Molecule Epigenetic Screen Identifies Novel EZH2 and HDAC Inhibitors That Target Glioblastoma Brain Tumor-Initiating Cells. Oncotarget 2016, 7, 59360–59376. [Google Scholar] [CrossRef] [Green Version]
- Festa, M.; Del Valle, L.; Khalili, K.; Franco, R.; Scognamiglio, G.; Graziano, V.; De Laurenzi, V.; Turco, M.C.; Rosati, A. BAG3 Protein Is Overexpressed in Human Glioblastoma and Is a Potential Target for Therapy. Am. J. Pathol. 2011, 178, 2504–2512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Y.F.; Sun, J.; Jin, C.J.; Cao, B.Q.; Jiang, Z.F.; Shao, J.F. AntagomiR-27a Targets FOXO3a in Glioblastoma and Suppresses U87 Cell Growth in Vitro and in Vivo. Asian Pac. J. Cancer Prev. APJCP 2013, 14, 963–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genoud, V.; Espinoza, F.I.; Marinari, E.; Rochemont, V.; Dietrich, P.-Y.; McSheehy, P.; Bachmann, F.; Lane, H.A.; Walker, P.R. Treating ICB-Resistant Glioma with Anti-CD40 and Mitotic Spindle Checkpoint Controller BAL101553 (Lisavanbulin). JCI Insight 2021, 6, e142980. [Google Scholar] [CrossRef]
- Gu, X.; Wang, C.; Wang, X.; Ma, G.; Li, Y.; Cui, L.; Chen, Y.; Zhao, B.; Li, K. Efficient Inhibition of Human Glioma Development by RNA Interference-Mediated Silencing of PAK5. Int. J. Biol. Sci. 2015, 11, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Fan, L.; Pang, Z.; Ren, J.; Ren, Y.; Li, J.; Chen, J.; Wen, Z.; Jiang, X. TRAIL and Doxorubicin Combination Enhances Anti-Glioblastoma Effect Based on Passive Tumor Targeting of Liposomes. J. Control. Release Off. J. Control. Release Soc. 2011, 154, 93–102. [Google Scholar] [CrossRef]
- Hamada, T.; Akahane, T.; Yokoyama, S.; Higa, N.; Kirishima, M.; Matsuo, K.; Shimokawa, M.; Yoshimoto, K.; Tanimoto, A. An Oncogenic Splice Variant of PDGFRα in Adult Glioblastoma as a Therapeutic Target for Selective CDK4/6 Inhibitors. Sci. Rep. 2022, 12, 1275. [Google Scholar] [CrossRef]
- Kalluri, H.S.G.; Kuo, J.S.; Dempsey, R.J. Chronic D609 Treatment Interferes with Cell Cycle and Targets the Expression of Olig2 in Glioma Stem like Cells. Eur. J. Pharmacol. 2017, 814, 81–86. [Google Scholar] [CrossRef]
- Kaneta, Y.; Ullrich, A. NEK9 Depletion Induces Catastrophic Mitosis by Impairment of Mitotic Checkpoint Control and Spindle Dynamics. Biochem. Biophys. Res. Commun. 2013, 442, 139–146. [Google Scholar] [CrossRef]
- Kong, Y.; Ai, C.; Dong, F.; Xia, X.; Zhao, X.; Yang, C.; Kang, C.; Zhou, Y.; Zhao, Q.; Sun, X.; et al. Targeting of BMI-1 with PTC-209 Inhibits Glioblastoma Development. Cell Cycle 2018, 17, 1199–1211. [Google Scholar] [CrossRef] [Green Version]
- Lamour, V.; Henry, A.; Kroonen, J.; Nokin, M.J.; von Marschall, Z.; Fisher, L.W.; Chau, T.L.; Chariot, A.; Sanson, M.; Delattre, J.Y.; et al. Targeting Osteopontin Suppresses Glioblastoma Stem-like Cell Character and Tumorigenicity in Vivo. Int. J. Cancer 2015, 137, 1047–1057. [Google Scholar] [CrossRef]
- Lescarbeau, R.S.; Lei, L.; Bakken, K.K.; Sims, P.A.; Sarkaria, J.N.; Canoll, P.; White, F.M. Quantitative Phosphoproteomics Reveals Wee1 Kinase as a Therapeutic Target in a Model of Proneural Glioblastoma. Mol. Cancer Ther. 2016, 15, 1332–1343. [Google Scholar] [CrossRef]
- Li, C.; Shen, J.; Wei, X.; Xie, C.; Lu, W. Targeted Delivery of a Novel Palmitylated D-Peptide for Antiglioblastoma Molecular Therapy. J. Drug Target. 2012, 20, 264–271. [Google Scholar] [CrossRef]
- Lian, S.; Shi, R.; Bai, T.; Liu, Y.; Miao, W.; Wang, H.; Liu, X.; Fan, Y. Anti-MiRNA-23a Oligonucleotide Suppresses Glioma Cells Growth by Targeting Apoptotic Protease Activating Factor-1. Curr. Pharm. Des. 2013, 19, 6382–6389. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, X.; Shi, L.; Shan, Q.; Cao, Q.; Yue, C.; Li, H.; Li, S.; Wang, J.; Gao, S.; et al. The Third-Generation EGFR Inhibitor AZD9291 Overcomes Primary Resistance by Continuously Blocking ERK Signaling in Glioblastoma. J. Exp. Clin. Cancer Res. CR 2019, 38, 219. [Google Scholar] [CrossRef] [PubMed]
- Mao, P.; Hever-Jardine, M.P.; Rahme, G.J.; Yang, E.; Tam, J.; Kodali, A.; Biswal, B.; Fadul, C.E.; Gaur, A.; Israel, M.A.; et al. Serine/Threonine Kinase 17A Is a Novel Candidate for Therapeutic Targeting in Glioblastoma. PLoS ONE 2013, 8, e81803. [Google Scholar] [CrossRef]
- Merlino, F.; Daniele, S.; La Pietra, V.; Di Maro, S.; Di Leva, F.S.; Brancaccio, D.; Tomassi, S.; Giuntini, S.; Cerofolini, L.; Fragai, M.; et al. Simultaneous Targeting of RGD-Integrins and Dual Murine Double Minute Proteins in Glioblastoma Multiforme. J. Med. Chem. 2018, 61, 4791–4809. [Google Scholar] [CrossRef] [PubMed]
- Michaud, K.; Solomon, D.A.; Oermann, E.; Kim, J.-S.; Zhong, W.-Z.; Prados, M.D.; Ozawa, T.; James, C.D.; Waldman, T. Pharmacologic Inhibition of Cyclin-Dependent Kinases 4 and 6 Arrests the Growth of Glioblastoma Multiforme Intracranial Xenografts. Cancer Res. 2010, 70, 3228–3238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, M.; Cai, W.; Liu, H.; Chong, Y.; Hu, W.; Gao, S.; Shi, Q.; Zhou, X.; Liu, X.; Yu, R. Plumbagin Inhibits Growth of Gliomas in Vivo via Suppression of FOXM1 Expression. J. Pharmacol. Sci. 2015, 128, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Nonnenmacher, L.; Westhoff, M.A.; Fulda, S.; Karpel-Massler, G.; Halatsch, M.E.; Engelke, J.; Simmet, T.; Corbacioglu, S.; Debatin, K.M. RIST: A Potent New Combination Therapy for Glioblastoma. Int. J. Cancer 2015, 136, E173–E187. [Google Scholar] [CrossRef]
- Patyka, M.; Sharifi, Z.; Petrecca, K.; Mansure, J.; Jean-Claude, B.; Sabri, S. Sensitivity to PRIMA-1(MET) Is Associated with Decreased MGMT in Human Glioblastoma Cells and Glioblastoma Stem Cells Irrespective of P53 Status. Oncotarget 2016, 7, 60245–60269. [Google Scholar] [CrossRef] [Green Version]
- Punganuru, S.R.; Artula, V.; Zhao, W.; Rajaei, M.; Deokar, H.; Zhang, R.; Buolamwini, J.K.; Srivenugopal, K.S.; Wang, W. Targeted Brain Tumor Therapy by Inhibiting the MDM2 Oncogene: In Vitro and In Vivo Antitumor Activity and Mechanism of Action. Cells 2020, 9, 1592. [Google Scholar] [CrossRef] [PubMed]
- Sasame, J.; Ikegaya, N.; Kawazu, M.; Natsumeda, M.; Hayashi, T.; Isoda, M.; Satomi, K.; Tomiyama, A.; Oshima, A.; Honma, H.; et al. HSP90 Inhibition Overcomes Resistance to Molecular Targeted Therapy in BRAF(V600E)-Mutant High-Grade Glioma. Clin. Cancer Res. 2022, 28, 2425–2439. [Google Scholar] [CrossRef] [PubMed]
- Tasaki, T.; Fujita, M.; Okuda, T.; Yoneshige, A.; Nakata, S.; Yamashita, K.; Yoshioka, H.; Izumoto, S.; Kato, A. MET Expressed in Glioma Stem Cells Is a Potent Therapeutic Target for Glioblastoma Multiforme. Anticancer Res. 2016, 36, 3571–3577. [Google Scholar]
- Tchoghandjian, A.; Soubéran, A.; Tabouret, E.; Colin, C.; Denicolaï, E.; Jiguet-Jiglaire, C.; El-Battari, A.; Villard, C.; Baeza-Kallee, N.; Figarella-Branger, D. Inhibitor of Apoptosis Protein Expression in Glioblastomas and Their in Vitro and in Vivo Targeting by SMAC Mimetic GDC-0152. Cell Death Dis. 2016, 7, e2325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vengoji, R.; Macha, M.A.; Nimmakayala, R.K.; Rachagani, S.; Siddiqui, J.A.; Mallya, K.; Gorantla, S.; Jain, M.; Ponnusamy, M.P.; Batra, S.K.; et al. Afatinib and Temozolomide Combination Inhibits Tumorigenesis by Targeting EGFRvIII-CMet Signaling in Glioblastoma Cells. J. Exp. Clin. Cancer Res. 2019, 38, 266. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Bai, H.R.; Wang, J.; Bai, Y.Z.; Dou, C.W. Glioma Growth Inhibition in Vitro and in Vivo by Single Chain Variable Fragments of the Transferrin Receptor Conjugated to Survivin Small Interfering RNA. J. Int. Med. Res. 2011, 39, 1701–1712. [Google Scholar] [CrossRef]
- Wang, X.; Hua, Y.; Xu, G.; Deng, S.; Yang, D.; Gao, X. Targeting EZH2 for Glioma Therapy with a Novel Nanoparticle-SiRNA Complex. Int. J. Nanomed. 2019, 14, 2637–2653. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Chen, Y.; Dutra-Clarke, M.; Mayakonda, A.; Hazawa, M.; Savinoff, S.E.; Doan, N.; Said, J.W.; Yong, W.H.; Watkins, A.; et al. BCL6 Promotes Glioma and Serves as a Therapeutic Target. Proc. Natl. Acad. Sci. USA 2017, 114, 3981–3986. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhang, Z.; Qian, M.; Wang, S.; Qiu, W.; Chen, Z.; Sun, Z.; Xiong, Y.; Wang, C.; Sun, X.; et al. Cullin-7 (CUL7) Is Overexpressed in Glioma Cells and Promotes Tumorigenesis via NF-Kappa B Activation. J. Exp. Clin. Cancer Res. 2020, 39, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zhang, Y.; Liu, X.Y.; Qin, Z.H.; Yang, J.M. Expression of Elongation Factor-2 Kinase Contributes to Anoikis Resistance and Invasion of Human Glioma Cells. Acta Pharmacol. Sin. 2011, 32, 361–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; He, H.; Wang, C.; Tao, B.; Zhou, H.; Dong, Y.; Xiang, J.; Wang, L.; Luo, C.; Lu, Y.; et al. Downregulation of Id2 Increases Chemosensitivity of Glioma. Tumor Biol. 2015, 36, 4189–4196. [Google Scholar] [CrossRef]
- Zhong, S.; Wu, B.; Dong, X.; Han, Y.; Jiang, S.; Zhang, Y.; Bai, Y.; Luo, S.X.; Chen, Y.; Zhang, H.; et al. Identification of Driver Genes and Key Pathways of Glioblastoma Shows JNJ-7706621 as a Novel Antiglioblastoma Drug. World Neurosurg. 2018, 109, e329–e342. [Google Scholar] [CrossRef] [PubMed]
- Abdul Rahim, S.A.; Dirkse, A.; Oudin, A.; Schuster, A.; Bohler, J.; Barthelemy, V.; Muller, A.; Vallar, L.; Janji, B.; Golebiewska, A.; et al. Regulation of Hypoxia-Induced Autophagy in Glioblastoma Involves ATG9A. Br. J. Cancer 2017, 117, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Angara, K.; Rashid, M.H.; Shankar, A.; Ara, R.; Iskander, A.; Borin, T.F.; Jain, M.; Achyut, B.R.; Arbab, A.S. Vascular Mimicry in Glioblastoma Following Anti-Angiogenic and Anti-20-HETE Therapies. Histol. Histopathol. 2017, 32, 917–928. [Google Scholar] [CrossRef]
- Blanco, V.M.; Chu, Z.; Vallabhapurapu, S.D.; Sulaiman, M.K.; Kendler, A.; Rixe, O.; Warnick, R.E.; Franco, R.S.; Qi, X. Phosphatidylserine-Selective Targeting and Anticancer Effects of SapC-DOPS Nanovesicles on Brain Tumors. Oncotarget 2014, 5, 7105–7118. [Google Scholar] [CrossRef] [Green Version]
- Blank, M.; Weinschenk, T.; Priemer, M.; Schluesener, H. Systematic Evolution of a DNA Aptamer Binding to Rat Brain Tumor Microvessels—Selective Targeting of Endothelial Regulatory Protein Pigpen. J. Biol. Chem. 2001, 276, 16464–16468. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Miao, W.; Tang, X.; Zhang, H.; Wang, S.; Luo, F.; Yan, J. Inhibitory Effect of Neuropilin-1 Monoclonal Antibody (NRP-1 MAb) on Glioma Tumor in Mice. J. Biomed. Nanotechnol. 2013, 9, 551–558. [Google Scholar] [CrossRef]
- Fleurence, J.; Cochonneau, D.; Fougeray, S.; Oliver, L.; Geraldo, F.; Terme, M.; Dorvillius, M.; Loussouarn, D.; Vallette, F.; Paris, F.; et al. Targeting and Killing Glioblastoma with Monoclonal Antibody to O-Acetyl GD2 Ganglioside. Oncotarget 2016, 7, 41172–41185. [Google Scholar] [CrossRef] [Green Version]
- Franco, D.G.; Moretti, I.F.; Marie, S.K.N. Mitochondria Transcription Factor A: A Putative Target for the Effect of Melatonin on U87MG Malignant Glioma Cell Line. Molecules 2018, 23, 1129. [Google Scholar] [CrossRef] [Green Version]
- Grossman, R.; Tyler, B.; Rudek, M.A.; Kim, E.; Zadnik, P.; Khan, U.; Blakeley, J.O.; Pathak, A.P.; Brem, H. Microdialysis Measurement of Intratumoral Temozolomide Concentration after Cediranib, a Pan-VEGF Receptor Tyrosine Kinase Inhibitor, in a U87 Glioma Model. Cancer Chemother. Pharmacol. 2013, 72, 93–100. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Jabouille, A.; Steri, V.; Johansson-Percival, A.; Michael, I.P.; Kotamraju, V.R.; Junckerstorff, R.; Nowak, A.K.; Hamzah, J.; Lee, G.; et al. Vascular Targeting of LIGHT Normalizes Blood Vessels in Primary Brain Cancer and Induces Intratumoural High Endothelial Venules. J. Pathol. 2018, 245, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Xu, T.; Wang, Y.; Zhou, Y.; Yu, D.; Wang, Z.; He, L.; Chen, Z.; Zhang, Y.; Davidson, D.; et al. Cannabidiol Inhibits Human Glioma by Induction of Lethal Mitophagy through Activating TRPV4. Autophagy 2021, 17, 3592–3606. [Google Scholar] [CrossRef] [PubMed]
- Huveldt, D.; Lewis-Tuffin, L.J.; Carlson, B.L.; Schroeder, M.A.; Rodriguez, F.; Giannini, C.; Galanis, E.; Sarkaria, J.N.; Anastasiadis, P.Z. Targeting Src Family Kinases Inhibits Bevacizumab-Induced Glioma Cell Invasion. PLoS ONE 2013, 8, e56505. [Google Scholar] [CrossRef] [Green Version]
- Jaszberenyi, M.; Schally, A.V.; Block, N.L.; Zarandi, M.; Cai, R.Z.; Vidaurre, I.; Szalontay, L.; Jayakumar, A.R.; Rick, F.G. Suppression of the Proliferation of Human U-87 MG Glioblastoma Cells by New Antagonists of Growth Hormone-Releasing Hormone in Vivo and in Vitro. Target. Oncol. 2013, 8, 281–290. [Google Scholar] [CrossRef]
- Ji, X.; Wang, H.; Zhu, J.; Tang, Y.; Zhou, Y.; Zhu, L.; Gao, C.; Li, W.; You, W.; Yu, B.; et al. Correlation of Nrf2 and HIF-1 Alpha in Glioblastoma and Their Relationships to Clinicopathologic Features and Survival. Neurol. Res. 2013, 35, 1044–1050. [Google Scholar] [CrossRef]
- Kuan, C.T.; Wakiya, K.; Herndon, J.E.; Lipp, E.S.; Pegram, C.N.; Riggins, G.J.; Rasheed, A.; Szafranski, S.E.; McLendon, R.E.; Wikstrand, C.J.; et al. MRP3: A Molecular Target for Human Glioblastoma Multiforme Immunotherapy. BMC Cancer 2010, 10, 468. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Saha, D.; Martuza, R.L.; Rabkin, S.D.; Wakimoto, H. Single Agent Efficacy of the VEGFR Kinase Inhibitor Axitinib in Preclinical Models of Glioblastoma. J. Neurooncol. 2015, 121, 91–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mojarad-Jabali, S.; Farshbaf, M.; Hemmati, S.; Sarfraz, M.; Motasadizadeh, H.; Mojarrad, J.S.; Atyabi, F.; Zakeri-Milani, P.; Valizadeh, H. Comparison of Three Synthetic Transferrin Mimetic Small Peptides to Promote the Blood-Brain Barrier Penetration of Vincristine Liposomes for Improved Glioma Targeted Therapy. Int. J. Pharm. 2022, 613, 121395. [Google Scholar] [CrossRef]
- Mostafavi, H.; Khaksarian, M.; Joghataei, M.T.; Yoosefee, S.; Soleimannejad, M.; Gholamzadeh, R.; Bahnamiri, S.S.; Hadjighassem, M.R. CAMP-Epac Pathway Stimulation Modulate Connexin-43 and MicroRNA-21 Expression in Glioma Cells. Basic Clin. Neurosci. 2015, 6, 52–57. [Google Scholar]
- Nandhu, M.S.; Behera, P.; Bhaskaran, V.; Longo, S.L.; Barrera-Arenas, L.M.; Sengupta, S.; Rodriguez-Gil, D.J.; Chiocca, E.A.; Viapiano, M.S. Development of a Function-Blocking Antibody Against Fibulin-3 as a Targeted Reagent for Glioblastoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 821–833. [Google Scholar] [CrossRef] [Green Version]
- Nawashiro, H.; Otani, N.; Shinomiya, N.; Fukui, S.; Ooigawa, H.; Shima, K.; Matsuo, H.; Kanai, Y.; Endou, H. L-Type Amino Acid Transporter 1 as a Potential Molecular Target in Human Astrocytic Tumors. Int. J. Cancer 2006, 119, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Pall, A.E.; Juratli, L.; Guntur, D.; Bandyopadhyay, K.; Kondapalli, K.C. A Gain of Function Paradox: Targeted Therapy for Glioblastoma Associated with Abnormal NHE9 Expression. J. Cell. Mol. Med. 2019, 23, 7859–7872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, R.E.; Yang, Y.; Smith, R.C.; Thompson, B.M.; Yamasaki, T.; Soto-Feliciano, Y.M.; Funato, K.; Liang, Y.; Garcia-Bermudez, J.; Wang, X.; et al. Target Identification Reveals Lanosterol Synthase as a Vulnerability in Glioma. Proc. Natl. Acad. Sci. USA 2019, 116, 7957–7962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renfrow, J.J.; Soike, M.H.; West, J.L.; Ramkissoon, S.H.; Metheny-Barlow, L.; Mott, R.T.; Kittel, C.A.; D’Agostino, R.B.J.r.; Tatter, S.B.; Laxton, A.W.; et al. Attenuating Hypoxia Driven Malignant Behavior in Glioblastoma with a Novel Hypoxia-Inducible Factor 2 Alpha Inhibitor. Sci. Rep. 2020, 10, 15195. [Google Scholar] [CrossRef] [PubMed]
- Saw, P.E.; Xu, X.; Kang, B.R.; Lee, J.; Lee, Y.S.; Kim, C.; Kim, H.; Kang, S.-H.; Na, Y.J.; Moon, H.J.; et al. Extra-Domain B of Fibronectin as an Alternative Target for Drug Delivery and a Cancer Diagnostic and Prognostic Biomarker for Malignant Glioma. Theranostics 2021, 11, 941–957. [Google Scholar] [CrossRef] [PubMed]
- Takano, S.; Tsuboi, K.; Matsumura, A.; Nose, T. Anti-Vascular Endothelial Growth Factor Antibody and Nimustine as Combined Therapy: Effects on Tumour Growth and Angiogenesis in Human Glioblastoma Xenografts. Neuro-Oncology 2003, 5, 1–7. [Google Scholar] [CrossRef]
- Tyrinova, T.; Leplina, O.; Mishinov, S.; Tikhonova, M.; Kalinovskiy, A.; Chernov, S.; Dolgova, E.; Stupak, V.; Voronina, E.; Bogachev, S.; et al. Defective Dendritic Cell Cytotoxic Activity of High-Grade Glioma Patients’ Results from the Low Expression of Membrane TNF and Can Be Corrected In Vitro by Treatment with Recombinant IL-2 or Exogenic Double-Stranded DNA. J. Interferon Cytokine Res. 2018, 38, 298–310. [Google Scholar] [CrossRef]
- Watanabe, S.; Nishijima, N.; Hirai, K.; Shibata, K.; Hase, A.; Yamanaka, T.; Inazu, M. Anticancer Activity of Amb4269951, a Choline Transporter-Like Protein 1 Inhibitor, in Human Glioma Cells. Pharmaceuticals 2020, 13, 104. [Google Scholar] [CrossRef]
- Xia, L.; Gong, M.; Zou, Y.; Wang, Z.; Wu, B.; Zhang, S.; Li, L.; Jin, K.; Sun, C. Apatinib Induces Ferroptosis of Glioma Cells through Modulation of the VEGFR2/Nrf2 Pathway. Oxid. Med. Cell. Longev. 2022, 2022, 9925919. [Google Scholar] [CrossRef]
- Xiong, D.D.; Xu, W.Q.; He, R.Q.; Dang, Y.W.; Chen, G.; Luo, D.Z. In Silico Analysis Identified MiRNA-based Therapeutic Agents against Glioblastoma Multiforme. Oncol. Rep. 2019, 41, 2194–2208. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.J.; Qiu, P.; Zhang, Y.B.; Yu, S.Y.; Xu, G.M.; Yang, W. MiR-148a Inhibits the Proliferation and Migration of Glioblastoma by Targeting ITGA9. Hum. Cell 2019, 32, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Baehr, O.; Gross, S.; Harter, P.N.; Kirches, E.; Mawrin, C.; Steinbach, J.P.; Mittelbronn, M. ASA404, a Vascular Disrupting Agent, as an Experimental Treatment Approach for Brain Tumors. Oncol. Lett. 2017, 14, 5443–5451. [Google Scholar]
- Goswami, S.; Walle, T.; Cornish, A.E.; Basu, S.; Anandhan, S.; Fernandez, I.; Vence, L.; Blando, J.; Zhao, H.; Yadav, S.S.; et al. Immune Profiling of Human Tumors Identifies CD73 as a Combinatorial Target in Glioblastoma. Nat. Med. 2020, 26, 39–46. [Google Scholar] [CrossRef]
- Merrill, M.; Bernhardt, G.; Sampson, J.; Wikstr, C.J.; Bigner, D.; Gromeier, M. Poliovirus Receptor CD155-Targeted Oncolysis of Glioma. Neuro-Oncology 2004, 6, 208–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schleicher, S.M.; Thotala, D.K.; Linkous, A.G.; Hu, R.; Leahy, K.M.; Yazlovitskaya, E.M.; Hallahan, D.E. Autotaxin and LPA Receptors Represent Potential Molecular Targets for the Radiosensitization of Murine Glioma through Effects on Tumor Vasculature. PLoS ONE 2011, 6, e22182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Jiang, C.; Han, H.; Liu, H.; Tang, M.; Liu, L.; Ji, W.; Lu, X.; Yang, X.; Zhang, Y.; et al. Icaritin Inhibits the Invasion and Epithelial-to-Mesenchymal Transition of Glioblastoma Cells by Targeting EMMPRIN via PTEN/AKt/HIF-1α Signalling. Clin. Exp. Pharmacol. Physiol. 2015, 42, 1296–1307. [Google Scholar] [CrossRef] [PubMed]
- Zanotto-Filho, A.; Braganhol, E.; Schröder, R.; de Souza, L.H.; Dalmolin, R.J.; Pasquali, M.A.; Gelain, D.P.; Battastini, A.M.; Moreira, J.C. NFκB Inhibitors Induce Cell Death in Glioblastomas. Biochem. Pharmacol. 2011, 81, 412–424. [Google Scholar] [CrossRef]
- Zhang, F.-J.; Yang, J.-Y.; Mou, Y.-H.; Sun, B.-S.; Ping, Y.-F.; Wang, J.-M.; Bian, X.-W.; Wu, C.-F. Inhibition of U-87 Human Glioblastoma Cell Proliferation and Formyl Peptide Receptor Function by Oligomer Procyanidins (F2) Isolated from Grape Seeds. Chem. Biol. Interact. 2009, 179, 419–429. [Google Scholar] [CrossRef]
- Barone, A.; Sengupta, R.; Warrington, N.M.; Smith, E.; Wen, P.Y.; Brekken, R.A.; Romagnoli, B.; Douglas, G.; Chevalier, E.; Bauer, M.P.; et al. Combined VEGF and CXCR4 Antagonism Targets the GBM Stem Cell Population and Synergistically Improves Survival in an Intracranial Mouse Model of Glioblastoma. Oncotarget 2014, 5, 9811–9822. [Google Scholar] [CrossRef] [Green Version]
- Caruana, B.T.; Skoric, A.; Brown, A.J.; Lutze-Mann, L.H. Site-1 Protease, a Novel Metabolic Target for Glioblastoma. Biochem. Biophys. Res. Commun. 2017, 490, 760–766. [Google Scholar] [CrossRef]
- Chen, Z.; Pan, X.; Georgakilas, A.G.; Chen, P.; Hu, H.; Yang, Y.; Tian, S.; Xia, L.; Zhang, J.; Cai, X.; et al. Tetramethylpyrazine (TMP) Protects Cerebral Neurocytes and Inhibits Glioma by down Regulating Chemokine Receptor CXCR4 Expression. Cancer Lett. 2013, 336, 281–289. [Google Scholar] [CrossRef]
- Chen, W.; Wu, M.; Cui, S.-T.; Zheng, Y.; Liu, Z.; Luo, L.-S. CircRNA Circ-ITCH Inhibits the Proliferation and Invasion of Glioma Cells Through Targeting the MiR-106a-5p/SASH1 Axis. Cell Transplant. 2021, 30, 0963689720983785. [Google Scholar] [CrossRef]
- Colen, C.B.; Shen, Y.; Ghoddoussi, F.; Yu, P.; Francis, T.B.; Koch, B.J.; Monterey, M.D.; Galloway, M.P.; Sloan, A.E.; Mathupala, S.P. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An in Vivo Study. Neoplasia 2011, 13, 620–632. [Google Scholar] [CrossRef] [Green Version]
- Harford-Wright, E.; Andre-Gregoire, G.; Jacobs, K.A.; Treps, L.; Le Gonidec, S.; Leclair, H.M.; Gonzalez-Diest, S.; Roux, Q.; Guillonneau, F.; Loussouarn, D.; et al. Pharmacological Targeting of Apelin Impairs Glioblastoma Growth. Brain J. Neurol. 2017, 140, 2939–2954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishiwata, T.; Teduka, K.; Yamamoto, T.; Kawahara, K.; Matsuda, Y.; Naito, Z. Neuroepithelial Stem Cell Marker Nestin Regulates the Migration, Invasion and Growth of Human Gliomas. Oncol. Rep. 2011, 26, 91–99. [Google Scholar] [PubMed]
- Jiang, Z.; Shi, Y.; Tan, G.; Wang, Z. Computational Screening of Potential Glioma-Related Genes and Drugs Based on Analysis of GEO Dataset and Text Mining. PLoS ONE 2021, 16, e0247612. [Google Scholar] [CrossRef]
- Kim, S.S.; Harford, J.B.; Moghe, M.; Rait, A.; Pirollo, K.F.; Chang, E.H. Targeted Nanocomplex Carrying SiRNA against MALAT1 Sensitizes Glioblastoma to Temozolomide. Nucleic Acids Res. 2018, 46, 1424–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G.-H.; Choi, S.Y.; Oh, T.-I.; Kan, S.-Y.; Kang, H.; Lee, S.; Oh, T.; Ko, H.M.; Lim, J.-H. IDH1(R132H) Causes Resistance to HDAC Inhibitors by Increasing NANOG in Glioblastoma Cells. Int. J. Mol. Sci. 2019, 20, 2679. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wu, M.; Wang, C.; Yu, Z.; Wang, H.; Qi, H.; Xu, X. Beta-Asarone Inhibits Invasion and EMT in Human Glioma U251 Cells by Suppressing Splicing Factor HnRNP A2/B1. Molecules 2018, 23, 671. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chong, Y.; Tu, Y.; Liu, N.; Yue, C.; Qi, Z.; Liu, H.; Yao, Y.; Liu, H.; Gao, S.; et al. CRM1/XPO1 Is Associated with Clinical Outcome in Glioma and Represents a Therapeutic Target by Perturbing Multiple Core Pathways. J. Hematol. Oncol. 2016, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Loskutov, Y.V.; Griffin, C.L.; Marinak, K.M.; Bobko, A.; Margaryan, N.V.; Geldenhuys, W.J.; Sarkaria, J.N.; Pugacheva, E.N. LPA Signaling Is Regulated through the Primary Cilium: A Novel Target in Glioblastoma. Oncogene 2018, 37, 1457–1471. [Google Scholar] [CrossRef] [PubMed]
- Luwor, R.; Morokoff, A.P.; Amiridis, S.; D’Abaco, G.; Paradiso, L.; Stylli, S.S.; Nguyen, H.P.T.; Tarleton, M.; Young, K.A.; O’Brien, T.J.; et al. Targeting Glioma Stem Cells by Functional Inhibition of Dynamin 2: A Novel Treatment Strategy for Glioblastoma. Cancer Investig. 2019, 37, 144–155. [Google Scholar] [CrossRef]
- Miyazaki, T.; Pan, Y.; Joshi, K.; Purohit, D.; Hu, B.; Demir, H.; Mazumder, S.; Okabe, S.; Yamori, T.; Viapiano, M.; et al. Telomestatin Impairs Glioma Stem Cell Survival and Growth through the Disruption of Telomeric G-Quadruplex and Inhibition of the Proto-Oncogene, c-Myb. Clin. Cancer Res. 2012, 18, 1268–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, G.; Yang, C.; Liu, Y.; Shen, C. MiR-25-3p Promotes Glioma Cell Proliferation and Migration by Targeting FBXW7 and DKK3. Exp. Ther. Med. 2019, 18, 769–778. [Google Scholar] [CrossRef] [Green Version]
- Piunti, A.; Hashizume, R.; Morgan, M.A.; Bartom, E.T.; Horbinski, C.M.; Marshall, S.A.; Rendleman, E.J.; Ma, Q.; Takahashi, Y.H.; Woodfin, A.R.; et al. Therapeutic Targeting of Polycomb and BET Bromodomain Proteins in Diffuse Intrinsic Pontine Gliomas. Nat. Med. 2017, 23, 493–500. [Google Scholar] [CrossRef]
- Preukschas, M.; Hagel, C.; Schulte, A.; Weber, K.; Lamszus, K.; Sievert, H.; Pällmann, N.; Bokemeyer, C.; Hauber, J.; Braig, M.; et al. Expression of Eukaryotic Initiation Factor 5A and Hypusine Forming Enzymes in Glioblastoma Patient Samples: Implications for New Targeted Therapies. PLoS ONE 2012, 7, e43468. [Google Scholar] [CrossRef] [PubMed]
- Saito, R.; Bringas, J.R.; Panner, A.; Tamas, M.; Pieper, R.O.; Berger, M.S.; Bankiewicz, K.S. Convection-Enhanced Delivery of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand with Systemic Administration of Temozolomide Prolongs Survival in an Intracranial Glioblastoma Xenograft Model. Cancer Res. 2004, 64, 6858–6862. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Iizuka, Y.; Ohta, S.; Takahashi, S.; Nakamura, K.; Saya, H.; Yoshida, K.; Kawakami, Y.; Toda, M. Functional Analysis of a Novel Glioma Antigen, EFTUD1. Neuro-Oncology 2014, 16, 1618–1629. [Google Scholar] [CrossRef] [Green Version]
- Sanzey, M.; Abdul Rahim, S.A.; Oudin, A.; Dirkse, A.; Kaoma, T.; Vallar, L.; Herold-Mende, C.; Bjerkvig, R.; Golebiewska, A.; Niclou, S.P. Comprehensive Analysis of Glycolytic Enzymes as Therapeutic Targets in the Treatment of Glioblastoma. PLoS ONE 2015, 10, e0123544. [Google Scholar] [CrossRef] [PubMed]
- Saunders, J.T.; Holmes, B.; Benavides-Serrato, A.; Kumar, S.; Nishimura, R.N.; Gera, J. Targeting the YAP-TEAD Interaction Interface for Therapeutic Intervention in Glioblastoma. J. Neurooncol. 2021, 152, 217–231. [Google Scholar] [CrossRef]
- Shulepko, M.A.; Bychkov, M.L.; Lyukmanova, E.N.; Kirpichnikov, M.P. Recombinant Analogue of the Human Protein SLURP-1 Inhibits the Growth of U251 MG and A172 Glioma Cells. Dokl. Biochem. Biophys. 2020, 493, 211–214. [Google Scholar] [CrossRef]
- Song, Y.; Shao, L.; Xue, Y.; Ruan, X.; Liu, X.; Yang, C.; Zheng, J.; Shen, S.; Chen, J.; Li, Z.; et al. Inhibition of the Aberrant A1CF-FAM224A-MiR-590-3p-ZNF143 Positive Feedback Loop Attenuated Malignant Biological Behaviors of Glioma Cells. J. Exp. Clin. Cancer Res. 2019, 38, 248. [Google Scholar] [CrossRef]
- Tu, Y.; Niu, M.; Xie, P.; Yue, C.; Liu, N.; Qi, Z.; Gao, S.; Liu, H.; Shi, Q.; Yu, R.; et al. Smoothened Is a Poor Prognosis Factor and a Potential Therapeutic Target in Glioma. Sci. Rep. 2017, 7, 42630. [Google Scholar] [CrossRef] [Green Version]
- Venere, M.; Horbinski, C.; Crish, J.F.; Jin, X.; Vasanji, A.; Major, J.; Burrows, A.C.; Chang, C.; Prokop, J.; Wu, Q.; et al. The Mitotic Kinesin KIF11 Is a Driver of Invasion, Proliferation, and Self-Renewal in Glioblastoma. Sci. Transl. Med. 2015, 7, 304ra143. [Google Scholar] [CrossRef] [Green Version]
- von Spreckelsen, N.; Fadzen, C.M.; Hartrampf, N.; Ghotmi, Y.; Wolfe, J.M.; Dubey, S.; Yang, B.Y.; Kijewski, M.F.; Wang, S.; Farquhar, C.; et al. Targeting Glioblastoma Using a Novel Peptide Specific to a Deglycosylated Isoform of Brevican. Adv. Ther. 2021, 4, 2000244. [Google Scholar] [CrossRef]
- Wu, N.; Wu, G.C.; Hu, R.; Li, M.; Feng, H. Ginsenoside Rh2 Inhibits Glioma Cell Proliferation by Targeting MicroRNA-128. Acta Pharmacol. Sin. 2011, 32, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Xu, Y.; Gao, Y.-Y.; Zong, Z.-H.; Zhang, Q.; Li, C.; Wang, H.-Q. Implication of 14-3-3 Epsilon and 14-3-3 Theta/Tau in Proteasome Inhibition-Induced Apoptosis of Glioma Cells. Cancer Sci. 2013, 104, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zheng, B.; Yao, X.; Huang, X.; Du, J.; Shen, Y.; Huang, Z.; Chen, J.; Lin, Q.; Lan, W.; et al. Identification and Characterization of a Novel Mutant Isocitrate Dehydrogenase 1 Inhibitor for Glioma Treatment. Biochem. Biophys. Res. Commun. 2021, 551, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhao, S.; Qi, Y.; Li, B.; Wang, H.; Pan, Z.; Xue, H.; Jin, C.; Qiu, W.; Chen, Z.; et al. SPI1-Induced Downregulation of FTO Promotes GBM Progression by Regulating Pri-MiR-10a Processing in an M6A-Dependent Manner. Mol. Ther.-Nucleic Acids 2022, 27, 699–717. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xiang, Z.; Li, D.; Zhu, X.; Peng, X. ACTL6A Knockdown Inhibits Cell Migration by Suppressing the AKT Signaling Pathway and Enhances the Sensitivity of Glioma Cells to Temozolomide. Exp. Ther. Med. 2021, 21, 175. [Google Scholar] [CrossRef] [PubMed]
- Edwards, L.A.; Verreault, M.; Thiessen, B.; Dragowska, W.H.; Hu, Y.; Yeung, J.H.F.; Dedhar, S.; Bally, M.B. Combined Inhibition of the Phosphatidylinositol 3-Kinase/Akt and Ras/Mitogen-Activated Protein Kinase Pathways Results in Synergistic Effects in Glioblastoma Cells. Mol. Cancer Ther. 2006, 5, 645–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabler, L.; Lötsch, D.; Kirchhofer, D.; van Schoonhoven, S.; Schmidt, H.M.; Mayr, L.; Pirker, C.; Neumayer, K.; Dinhof, C.; Kastler, L.; et al. TERT Expression Is Susceptible to BRAF and ETS-Factor Inhibition in BRAFV600E/TERT Promoter Double-Mutated Glioma. Acta Neuropathol. Commun. 2019, 7, 128. [Google Scholar] [CrossRef]
- Gu, F.; Zhang, H.; Qin, F.; Liu, X.; Li, W.; Fu, L.; Ying, G.; Li, B.; Zhang, M.; Ma, Y. Intersectin1-s, A Multidomain Adapter Protein, Is Essential for Malignant Glioma Proliferation. Glia 2015, 63, 1595–1605. [Google Scholar] [CrossRef]
- Hou, X.; Liu, Y.; Liu, H.; Chen, X.; Liu, M.; Che, H.; Guo, F.; Wang, C.; Zhang, D.; Wu, J.; et al. PERK Silence Inhibits Glioma Cell Growth under Low Glucose Stress by Blockage of P-AKT and Subsequent HK2’s Mitochondria Translocation. Sci. Rep. 2015, 5, 9065. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, A.; Eckerdt, F.; Bell, J.; Nakano, I.; Giles, F.J.; Cheng, S.Y.; Lulla, R.R.; Goldman, S.; Platanias, L.C. Targeting of Glioblastoma Cell Lines and Glioma Stem Cells by Combined PIM Kinase and PI3K-P110α Inhibition. Oncotarget 2016, 7, 33192–33201. [Google Scholar] [CrossRef] [Green Version]
- Keating, A.K.; Kim, G.K.; Jones, A.E.; Donson, A.M.; Ware, K.; Mulcahy, J.M.; Salzberg, D.B.; Foreman, N.K.; Liang, X.; Thorburn, A.; et al. Inhibition of Mer and Axl Receptor Tyrosine Kinases in Astrocytoma Cells Leads to Increased Apoptosis and Improved Chemosensitivity. Mol. Cancer Ther. 2010, 9, 1298–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.-H.; Ezhilarasan, R.; Phillips, E.; Gallego-Perez, D.; Sparks, A.; Taylor, D.; Ladner, K.; Furuta, T.; Sabit, H.; Chhipa, R.; et al. Serine/Threonine Kinase MLK4 Determines Mesenchymal Identity in Glioma Stem Cells in an NF-Kappa B-Dependent Manner. Cancer Cell 2016, 29, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Lerner, T.N.; Shilyansky, C.; Davidson, T.J.; Evans, K.E.; Beier, K.T.; Zalocusky, K.A.; Crow, A.K.; Malenka, R.C.; Luo, L.; Tomer, R.; et al. Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits. Cell 2015, 162, 635–647. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, L.; Wu, J.; Zhou, L.; Ren, Y.-J.; Yang, W.-Q.; Ming, Z.-J.; Chen, B.; Wang, J.; Zhang, Y.; et al. Inhibition of Elongation Factor-2 Kinase Augments the Antitumor Activity of Temozolomide against Glioma. PLoS ONE 2013, 8, e81345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Zhang, Q.; Lan, H.; Wang, L.; Mou, P.; Shao, W.; Liu, D.; Yang, W.; Lin, Z.; Lin, Q.; et al. GCN5 Potentiates Glioma Proliferation and Invasion via STAT3 and AKT Signaling Pathways. Int. J. Mol. Sci. 2015, 16, 21897–21910. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Sáez, E.; Peg, V.; Ortega-Aznar, A.; Martínez-Ricarte, F.; Camacho, J.; Hernández-Losa, J.; Ferreres Piñas, J.C.; Ramón YCajal, S. PeIF4E as an Independent Prognostic Factor and a Potential Therapeutic Target in Diffuse Infiltrating Astrocytomas. Cancer Med. 2016, 5, 2501–2512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoshan, Y.; Nishiyama, A.; Chang, A.; Mörk, S.; Barnett, G.H.; Cowell, J.K.; Trapp, B.D.; Staugaitis, S.M. Expression of Oligodendrocyte Progenitor Cell Antigens by Gliomas: Implications for the Histogenesis of Brain Tumors. Proc. Natl. Acad. Sci. USA 1999, 96, 10361–10366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulzmaier, F.J.; Young-Robbins, S.; Jiang, P.; Geerts, D.; Prechtl, A.M.; Matter, M.L.; Kesari, S.; Ramos, J.W. RSK2 Activity Mediates Glioblastoma Invasiveness and Is a Potential Target for New Therapeutics. Oncotarget 2016, 7, 79869–79884. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Zhang, W.; Yu, J.; Lu, Z.; Yu, J. Inhibition of Nrf2 Might Enhance the Anti-Tumor Effect of Temozolomide in Glioma Cells via Inhibition of Ras/Raf/MEK Signaling Pathway. Int. J. Neurosci. 2021, 131, 975–983. [Google Scholar] [CrossRef]
- Tsuruta, T.; Aihara, Y.; Kanno, H.; Funase, M.; Murayama, T.; Osawa, M.; Fujii, H.; Kubo, O.; Okada, Y. Shared Molecular Targets in Pediatric Gliomas and Ependymomas. Pediatr. Blood Cancer 2011, 57, 1117–1123. [Google Scholar] [CrossRef]
- Yamanaka, R.; Arao, T.; Yajima, N.; Tsuchiya, N.; Homma, J.; Tanaka, R.; Sano, M.; Oide, A.; Sekijima, M.; Nishio, K. Identification of Expressed Genes Characterizing Long-Term Survival in Malignant Glioma Patients. Oncogene 2006, 25, 5994–6002. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Geng, D.; Gao, J.; Qi, Y.; Shi, Y.; Wang, Y.; Jiang, Y.; Zhang, Y.; Fu, J.; Dong, Y.; et al. Expression and Significance of Hippo/YAP Signaling in Glioma Progression. Tumor Biol. 2016, 37, 15665–15676. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Dong, Y.; Liu, C. Microrchidia Family CW-Type Zinc Finger 2 Promotes the Proliferation, Invasion, Migration and Epithelial-Mesenchymal Transition of Glioma by Regulating PTEN/PI3K/AKT Signaling via Binding to N-Myc Downstream Regulated Gene 1 Promoter. Int. J. Mol. Med. 2022, 49, 16. [Google Scholar] [CrossRef]
- Zhao, H.-F.; Wang, J.; Jiang, H.-R.; Chen, Z.-P.; To, S.-S.T. PI3K P110β Isoform Synergizes with JNK in the Regulation of Glioblastoma Cell Proliferation and Migration through Akt and FAK Inhibition. J. Exp. Clin. Cancer Res. 2016, 35, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Bian, X.; Le, Y.; Gong, W.; Hu, J.; Zhang, X.; Wang, L.; Iribarren, P.; Salcedo, R.; Howard, O.; et al. Formylpeptide Receptor FPR and the Rapid Growth of Malignant Human Gliomas. JNCI-J. Natl. Cancer Inst. 2005, 97, 823–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, M.; Chen, L.; Zhao, P.; Zhou, H.; Zhang, C.; Yu, S.; Lin, Y.; Yang, X. Store-Operated Ca2+ Entry Regulates Glioma Cell Migration and Invasion via Modulation of Pyk2 Phosphorylation. J. Exp. Clin. Cancer Res. 2014, 33, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zohrabian, V.M.; Forzani, B.; Chau, Z.; Murali, R.; Jhanwar-Uniyal, M. Rho/ROCK and MAPK Signaling Pathways Are Involved in Glioblastoma Cell Migration and Proliferation. Anticancer Res. 2009, 29, 119–123. [Google Scholar]
- Abe, T.; La, T.M.; Miyagaki, Y.; Oya, E.; Wei, F.-Y.; Sumida, K.; Fujise, K.; Takeda, T.; Tomizawa, K.; Takei, K.; et al. Phosphorylation of Cortactin by Cyclin-Dependent Kinase 5 Modulates Actin Bundling by the Dynamin 1-Cortactin Ring-like Complex and Formation of Filopodia and Lamellipodia in NG108-15 Glioma-Derived Cells. Int. J. Oncol. 2019, 54, 550–558. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Lathia, J.D.; Zhang, P.; Flavahan, W.; Rich, J.N.; Mattson, M.P. Molecular Targeting of TRF2 Suppresses the Growth and Tumorigenesis of Glioblastoma Stem Cells. Glia 2014, 62, 1687–1698. [Google Scholar] [CrossRef] [Green Version]
- Bai, H.-L.; Kang, C.-M.; Sun, Z.-Q.; Li, X.-H.; Dai, X.-Y.; Huang, R.-Y.; Zhao, J.-J.; Bei, Y.-R.; Huang, X.-Z.; Lu, Z.-F.; et al. TTDA Inhibited Apoptosis by Regulating the P53-Bax/Bcl2 Axis in Glioma. Exp. Neurol. 2020, 331, 113380. [Google Scholar] [CrossRef]
- Cai, Y.; Gu, W.T.; Cheng, K.; Jia, P.F.; Li, F.; Wang, M.; Zhang, W.F.; Qiu, J.T.; Wu, Z.B.; Zhao, W.G. Knockdown of TRIM32 Inhibits Tumor Growth and Increases the Therapeutic Sensitivity to Temozolomide in Glioma in a P53-Dependent and -Independent Manner. Biochem. Biophys. Res. Commun. 2021, 550, 134–141. [Google Scholar] [CrossRef]
- Cao, W.; Yang, X.; Zhou, J.; Teng, Z.; Cao, L.; Zhang, X.; Fei, Z. Targeting 14-3-3 Protein, Difopein Induces Apoptosis of Human Glioma Cells and Suppresses Tumor Growth in Mice. Apoptosis 2010, 15, 230–241. [Google Scholar] [CrossRef]
- Chiang, M.F.; Yeh, S.T.; Liao, H.F.; Chang, N.S.; Chen, Y.J. Overexpression of WW Domain-Containing Oxidoreductase WOX1 Preferentially Induces Apoptosis in Human Glioblastoma Cells Harboring Mutant P53. Biomed. Pharmacother. 2012, 66, 433–438. [Google Scholar] [CrossRef]
- Feng, S.; Cai, X.; Li, Y.; Jian, X.; Zhang, L.; Li, B. Tripartite Motif-Containing 14 (TRIM14) Promotes Epithelial-Mesenchymal Transition via ZEB2 in Glioblastoma Cells. J. Exp. Clin. Cancer Res. 2019, 38, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godoy, P.R.D.V.; Donaires, F.S.; Montaldi, A.P.L.; Sakamoto-Hojo, E.T. Anti-Proliferative Effects of E2F1 Suppression in Glioblastoma Cells. Cytogenet. Genome Res. 2021, 161, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.M.; Bai, H.L.; Li, X.H.; Huang, R.Y.; Zhao, J.J.; Dai, X.Y.; Zheng, L.; Qiu, Y.R.; Hu, Y.W.; Wang, Q. The Binding of LncRNA RP11-732M18.3 with 14-3-3 β/α Accelerates P21 Degradation and Promotes Glioma Growth. EBioMedicine 2019, 45, 58–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuchi, R.; Sampetrean, O.; Saya, H.; Yoshida, K.; Toda, M. Functional Analysis of the DEPDC1 Oncoantigen in Malignant Glioma and Brain Tumor Initiating Cells. J. Neurooncol. 2017, 133, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Klose, A.; Waerzeggers, Y.; Monfared, P.; Vukicevic, S.; Kaijzel, E.L.; Winkeler, A.; Wickenhauser, C.; Lowik, C.W.G.M.; Jacobs, A.H. Imaging Bone Morphogenetic Protein 7 Induced Cell Cycle Arrest in Experimental Gliomas. Neoplasia 2011, 13, 276-U123. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.; Lou, J.; Hu, J.; Yu, Z.; Lyu, W.; Zhang, B. Downregulation of SNRPG Induces Cell Cycle Arrest and Sensitizes Human Glioblastoma Cells to Temozolomide by Targeting Myc through a P53-Dependent Signaling Pathway. Cancer Biol. Med. 2020, 17, 112. [Google Scholar] [CrossRef]
- Li, H.; You, Y.; Liu, J. Cyclin-Dependent Kinase 10 Prevents Glioma Metastasis via Modulation of Snail Expression. Mol. Med. Rep. 2018, 18, 1165–1170. [Google Scholar] [CrossRef] [Green Version]
- Luo, R.; Wang, X.; Dong, Y.; Wang, L.; Tian, C. Activation of Protease-Activated Receptor 2 Reduces Glioblastoma Cell Apoptosis. J. Biomed. Sci. 2014, 21, 25. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Huang, J.; Xiong, Y.; Yang, X.; Han, R.; Zhu, W. MicroRNA-96 Regulates Apoptosis by Targeting PDCD4 in Human Glioma Cells. Technol. Cancer Res. Treat. 2017, 16, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Meuth, S.G.; Herrmann, A.; Ip, C.W.; Kanyshkova, T.; Bittner, S.; Weishaupt, A.; Budde, T.; Wiendl, H. The Two-Pore Domain Potassium Channel TASK3 Functionally Impacts Glioma Cell Death. J. Neurooncol. 2008, 87, 263–270. [Google Scholar] [CrossRef]
- Tong, H.; Zhao, K.; Zhang, J.; Zhu, J.; Xiao, J. YB-1 Modulates the Drug Resistance of Glioma Cells by Activation of MDM2/P53 Pathway. Drug Des. Devel. Ther. 2019, 13, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Wirsching, H.-G.; Krishnan, S.; Florea, A.-M.; Frei, K.; Krayenbuehl, N.; Hasenbach, K.; Reifenberger, G.; Weller, M.; Tabatabai, G. Thymosin Beta 4 Gene Silencing Decreases Stemness and Invasiveness in Glioblastoma. Brain 2014, 137, 433–448. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Alinari, L.; Lustberg, M.E.; Martin, L.K.; Cordero-Nieves, H.M.; Banasavadi-Siddegowda, Y.; Virk, S.; Barnholtz-Sloan, J.; Bell, E.H.; Wojton, J.; et al. Genetic Validation of the Protein Arginine Methyltransferase PRMT5 as a Candidate Therapeutic Target in Glioblastoma. Cancer Res. 2014, 74, 1752–1765. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Sun, Q.; Zhang, S.; Ye, L.; Xu, Y.; Xu, Z.; Liu, B.; Zhang, S.; Chen, Q. HSP27 Protects against Ferroptosis of Glioblastoma Cells. Hum. Cell 2022, 35, 238–249. [Google Scholar] [CrossRef]
- Chung, L.K.; Pelargos, P.E.; Chan, A.M.; Demos, J.V.; Lagman, C.; Sheppard, J.P.; Nguyen, T.; Chang, Y.-L.; Hojat, S.A.; Prins, R.M.; et al. Tissue Microarray Analysis for Epithelial Membrane Protein-2 as a Novel Biomarker for Gliomas. Brain Tumor Pathol. 2018, 35, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Qiu, X.; Wang, D.; Ban, N.; Fan, S.; Chen, W.; Sun, J.; Xing, W.; Wang, Y.; Cui, G. High Expression of Adenylate Cyclase-Associated Protein 1 Accelerates the Proliferation, Migration and Invasion of Neural Glioma Cells. Pathol. Res. Pract. 2016, 212, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Haining, Z.; Kawai, N.; Miyake, K.; Okada, M.; Okubo, S.; Zhang, X.; Fei, Z.; Tamiya, T. Relation of LAT1/4F2hc Expression with Pathological Grade, Proliferation and Angiogenesis in Human Gliomas. BMC Clin. Pathol. 2012, 12, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, H.; Phillips-Mason, P.J.; Burden-Gulley, S.M.; Kerstetter-Fogle, A.E.; Basilion, J.P.; Sloan, A.E.; Brady-Kalnay, S.M. Cadherin-11, a Marker of the Mesenchymal Phenotype, Regulates Glioblastoma Cell Migration and Survival In Vivo. Mol. Cancer Res. 2012, 10, 293–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, J.; Xue, Y.; Chen, H.; Zhao, S.; Wu, Z.; Fang, J.; Han, C.; Lou, M. Hypoxia-Induced MiR-497 Decreases Glioma Cell Sensitivity to TMZ by Inhibiting Apoptosis. FEBS Lett. 2014, 588, 3333–3339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.-J.; Liu, H.-L.; Tang, S.-L.; Li, X.-J.; Wang, X.-Y. MicroRNA-150 Regulates Glycolysis by Targeting von Hippel-Lindau in Glioma Cells. Am. J. Transl. Res. 2017, 9, 1058–1066. [Google Scholar]
- Li, C.; Chen, Y.; Zhang, Q.; Guo, C.; Chen, F.; Xi, S.; Zeng, J.; Ke, C.; Sharma, H.S.; Chen, Z. Expression of Twist Associated to Microcirculation Patterns of Human Glioma Correlated with Progression and Survival of the Patient—Novel Therapeutic Advances In Glioblastoma. In International Review of Neurobiology; Academic Press Ltd.—Elsevier Science Ltd.: London, UK, 2020; Volume 151, ISBN 0074-7742. [Google Scholar]
- Liu, Y.; Hou, X.; Liu, M.; Yang, Z.; Bi, Y.; Zou, H.; Wu, J.; Che, H.; Li, C.; Wang, X.; et al. XBP1 Silencing Decreases Glioma Cell Viability and Glycolysis Possibly by Inhibiting HK2 Expression. J. Neurooncol. 2016, 126, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Ljubimova, J.; Fugita, M.; Khazenzon, N.; Das, A.; Pikul, B.; Newman, D.; Sekiguchi, K.; Sorokin, L.; Sasaki, T.; Black, K. Association between Laminin-8 and Glial Tumor Grade, Recurrence, and Patient Survival. Cancer 2004, 101, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Martina, E.; Degen, M.; Rueegg, C.; Merlo, A.; Lino, M.M.; Chiquet-Ehrismann, R.; Brellier, F. Tenascin-W Is a Specific Marker of Glioma-Associated Blood Vessels and Stimulates Angiogenesis in Vitro. FASEB J. 2010, 24, 778–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okubo, S.; Zhen, H.-N.; Kawai, N.; Nishiyama, Y.; Haba, R.; Tamiya, T. Correlation of L-Methyl-C-11-Methionine (MET) Uptake with l-Type Amino Acid Transporter 1 in Human Gliomas. J. Neurooncol. 2010, 99, 217–225. [Google Scholar] [CrossRef]
- Pointer, K.B.; Clark, P.A.; Eliceiri, K.W.; Salamat, M.S.; Robertson, G.A.; Kuo, J.S. Administration of Non-Torsadogenic Human Ether-à-Go-Go-Related Gene Inhibitors Is Associated with Better Survival for High HERG-Expressing Glioblastoma Patients. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Zhang, Y.; Qin, B.; Wang, Y.; Zhu, X. Long Non-Coding RNA LINC00174 Promotes Glycolysis and Tumor Progression by Regulating MiR-152-3p/SLC2A1 Axis in Glioma. J. Exp. Clin. Cancer Res. 2019, 38, 395. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Li, J.; Xu, D.; Jv, D.; Meng, X.; Qiao, P.; Cui, T.; Shi, B. The 37-KDa Laminin Receptor Precursor Regulates the Malignancy of Human Glioma Cells. Cell Biochem. Funct. 2016, 34, 516–521. [Google Scholar] [CrossRef]
- Han, M.-Z.; Wang, S.; Zhao, W.-B.; Ni, S.-L.; Yang, N.; Kong, Y.; Huang, B.; Chen, A.-J.; Li, X.-G.; Wang, J.; et al. Immune Checkpoint Molecule Herpes Virus Entry Mediator Is Overexpressed and Associated with Poor Prognosis in Human Glioblastoma. Ebiomedicine 2019, 43, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Ku, B.M.; Lee, Y.K.; Ryu, J.; Jeong, J.Y.; Choi, J.; Eun, K.M.; Shin, H.Y.; Kim, D.G.; Hwang, E.M.; Yoo, J.C.; et al. CHI3L1 (YKL-40) Is Expressed in Human Gliomas and Regulates the Invasion, Growth and Survival of Glioma Cells. Int. J. Cancer 2011, 128, 1316–1326. [Google Scholar] [CrossRef]
- Lou, J.-C.; Lan, Y.-L.; Gao, J.-X.; Ma, B.-B.; Yang, T.; Yuan, Z.-B.; Zhang, H.-Q.; Zhu, T.-Z.; Pan, N.; Leng, S.; et al. Silencing NUDT21 Attenuates the Mesenchymal Identity of Glioblastoma Cells via the NF-Kappa B Pathway. Front. Mol. Neurosci. 2017, 10, 420. [Google Scholar] [CrossRef]
- Saito, K.; Ohta, S.; Kawakami, Y.; Yoshida, K.; Toda, M. Functional Analysis of KIF20A, a Potential Immunotherapeutic Target for Glioma. J. Neurooncol. 2017, 132, 63–74. [Google Scholar] [CrossRef]
- Xu, H.; Chai, S.; Wang, Y.; Wang, J.; Xiao, D.; Li, J.; Xiong, N. Molecular and Clinical Characterization of PARP9 in Gliomas: A Potential Immunotherapeutic Target. CNS Neurosci. Ther. 2020, 26, 804–814. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, Q.; Zhao, S.; Zhang, P.; Zhao, H.; Li, Z.; Du, Y.; Tian, X.; Lu, J. Characterization of Transcriptome Profile and Clinical Features of a Novel Immunotherapy Target CD204 in Diffuse Glioma. Cancer Med. 2019, 8, 3811–3821. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Cong, Z.; Cai, X.; Zhu, J.; Yuan, L.; Wang, Y.; Tang, C.; Ma, C. BACH1 as a Potential Target for Immunotherapy in Glioblastomas. Int. Immunopharmacol. 2022, 103, 108451. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Zhu, X.L.; Bai, H.; Wang, Z.Z.; Zhang, J.J.; Hao, C.Y.; Duan, H.B. S100A Gene Family: Immune-Related Prognostic Biomarkers and Therapeutic Targets for Low-Grade Glioma. Aging 2021, 13, 15459–15478. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Z.; Lv, D.; Cheng, X.; Wang, J.; Liu, B.; Han, Z.; Wangs, Y.; Liu, R.; Gao, Y. Identification of PYGL as a Key Prognostic Gene of Glioma by Integrated Bioinformatics Analysis. Future Oncol. 2022, 18, 579–596. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, F.; Liu, J.; Huang, Z.; Zheng, Y.; Deng, S.; Liu, Y.; Wang, J.; Sun, X. Dual Role of WNT5A in Promoting Endothelial Differentiation of Glioma Stem Cells and Angiogenesis of Glioma Derived Endothelial Cells. Oncogene 2021, 40, 5081–5094. [Google Scholar] [CrossRef]
- Di, C.; Liang, J.; Wang, Y.; Zhao, G.; Zhao, Y. SPZ1 Promotes Glioma Aggravation via Targeting CXXC4. J. BUON 2021, 26, 373–379. [Google Scholar] [PubMed]
- Friedmann-Morvinski, D.; Bhargava, V.; Gupta, S.; Verma, I.M.; Subramaniam, S. Identification of Therapeutic Targets for Glioblastoma by Network Analysis. Oncogene 2016, 35, 608–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, G.; Liu, J.; Ren, Y.; Mao, X.; Hao, Y.; Zhong, C.; Chen, X.; Wang, X.; Wu, Y.; Lian, S.; et al. FRAT1 Enhances the Proliferation and Tumorigenesis of CD133+ Nestin+ Glioma Stem Cells In Vitro and In Vivo. J. Cancer 2020, 11, 2421–2430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, J.; Guo, P.; Lin, Y.; Mao, Q.; Guo, L.; Ge, J.; Li, X.; Jiang, J.; Lin, X.; Qiu, Y. Role of Glycosyltransferase PomGnT1 in Glioblastoma Progression. Neuro-Oncology 2015, 17, 211–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizobuchi, Y.; Matsuzaki, K.; Kuwayama, K.; Kitazato, K.; Mure, H.; Kageji, T.; Nagahiro, S. REIC/Dkk-3 Induces Cell Death in Human Malignant Glioma. Neuro-Oncology 2008, 10, 244–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Ren, Y.; Zhang, J.; Zhang, C.; Zhang, K.; Han, L.; Kong, L.; Wei, J.; Chen, L.; Yang, J.; et al. HOTAIR Is a Therapeutic Target in Glioblastoma. Oncotarget 2015, 6, 8353–8365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borsics, T.; Lundberg, E.; Geerts, D.; Koomoa, D.-L.T.; Koster, J.; Wester, K.; Bachmann, A.S. Subcellular Distribution and Expression of Prenylated Rab Acceptor 1 Domain Family, Member 2 (PRAF2) in Malignant Glioma: Influence on Cell Survival and Migration. Cancer Sci. 2010, 101, 1624–1631. [Google Scholar] [CrossRef]
- Cui, P.; Su, J.; Li, Q.; Xu, G.; Zhu, N. LncRNA RHPN1-AS1 Targeting MiR-625/REG3A Promotes Cell Proliferation And Invasion Of Glioma Cells. Oncotargets Ther. 2019, 12, 7911–7921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.; Zhang, J.; Niu, L.; Hou, G.; Gao, Z.; Yang, Q. MiR-381-3p Involves in Glioma Progression by Suppressing Tumor-Promoter Factor ANTXR1. Comput. Math. Methods Med. 2021, 2021, 4883509. [Google Scholar] [CrossRef]
- Fève, M.; Saliou, J.M.; Zeniou, M.; Lennon, S.; Carapito, C.; Dong, J.; Van Dorsselaer, A.; Junier, M.P.; Chneiweiss, H.; Cianférani, S.; et al. Comparative Expression Study of the Endo-G Protein Coupled Receptor (GPCR) Repertoire in Human Glioblastoma Cancer Stem-like Cells, U87-MG Cells and Non Malignant Cells of Neural Origin Unveils New Potential Therapeutic Targets. PLoS ONE 2014, 9, e91519. [Google Scholar] [CrossRef] [Green Version]
- Han, M.-Z.; Xu, R.; Xu, Y.-Y.; Zhang, X.; Ni, S.-L.; Huang, B.; Chen, A.-J.; Wei, Y.-Z.; Wang, S.; Li, W.-J.; et al. TAGLN2 Is a Candidate Prognostic Biomarker Promoting Tumorigenesis in Human Gliomas. J. Exp. Clin. Cancer Res. 2017, 36, 155. [Google Scholar] [CrossRef] [Green Version]
- Hou, D.; Wang, Z.; Li, H.; Liu, J.; Liu, Y.; Jiang, Y.; Lou, M. Circular RNA CircASPM Promotes the Progression of Glioblastoma by Acting as a Competing Endogenous RNA to Regulate MiR-130b-3p/E2F1 Axis. J. Cancer 2022, 13, 1664–1678. [Google Scholar] [CrossRef]
- Huang, W.; Shi, Y.; Han, B.; Wang, Q.; Zhang, B.; Qi, C.; Liu, F. LncRNA GAS5-AS1 Inhibits Glioma Proliferation, Migration, and Invasion via MiR-106b-5p/TUSC2 Axis. Hum. Cell 2020, 33, 416–426. [Google Scholar] [CrossRef]
- Li, J.-L.; Sainson, R.C.A.; Oon, C.E.; Turley, H.; Leek, R.; Sheldon, H.; Bridges, E.; Shi, W.; Snell, C.; Bowden, E.T.; et al. DLL4-Notch Signaling Mediates Tumor Resistance to Anti-VEGF Therapy in Vivo. Cancer Res. 2011, 71, 6073–6083. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Li, X.; Ning, S.; Ye, J.; Han, L.; Kang, C.; Li, X. Identification of a Core MiRNA-Pathway Regulatory Network in Glioma by Therapeutically Targeting MiR-181d, MiR-21, MiR-23b, β-Catenin, CBP, and STAT3. PLoS ONE 2014, 9, e101903. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wu, Q.; Li, Z.; Hu, Y.; Zhou, F.; Zhai, Z.; Yue, S.; Tian, H. LncRNA LINC00319 Is Associated with Tumorigenesis and Poor Prognosis in Glioma. Eur. J. Pharmacol. 2019, 861, 172556. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Yi, B.; Cai, H.; Wang, Y.; Lou, X.; Xi, Z.; Li, Z. SUMOylation of IGF2BP2 Promotes Vasculogenic Mimicry of Glioma via Regulating OIP5-AS1/MiR-495-3p Axis. Int. J. Biol. Sci. 2021, 17, 2912–2930. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liang, S.; Xiao, S.; Lin, Q.; Chen, X.; Wu, Y.; Fu, J. MicroRNA-27b Inhibits Spry2 Expression and Promotes Cell Invasion in Glioma U251 Cells. Oncol. Lett. 2015, 9, 1393–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Xu, Q.; Xiong, Y.; Deng, H.; Zhou, J. LncRNA LINC01094 Contributes to Glioma Progression by Modulating MiR-224-5p/CHSY1 Axis. Hum. Cell 2022, 35, 214–225. [Google Scholar] [CrossRef]
- Miller, T.E.; Liau, B.B.; Wallace, L.C.; Morton, A.R.; Xie, Q.; Dixit, D.; Factor, D.C.; Kim, L.J.Y.; Morrow, J.J.; Wu, Q.; et al. Transcription Elongation Factors Represent in Vivo Cancer Dependencies in Glioblastoma. Nature 2017, 547, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Noorani, I.; de la Rosa, J.; Choi, Y.H.; Strong, A.; Ponstingl, H.; Vijayabaskar, M.S.; Lee, J.; Lee, E.; Richard-Londt, A.; Friedrich, M.; et al. PiggyBac Mutagenesis and Exome Sequencing Identify Genetic Driver Landscapes and Potential Therapeutic Targets of EGFR-Mutant Gliomas. Genome Biol. 2020, 21, 181. [Google Scholar] [CrossRef]
- Qiu, X.; Ji, B.; Yang, L.; Huang, Q.; Shi, W.; Ding, Z.; He, X.; Ban, N.; Fan, S.; Zhang, J.; et al. The Role of FoxJ2 in the Migration of Human Glioma Cells. Pathol. Res. Pract. 2015, 211, 389–397. [Google Scholar] [CrossRef]
- Rose, M.; Cardon, T.; Aboulouard, S.; Hajjaji, N.; Kobeissy, F.; Duhamel, M.; Fournier, I.; Salzet, M. Surfaceome Proteomic of Glioblastoma Revealed Potential Targets for Immunotherapy. Front. Immunol. 2021, 12, 746168. [Google Scholar] [CrossRef]
- Sharma, V.; Purkait, S.; Takkar, S.; Malgulwar, P.B.; Kumar, A.; Pathak, P.; Suri, V.; Sharma, M.C.; Suri, A.; Kale, S.S.; et al. Analysis of EZH2: Micro-RNA Network in Low and High Grade Astrocytic Tumors. Brain Tumor Pathol. 2016, 33, 117–128. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, B.; Wang, C.; Fu, T.; Li, L.; Wu, Q.; Cai, Y.; Wang, J. Forkhead Box P3 Regulates ARHGAP15 Expression and Affects Migration of Glioma Cells through the Rac1 Signaling Pathway. Cancer Sci. 2017, 108, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Visvanathan, A.; Patil, V.; Arora, A.; Hegde, A.S.; Arivazhagan, A.; Santosh, V.; Somasundaram, K. Essential Role of METTL3-Mediated m(6)A Modification in Glioma Stem-like Cells Maintenance and Radioresistance. Oncogene 2018, 37, 522–533. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Han, M.; Whetsell, W.J.r.; Wang, J.; Rich, J.; Hallahan, D.; Han, Z. Tax-Interacting Protein 1 Coordinates the Spatiotemporal Activation of Rho GTPases and Regulates the Infiltrative Growth of Human Glioblastoma. Oncogene 2014, 33, 1558–1569. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Li, Z.; Du, C.; Qi, B.; Zhao, X.; Wang, L.; Bi, L.; Wang, G.; Zhang, X.; Su, X.; et al. Abnormal Expression of an ADAR2 Alternative Splicing Variant in Gliomas Downregulates Adenosine-to-Inosine RNA Editing. Acta Neurochir. 2014, 156, 1135–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigle, B.; Ebner, R.; Temme, A.; Schwind, S.; Schmitz, M.; Kiessling, A.; Rieger, M.; Schackert, G.; Schackert, H.; Rieber, E. Highly Specific Overexpression of the Transcription Factor SOX11 in Human Malignant Gliomas. Oncol. Rep. 2005, 13, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Xin, J.; Zhao, Y.H.; Zhang, X.Y.; Tian, L.Q. LncRNA NFIA-AS2 Promotes Glioma Progression through Modulating the MiR-655-3p/ZFX Axis. Hum. Cell 2020, 33, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, W.; Zhou, H.; Su, L.; Han, X.; Zhang, X.; Han, W.; Wang, Y.; Xue, X. ANXA1: An Important Independent Prognostic Factor and Molecular Target in Glioma. Front. Genet. 2022, 13, 851505. [Google Scholar] [CrossRef]
- Zhou, L.; Li, L.; Chen, Y.; Chen, C.; Zhi, Z.; Yan, L.; Wang, Y.; Liu, B.; Zhai, Q. MiR-190a-3p Promotes Proliferation and Migration in Glioma Cells via YOD1. Comput. Math. Methods Med. 2021, 2021, 3957738. [Google Scholar] [CrossRef]
- Kumthekar, P. A Phase 0 First-In-Human Study Using NU-0129: A Spherical Nucleic Acid (SNA) Gold Nanoparticle Targeting BCL2L12 in Recurrent Glioblastoma Multiforme or Gliosarcoma Patients. 2022. Available online: clinicaltrials.gov (accessed on 29 May 2023).
- Miller, J.J.; Gonzalez Castro, L.N.; McBrayer, S.; Weller, M.; Cloughesy, T.; Portnow, J.; Andronesi, O.; Barnholtz-Sloan, J.S.; Baumert, B.G.; Berger, M.S.; et al. Isocitrate Dehydrogenase (IDH) Mutant Gliomas: A Society for Neuro-Oncology (SNO) Consensus Review on Diagnosis, Management, and Future Directions. Neuro-Oncology 2023, 25, 4–25. [Google Scholar] [CrossRef]
- Allen, M.; Bjerke, M.; Edlund, H.; Nelander, S.; Westermark, B. Origin of the U87MG Glioma Cell Line: Good News and Bad News. Sci. Transl. Med. 2016, 8, 354re3. [Google Scholar] [CrossRef]
- Kenesei, Á.; Volkó, J.; Szalóki, N.; Mocsár, G.; Jambrovics, K.; Balajthy, Z.; Bodnár, A.; Tóth, K.; Waldmann, T.A.; Vámosi, G. IL-15 Trans-Presentation Is an Autonomous, Antigen-Independent Process. J. Immunol. 2021, 207, 2489–2500. [Google Scholar] [CrossRef]
- Cole, D.E.; Lester-McCully, C.M.; Widemann, B.C.; Warren, K.E. Plasma and Cerebrospinal Fluid Pharmacokinetics of the Akt Inhibitor, Perifosine, in a Non-Human Primate Model. Cancer Chemother. Pharmacol. 2015, 75, 923–928. [Google Scholar] [CrossRef]
- Britten, C.D. PI3K and MEK Inhibitor Combinations: Examining the Evidence in Selected Tumor Types. Cancer Chemother. Pharmacol. 2013, 71, 1395–1409. [Google Scholar] [CrossRef]
- Paul, I.; Bhattacharya, S.; Chatterjee, A.; Ghosh, M.K. Current Understanding on EGFR and Wnt/β-Catenin Signaling in Glioma and Their Possible Crosstalk. Genes Cancer 2013, 4, 427–446. [Google Scholar] [CrossRef]
- Mellinghoff, I.K.; Wang, M.Y.; Vivanco, I.; Haas-Kogan, D.A.; Zhu, S.; Dia, E.Q.; Lu, K.V.; Yoshimoto, K.; Huang, J.H.Y.; Chute, D.J.; et al. Molecular Determinants of the Response of Glioblastomas to EGFR Kinase Inhibitors. N. Engl. J. Med. 2005, 353, 2012–2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute of Health (NIH) 219 Studies Found for: Molecular Targeted Therapy OR Molecular Target OR Protein Kinase Inhibitors/Administration OR Mitogen-Activated Protein Kinase Kinases/Antagonists and Inhibitors OR Antineoplastic Combined Chemotherapy Protocols/Administration and Dosage|Glioma Glioblastoma Multiforme. Clinicaltrials.Gov. Available online: https://clinicaltrials.gov/ct2/results?cond=Glioma+Glioblastoma+Multiforme&term=molecular+targeted+therapy+OR+molecular+target+OR+Protein+Kinase+Inhibitors%2Fadministration+OR+Mitogen-Activated+Protein+Kinase+Kinases%2Fantagonists+and+inhibitors+OR+Antineoplastic+Combined+Chemotherapy+Protocols%2Fadministration+and+dosage&type=&rslt=&age_v=&gndr=&intr=&titles=&outc=&spons=&lead=&id=&cntry=&state=&city=&dist=&locn=&rsub=&strd_s=&strd_e=&prcd_s=&prcd_e=&sfpd_s=&sfpd_e=&rfpd_s=&rfpd_e=&lupd_s=&lupd_e=&sort= (accessed on 29 May 2023).
- Thiessen, B.; Stewart, C.; Tsao, M.; Kamel-Reid, S.; Schaiquevich, P.; Mason, W.; Easaw, J.; Belanger, K.; Forsyth, P.; McIntosh, L.; et al. A Phase I/II Trial of GW572016 (Lapatinib) in Recurrent Glioblastoma Multiforme: Clinical Outcomes, Pharmacokinetics and Molecular Correlation. Cancer Chemother. Pharmacol. 2010, 65, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.S.; Kejriwal, S.; Thammachantha, S.; Duong, C.; Murillo, A.; Gordon, L.K.; Cloughesy, T.F.; Liau, L.; Yong, W.; Yang, I.; et al. Increased Epithelial Membrane Protein 2 Expression in Glioblastoma after Treatment with Bevacizumab. Neuro-Oncol. Adv. 2020, 2, vdaa112. [Google Scholar] [CrossRef] [PubMed]
- Wirsching, H.-G.; Weller, M. The Role of Molecular Diagnostics in the Management of Patients with Gliomas. Curr. Treat. Options Oncol. 2016, 17, 51. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Y.; Bettegowda, C. Genetics and Immunotherapy: Using the Genetic Landscape of Gliomas to Inform Management Strategies. J. Neurooncol. 2015, 123, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Zhao, Y.; Du, H.; Guo, X. Current Status of Immune Checkpoint Inhibitor Immunotherapy for Lung Cancer. Front. Oncol. 2021, 11, 704336. [Google Scholar] [CrossRef] [PubMed]
- Han, J.W.; Park, S.-H. Advances in Immune Checkpoint Inhibitors for Hepatocellular Carcinoma. J. Liver Cancer 2021, 21, 139–145. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, Z.; Wu, W.; Wang, Z.; Zhang, N.; Zhang, L.; Zeng, W.-J.; Liu, Z.; Cheng, Q. Regulatory Mechanisms of Immune Checkpoints PD-L1 and CTLA-4 in Cancer. J. Exp. Clin. Cancer Res. 2021, 40, 184. [Google Scholar] [CrossRef]
- Restrepo, P.; Yong, R.; Laface, I.; Tsankova, N.; Nael, K.; Akturk, G.; Sebra, R.; Gnjatic, S.; Hormigo, A.; Losic, B. Tumoral and Immune Heterogeneity in an Anti-PD-1-Responsive Glioblastoma: A Case Study. Cold Spring Harb. Mol. Case Stud. 2020, 6, a004762. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, Q.T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Stroup, N.E.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006–2010. Neuro-Oncology 2013, 15, ii1–ii56. [Google Scholar] [CrossRef] [Green Version]
- Penas-Prado, M.; Gilbert, M.R. Molecularly Targeted Therapies for Malignant Gliomas: Advances and Challenges. Expert Rev. Anticancer Ther. 2007, 7, 641–661. [Google Scholar] [CrossRef]
- Roesler, R.; Brunetto, A.T.; Abujamra, A.L.; de Farias, C.B.; Brunetto, A.L.; Schwartsmann, G. Current and Emerging Molecular Targets in Glioma. Expert Rev. Anticancer Ther. 2010, 10, 1735–1751. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.T.; Sarkaria, S.M.; Cloughesy, T.F.; Mischel, P.S. Targeted Therapy for Malignant Glioma Patients: Lessons Learned and the Road Ahead. Neurotherapeutics 2009, 6, 500–512. [Google Scholar] [CrossRef] [PubMed]
Level of Evidence (LoE) | Description |
---|---|
Level I | Evidence from a systematic review or meta-analysis of randomized control trials (RCTs) or evidence-based clinical practice guidelines based on RCTs. |
Level II | Evidence obtained from at least one well-designed RCT (e.g., a large multi-site RCT). |
Level III | Evidence obtained from well-designed controlled trials without randomization (i.e., quasi-experimental). |
Level IV | Evidence from well-designed case-control or cohort studies. |
Level V | Evidence from systematic reviews of descriptive and qualitative studies. |
Level VI | Evidence from a single descriptive or qualitative study. |
Level VII | Evidence from the opinions of authorities and/or reports of expert committees. |
Study Author | Year | Tumor Type | Molecular Target | Intervention | Finding |
---|---|---|---|---|---|
Protein Kinase Pathways | |||||
Berzero et al. [13] | 2021 | GBM, IDH-mutant Astrocytoma | RAF + MEK | Vemurafenib, Dabrafenib, Cobimetinib, Trametinib | The study highlights the long-term clinical benefits of RAFi/MEKi in adult patients with BRAF V600-mutant GGNTs |
Butowski et al. [14] | 2010 | GBM | Protein kinase C-beta + PI3K/Akt | Enzastaurin + TMZ | Enzastaurin 250 mg/day given concomitantly with RT and temozolomide or adjuvantly with temozolomide was well tolerated |
Chinnaiyan et al. [15] | 2013 | GBM | mTOR | Everolimus + TMZ + RT | Daily oral everolimus (10 mg) combined with both concurrent radiation and temozolomide, followed by adjuvant temozolomide, is well tolerated with an acceptable toxicity profile |
Drobysheva et al. [16] | 2017 | IDH-mutant Astrocytoma | BRAF + MAPK | Dabrafenib + trametinib | PT1 and 2 were treated with MAPK and BRAF inhibitors and both showed marked responses, with PT1 only having a small residual abnormal signal at the primary tumor site and PT2 improving to stable disease |
Franceschi et al. [17] | 2012 | GBM, IDH-mutant Astrocytoma | Src kinase | Dasatinib | Combination of CCNU and dasatinib showed significant hematological toxicities and led to suboptimal exposure to both agents |
Fusco et al. [18] | 2021 | GBM, IDH-mutant Astrocytoma, Oligodendroglioma | BRAF + MEK | dabrafenib + Trametinib | Combination of BRAF/MEK inhibition has the potential to offer clinical benefit in both low-grade and high-grade gliomas |
Hottinger et al. [19] | 2019 | Astrocytoma | MAPK + ERK | Dabrafenib + Trametinib | Reports and efficacy of dual BRAF/MEK inhibition in BRAF-mutated glioma |
Johanns et al. [20] | 2018 | GBM | BRAF + MEK | Dabrafenib + Trametinib | PT1: 11mo therapy improved hemiparesis, speech, and functional status, after which the disease progressed and treatment was discontinued PT2: 3 mo therapy caused rapid response, allowing him to ambulate again, though he discontinued therapy and died shortly after |
Kaley et al. [21] | 2018 | GBM, IDH-mutant Astrocytoma, and other gliomas | BRAF | Vemurafenib | BRAFv600 inhibition is a viable strategy, with a confirmed clinical benefit for 37.5% of patients and a best response of stable disease or better in 16/24 patients |
Kanemaru et al. [22] | 2019 | Epithelioid GBM | BRAF + MEK | Dabrafenib and Trametinib | Dabrafenib and trametinib with radiation elicited a dramatic response in a patient with epithelioid GBM |
Kebir et al. [23] | 2019 | GBM, IDH-mutant Astrocytoma | Multitarget kinase | Regorafenib | Study indicates a very poor performance of regorafenib in recurrent high-grade astrocytoma |
Kleinschmidt-DeMasters et al. [24] | 2015 | GBM, IDH-mutant Astrocytoma | BRAF V600E kinase | Vemurafenib | E-GBMs can respond to targeted therapy |
Lapointe et al. [25] | 2020 | GBM, IDH-mutant Astrocytoma | mTORC1/2 | Vistusertib + TMZ | Combination of vistusertib with TMZ in GBM patients at first recurrence demonstrated a favorable safety profile at the tested dose levels |
Lee et al. [26] | 2012 | GBM | Multitarget kinase + mTOR | Sorafenib + Temsirolimus | Minimal activity in recurrent glioblastoma multiforme was seen at the MTD of the two combined agents |
Lombardi et al. [27] | 2019 | GBM | Multitarget kinase + mTOR | Regorafenib | REGOMA showed an encouraging overall survival benefit of regorafenib in recurrent GBM |
Mason et al. [28] | 2012 | GBM | mTOR1 | Everolimus + TMZ | Daily oral everolimus for 5 consecutive days every 28 days plus 150 mg/m2/day TMZ is an appropriate phase II dose for everolimus + TMZ |
Migliorini et al. [29] | 2017 | Xanthoastrocytoma | BRAF + MEK | Dabrafenib + Trametinib | A patient with a refractory case of pleomorphic xanthoastrocytoma was treated with dual BRAF and MEK inhibition and exhibited a strong radiologic response |
Rosenberg et al. [30] | 2022 | GBM, IDH-mutant Astrocytoma, and other gliomas | BRAF; BRAF + MEK | Vemurafenib + Dabrafenib + Trametinib | BRAF inhibition for BRAF-mutant glioma is a promising treatment paradigm; currently being evaluated prospectively in ACNS1723 clinical trial |
Sanai et al. [31] | 2018 | GBM | Wee1K | AZD1775 | AZD1775 reaches therapeutic concentrations in contrast-enhancing areas of GBM in humans and is well tolerated |
Schiff et al. [32] | 2015 | GBM or anaplastic astrocytoma | MET and VEGFR2 | Cabozantinib | Cabozantinib with TMZ and RT is well tolerated and warrants further evaluation |
Shah et al. [33] | 2007 | Glioma | PDGFR | Imatinib and Hydroxyurea | Combining imatinib with hydroxyurea is effective in some glioma patients but is associated with dangerous myelosuppression |
Shi et al. [34] | 2019 | IDH-wt, 1p19q co-deleted Glioma | BRAF V600E | Vemurafenib + Everolimus | Successfully treated a BRAF V600E-mutated anaplastic oligoastrocytoma with multiple extraneural metastases with vemurafenib and everolimus |
Werner et al. [35] | 2022 | Glioma | Multitarget kinase | Regorafenib | Regorafenib is effective in recurrent grade III and IV gliomas, despite a high prevalence of level III and IV side effects |
Wick et al. [36] | 2019 | GBM | ALK CDK4/6 mTOR MDM2 SHH | Alectinib Palbociclib Temsirolimus Idasanutlin Vismodegib | NCT Neuro Master Match (N2M2) trial Molecular signatures of GBM inform the treatment arm |
Yau et al. [37] | 2020 | Ganglioglioma | BRAF + MEK | Vemurafenib and Cobimetinib | Combination BRAF and MEK inhibition is safe and feasible in a BRAF V600E unresectable ganglioglioma |
Zustovich et al. [38] | 2013 | GBM | Multitarget kinase | Sorafenib | Combining sorafenib and temozolomide is feasible and safe and has activity in patients with relapsed GBM |
Microenvironmental Targets (angiogenesis, cell-cell adhesion, iron/cation regulation) | |||||
Badruddoja et al. [39] | 2017 | GBM | VEGF | Bevacizumab + TMZ | Bevacizumab plus bi-weekly temozolomide was well tolerated and may be a salvage regimen in recurrent glioblastoma |
Brown et al. [40] | 2016 | GBM | VEGFR + EGFR | Cediranib + Gefitinib/placebo | Despite being underpowered with recruitment issues, this trial shows combining cediranib and gefitinib leads to increased PFS |
Clarke et al. [41] | 2014 | GBM | VEGF + tyrosine kinase | Bevacizumab + Erlotinib | The combining of bevacizumab/erlotinib/ TMZ/radiotherapy appears to be well tolerated and improved progression-free survival but did not improve overall survival |
D’Alessandris et al. [42] | 2013 | GBM | VEGF + EGFRvIII | Bevacizumab + Erlotinib | Obtained higher RR and PFS at 6 months (70%) than those reported in prior trials lacking molecular tumor analysis |
Desjardins et al. [43] | 2012 | GBM | VEGF | Bevacizumab | Demonstrates that combined daily temozolomide and biweekly bevacizumab had some activity and was well tolerated |
Hasselbalch et al. [44] | 2010 | GBM | EGFR, VEGF, topoisomerase I | Cetuximab + bevacizumab + irinotecan | None of the biomarkers tested alone or in combination could identify a patient population likely to benefit from bevacizumab and irinotecan, with or without the addition of cetuximab |
Lassen et al. [45] | 2015 | GBM | Placental growth factor (PlGF) + VEGF | RO5323441 + Bevacizumab | Toxicity profile of RO5323441 plus bevacizumab was acceptable and manageable but not superior to bevacizumab alone |
Lu et al. [46] | 2014 | GBM, Astrocytoma | VEGF | Bevacizumab + TMZ | After BEV treatment, most patients obtain more significant short-term responses with good toleration |
Prados et al. [47] | 2009 | GBM or Gliosarcoma | EGFR | Erlotinib + TMZ + RT | Patients treated with erlotinib + TMZ + RT had improved survival |
Vaccaro et al. [48] | 2014 | Glioma | VEGF | Bevacizumab | Bevacizumab and fotemustine showed anti-glioma activity and good tolerability among recurrent glioma patients |
Vredenburgh et al. [49] | 2012 | GBM | VEGF | Bevacizumab + RT + TMZ | Addition of bevacizumab to the standard TMZ and RT regimen is associated with minimal toxicity |
Wang et al. [50] | 2014 | GBM | EGFR | Nimotuzumab + TMZ + RT | Nimotuzumab, TMZ, and RT are safe therapeutic regimens, with similar survival times to other regimens |
Wang et al. [51] | 2017 | Grade III and IV Glioma | VEGFR2 | Apatinib + Irinotecan | Apatinib plus irinotecan is a potentially useful combination therapy and should be further evaluated |
Weller et al. [52] | 2017 | GBM | EGFR | TMZ +/− Rindopepimut | Rindopepimut did not reduce mortality as a monotherapy in newly diagnosed GBM, so it may be necessary to use it in combination therapy |
Wick et al. [53] | 2020 | Glioma | TGF β | TMZ+RT +/− galunisertib | There was no difference in safety or efficacy between the standard therapy and the standard plus galunisertib |
Immunotherapy Pathways | |||||
Anghileri et al. [54] | 2021 | GBM | PD1 | Nivolumab | Nivolumab is useful for patients, despite a RCT failing to show overall benefits |
Nayak et al. [55] | 2021 | GBM | PD1 + VEGF | Pembrolizumab + Bevacizumab | Pembrolizumab +/− bevacizumab is not an effective therapy |
Reardon et al. [56] | 2020 | GBM | PD1 | Nivolumab | Nivolumab monotherapy in GBM was equally safe and effective as bevacizumab monotherapy |
Cell Cycle/Apoptosis/Transcription Pathways | |||||
Brachman et al. [57] | 2015 | GBM or Gliosarcoma | Thioredoxin + ribonucleotide reductases | Motexafin Gadolinium + TMZ + RT | Combining standard RT with TMZ and MGd did not achieve a significant survival advantage |
Kubicek et al. [58] | 2009 | GBM, Astrocytoma | 26S Proteasome | Bortezomib | Bortezomib administered at its typical “systemic” dose (1.3 mg/m2) is well tolerated and safe in combination with TMZ and RT |
Lin et al. [59] | 2020 | IDH-mutant Astrocytoma | CDK4 | Palbociclib | First case of spinal cord tumor reported to demonstrate an association between CDK4 amplification and response to Palbociclib-based combination therapy even after multiple recurrences |
Other | |||||
Desjardins et al. [43] | 2011 | GBM | Farnesyl transferase | SCH 66336 | The phase II dose of SCH 66336 when combined with standard 5-day temozolomide is 150 mg twice daily for patients on stratum A and 175 mg twice daily for patients on stratum B |
Geletneky et al. [60] | 2017 | GBM | Protein NS1 | Rat H-1 parvovirus (H-1PV) | Confirms H-1PV safety, tolerability and ability to cross the blood-brain barrier; favorable PFS compared with controls |
Hashimoto et al. [61] | 2015 | GBM | WT1 (Wilms Tumor 1) | WT1 peptide vaccination + TMZ | Safety profile of the combined Wilms tumor 1 peptide vaccination and temozolomide therapy approach for treating glioblastoma was confirmed |
Patel et al. [62] | 2012 | Glioma | ER | Tamoxifen + TMZ | The maximum tolerated dose of tamoxifen + TMZ + RT was 100 mg/m2 |
Sauter et al. [63] | 2022 | GBM | CSF1R, ABL, cKIT, PDGFR | Imatinib | Imatinib showed no effect on GBM |
Study Author | Year | Tumor Type | Molecular Target | Intervention | Finding |
---|---|---|---|---|---|
Protein Kinase Pathways | |||||
Aldea et al. [64] | 2014 | GBM | mTOR + RAF | Metformin + Sorafenib | Combining metformin and sorafenib is an effective treatment for TMZ-resistant glioblastoma cells |
Aoki et al. [65] | 2013 | GBM | Ras | Nobiletin | Nobiletin inhibits Ras activity in C6 glioma cells |
Arcella et al. [66] | 2013 | GBM | mTOR | Rapamycin | mTOR is upregulated in GBM and rapamycin represents a good inhibitor |
Ariey-Bonnet et al. [67] | 2020 | GBM | MAPK14 | BMZ | BMZ (Benzimidazole) is a potent inhibitor of MAPK14, which would directly contribute to its anticancer properties |
Balkhi et al. [68] | 2016 | GBM | Multitarget kinases | Caffeic Acid Phenethyl Ester (CAPE) + Dasatinib | Combinational therapy inhibits migration and invasiveness and decreases cell survival |
Barbarisi et al. [11] | 2018 | GBM | CD44 | Quercetin + TMZ | CD44 targeted nanocarriers mediate site-specific delivery of quercetin via the CD44 receptor in GBM |
Benezra et al. [69] | 2012 | GBM | Multitarget kinases | Dasatinib | Dasatinib has a significant survival benefit in vivo for mouse GBM |
Camorani et al. [70] | 2015 | GBM | EGFRvIII | CL4 Aptamer + EGFR Tkis | CL4 and gefitinib cooperate with the anti-PDGFRβ Gint4.T aptamer in inhibiting cell proliferation. |
Chen et al. [71] | 2019 | GBM | CD163 pathway (CK2, kinase) | TBB | By inhibiting CK2 with TBB (4,5,6,7-tetrabromo-1H-benzotriazole), it shows the CD163 pathway is crucial for tumor growth |
Cheng et al. [72] | 2022 | GBM | CTSC | Piperlongumine + Scopoletin | CTSC (Cysteine cathepsin C) is a biomarker using the MAPK signaling pathway; inhibition with piperlongumine (more effective) and scopoletin decreases tumor growth |
Ciesielski et al. [73] | 2018 | GBM | Src-kinase + tubulin polymerization inhibitory activity | Kx2-361 | The drug is active in vivo against orthotopic GL261 gliomas in syngeneic C57BL/6 mice |
Cloninger et al. [74] | 2011 | GBM | SAPK2/p38 + mTORC1 | SB203580 + Rapamycin | Data support the combined use of SAPK2/p38 and mTORC1 inhibitors to achieve a synergistic antitumor therapeutic response |
Combs et al. [75] | 2007 | GBM and Glioma | EGFR | Cetuximab | Triple combination of TMZ, RT, and cetuximab might be a promising multimodality treatment approach for patients with GBM |
Dasgupta et al. [76] | 2015 | BRAF V600E GBM | BRAF V600E | Plx4720 + RT | Provide pre-clinical rationale for clinical trials of concurrent RT and BRAF V600E inhibitors |
Dantas-Barbosa et al. [77] | 2015 | GBM and Ependymoma | mTOR | Γ-Secretase Inhibitor RO4929097 | RO4929097, through mTOR inhibition, potentiates cytotoxicity in vitro but does not enhance antitumor effects in vivo |
Davare et al. [78] | 2018 | GBM and other cell types | ROS1 | Lorlatinib | ROS1 knockdown with lorlatinib resulted in powerful responses in mice |
Di Stefano et al. [79] | 2015 | GBM | FGFR kinase | JNJ-42756493 | JNJ-42756493 elicited potent growth inhibition and significant tumor regression after two weeks |
Dominguez et al. [80] | 2013 | GBM | DGK-α | R59022 + R59949 + siRNA | DGK-α is a potential therapeutic glioma target linked to multiple key pathways |
Du et al. [81] | 2012 | GBM | Raf/MEK/ERK signaling pathway | Sorafenib + Vitamin K (VK1) | Combining sorafenib with VK1 induced apoptosis through downregulating proapoptotic proteins Bcl-2 and Mcl-1 |
Emlet et al. [82] | 2014 | GBM | EGFRvIII + CD133 | Egfrviii + CD133 AB | EGFRvIII + CD133 BsAb allow for the specific targeting of cancer stem cells |
Farrell et al. [83] | 2017 | GBM | MET | WO2010/019899A1 + PF04217903 + Crizotinib | Dual targeting of HGF and MET by combining extracellular ligand inhibitors with intracellular MET TKIs could be an effective intervention |
Feng et al. [84] | 2010 | GBM | PI3K/Akt; JNK; ERK | Tamoxifen | Mechanism of TAM-induced apoptosis reveal PI3K/Akt, JNK, and ERK as potential targets |
Glassman et al. [85] | 2021 | GBM, Oligodendroglioma | MAPK kinase | U0126 | Combining molecularly targeted therapies interferes more efficiently with glial tumor development and progression |
Goker et al. [86] | 2020 | GBM | ALK | AZD3463 + TMZ | Combining TMZ with AZD3463 may increase the efficacy of a single TMZ treatment in GBM |
Golubovskaya et al. [87] | 2013 | GBM | FAK | Y15 | Blockade of FAK autophosphorylation with the oral administration of a small-molecule inhibitor, Y15, has the potential to be an effective therapy approach for GBM |
Grossauer et al. [88] | 2016 | Glioma | BRAF/MEK | Dabrafenib + Trametinib | BRAF and MEK combination therapy helps to prevent MAPK reactivation during treatment |
Gursel et al. [89] | 2011 | GBM and IDH-mutant Astrocytoma | PI3K/Akt | PI103/Pcn | PI-103 and TCN are sensitive inhibitors of the PI3K/Akt/mTOR pathway |
He et al. [90] | 2016 | GBM | MEK2 | MEK2 Antibody | MEK2 antagonists can be used as chemo-sensitizers to enhance the treatment efficacy of TMZ |
Hjelmeland et al. [91] | 2007 | Astrocytoma | Raf + TOR | LBT613 + Everolimus | Combining LBT613 and RAD001 reduces glioma cell proliferation and invasion |
Hong et al. [92] | 2014 | GBM | Aurora-A kinase | Alisertib | Inhibiting aurora-A kinase potentiatesthe effects of ionizing radiation on glioblastoma cells |
Jiang et al. [93] | 2018 | GBM, other cell types | EGFR/EGFRvIII | EGFR/EGFRviii CAR T Cells | EGFR/EGFRvIII CAR T cells have strong anti-tumor and tumor-specific properties |
Jin et al. [94] | 2013 | GBM | Akt + NOTCH | MRK003 + MK-2206 | Akt and NOTCH inhibition decrease glioma proliferation |
Joel et al. [95] | 2015 | GBM | PBK/TOPK | Hi-Topk-032 | HITOPK-032 resulted in diminished tumor growth |
Joshi et al. [96] | 2012 | GBM | Multitarget kinases | Gefitinib + Erlotinib + Sunitinib | Drug combinations containing sunitinib were most effective in vitro but not in vivo |
Ju et al. [97] | 2016 | GBM | COX-2 | Celecoxib | Targeting epirubicin plus celecoxib liposomes was able to effectively destroy the glioma VM channels and exhibited significant efficacy in glioma |
Junca et al. [98] | 2017 | GBM | ALK, ROS1, MET | Crizotinib | MET and ALK are overexpressed in glioma; crizotinib is a potential molecularly targeted strategy |
Jung et al. [99] | 2014 | GBM | FOXO3A | Z-Ajoene | Z-ajoene specifically targets glioma CSCs through the FOXO3A pathway |
Kawauchi et al. [100] | 2021 | GBM | ALK | Alectinib + Ceritinib | Treatment with the second-generation ALK inhibitors, alectinib and ceritinib, might serve as a potent therapeutic strategy against GBM |
Kim et al. [101] | 2012 | GBM, Astrocytoma | Phosphoinositide 3-kinase/Akt + Ras/Raf | 5-Bromo-3-(3-Hydroxyprop-1-Ynyl)-2H-Pyran-2-One (BHP) | BHP targets GSCs and enhances their sensitivity to anticancer treatments |
Koul et al. [102] | 2005 | GBM | Integrin-linked kinase | QLT0276 In DMSO | ILK inhibition down-regulates multiple pathways involved in proliferation and invasion |
Koul et al. [103] | 2010 | GBM | PI3K/Akt | Px-866 | PX-866 inhibits growth, induces G1 arrest and apoptosis, and is safe and effective in mouse models |
Liu et al. [104] | 2011 | GBM | bFGF | Anti bFGF siRNA | bFGF (basic fibroblast growth factor) siRNA is a possible treatment for glioma |
Liu et al. [105] | 2014 | GBM | EGFR and PI3K/Akt | G19 | G19 acts on the EGFR and PI3K/Akt pathways and causes redox stress to kill glioma cells |
Liu et al. [106] | 2014 | GBM | AMPK | Compound C | Compound C is an extremely potent antiglioma agent, though does not exclusively inhibit AMPK |
Luchman et al. [107] | 2014 | GBM | mTOR1/2 | AZD8055 | Dual inhibition of mTOR1/2 with AZD8055 plus TMZ shows promise as a second-line treatment, especially in TMZ-resistant GBM |
Ma et al. [108] | 2015 | GBM | STAT3 | Tetrandrine | Tetrandrine inhibits glioma growth dose-dependently while not affecting the development of chick embryos |
Matsuda et al. [109] | 2012 | GBM | JNK | Sp600125 | JNK is involved in the development of stem-like potential in GBM cells and is an attractive target |
Maxwell et al. [110] | 2021 | GBM | mTOR1/2 + MEK | TAK228 + Trametinib | Treatment with mTOR1/2 and MEK inhibitors induces various proteomic changes in gliomas |
Nicolaides et al. [111] | 2011 | Astrocytoma | BRAF | Plx4720 | BRAF inhibition as a treatment for astrocytoma is highly supported by preclinical findings |
Paternot et al. [112] | 2009 | GBM | mTOR1 + MEK1/2 | Rapamycin + PD184352 | Combined inhibition of mTOR1 and MEK1/2 should be considered in tumors with dysregulated CDK4 |
Peng et al. [113] | 2013 | GBM | RACK1-PKC | siRNA | RACK1 is involved in glioma development via SRC/Akt activity |
Pezuk et al. [114] | 2013 | GBM | PLK1 | Bi2536 + Tmz | PLK1 is a promising molecular target, and inhibition + TMZ is effective in vitro |
Phillips et al. [115] | 2016 | GBM and epidermoid carcinoma | EGFR | Abt-414 | ABT-414 (antibody and MMAF fusion) is effective in treating a wide range of EGFR genotypes and can be advanced to phase I/II clinical trials |
Premkumar et al. [116] | 2010 | GBM | IGF1R + Src | NVP-AEW541 + Dasatinib | Combined IGF1R and Src inhibition synergistically increased apoptosis in glioma cells without affecting normal astrocytes |
Qin et al. [117] | 2014 | GBM | EMP2 | Anti-EMP2 antibodies/Anti-EMP2 Igg1 | EMP2 (epithelial membrane protein-2) promotes cell migration/invasion through protein kinases; inhibition kills tumor cells |
Raub et al. [118] | 2015 | GBM | CDK4 + CDK6 | Abemaciclib Or Palbociclib + TMZ | Ademacicib with TMZ synergistically increased rat survival time |
Salphati et al. [119] | 2012 | GBM | PI3K | Gne-317 | GNE-317 is a PI3K inhibitor designed to cross the blood brain barrier; represents a treatment option for GBM |
Sathornsumetee et al. [120] | 2006 | GBM | BRAF, CRAF, VEGFR | AA1881 | AAL881 treatment showed tumor growth retardation in xenograft tumors and was well tolerated by mice |
See et al. [121] | 2012 | GBM | MEK + PI3K/mTOR | Vemurafenib + PI103 | NF1-deficient GBM cell lines that are MEK inhibitor resistant respond well to dual therapy with MEK and PI3K/mTOR inhibition |
Selvasaravanan et al. [122] | 2020 | GBM | MEK or PI3K | Trametinib + Pictilisib | MEK inhibition is not superior to PI3K inhibition, though MEK may have a use in combination therapy |
Shingu et al. [123] | 2015 | GBM | MEK, EGFR, PI3K | Various Small Molecule Inhibitors | The most synergistic combinations of drugs affected RTKs and either MEK/ERK or PI3K |
Siegelin et al. [124] | 2010 | GBM | BRAF | Sorafenib | sorafenib has potent in vivo and in vitro anti-glioma activity |
Signore et al. [125] | 2014 | GBM | PDK1 + CHK1 | UCN-01 | UCN-01 downregulates PDK1 and CHK1, effectively killing tumor cells |
Spino et al. [126] | 2019 | IDH-mutant Astrocytomas | DLL3 | Rovalpituzumab Tesirine | DLL3 is selectively and homogeneously expressed in IDH-mutant astrocytomas and can be targeted with available MABs |
Thanasupawat et al. [127] | 2017 | GBM | FGFR | Dovitinib | Alternation of dovitinib and TMZ reduces GBM viability independent of MGMT and p53 status |
Thompson et al. [128] | 2018 | PXA | Various | Various Antibodies + Kinase Inhibitors + Chemo Drugs | Bevacizumab, TMZ, and irinotecan should be considered as adjuvant therapies for PXA, though MEK and TK inhibitors should be investigated as well |
Tsigelny et al. [129] | 2017 | GBM | OLIG2 | SKOG102 | SKOG102 exhibited potent anti-glioma activity in vivo and in vitro by downregulating OLIG2 |
van den Heufel [130] | 2017 | PDX astrocytoma | MET | Compound A | Compound A prolonged survival of mice did not stop eventual progression |
Wang J et al. [131] | 2013 | Glioma | MEK1 | Mir-181b + TMZ | miR181b enhances the sensitivity of glioma cells to TMZ by downregulating MEK1 |
Wang et al. [132] | 2014 | GBM | RAS | Mir-143 | miR-143 is downregulated in glioma and involved in the inactivation of RAS |
Wang et al. [133] | 2019 | Glioma Stem Cells | EGFR or PI3K and DHODH | Lapatinib + BKM120 + Teriflunomide | Combined targeting of intrinsic synthetic enzymes reduces pyrimidine synthesis; presents an effective glioma paradigm |
Wichmann et al. [134] | 2015 | GBM | EGFR and HER2 | siRNA + Cetuximab + Trastuzumab | siRNA knock-down of EGFR and HER2 reduced the growth rate of GBM |
Yan et al. [135] | 2017 | GBM | CSF-1R + cKIT + RTKs | PLX3397 + Vatalanib + Dovitinib | PLX3397 is an effective monotherapy and improves the efficacy of multiple tyrosine kinase inhibitors |
Yang et al. [136] | 2008 | GBM | EGFR | Boronated EGFR MAB + Cetuximab | Both EGFR and EGFRvIII tumors must be targeted by a combination of boronated MAB and boronated cetuximab |
Yao et al. [137] | 2015 | GBM | EGFR and BRAF | BRAF(V600E) Inhibitor PLX4720 | Inhibiting EGFR and BRAF(V600E) decreased tumor cell proliferation, increased apoptosis, and extended survival |
Zavalhia et al. [138] | 2014 | Ependymomas and oligodendromas | cKIT | Imatinib | C117+ tumors are susceptible to imatinib, and its use in their treatment should be further investigated |
Zhang et al. [139] | 2015 | GBM | mGluR1 | siRNA, Selective Antagonists Riluzole + BAY36-7620 | Anti-tumor activity of mGluR1 inhibition in vivo was demonstrated |
Zhang et al. [140] | 2016 | GBM | HER2 | HER2 Specific NK Cells | Modified HER2-specific NK cells are effective against GBM |
Zhang et al. [139] | 2017 | Glioma | BRAF V600E + MEK | PLX4032 + GDC0973 | Combined BRAF V600E and MEK inhibition prevents tumor rebound by MAPK activation in glioma |
Cell Cycle/Apoptosis/Transcription Pathways | |||||
Bychkov et al. [141] | 2020 | GBM | S100A9 (one of the heterodimers for calprotectin) | shRNA | Mambalgin-2 inhibits glioma and GBM cells but not normal astrocytes |
Chen et al. [142] | 2013 | GBM and Glioma Stem Cells | IGFBP3 | IGFBP3 siRNA | S100A9 knockdown demonstrates a new anticancer strategy |
Chen et al. [143] | 2019 | GBM | HDAC/EZH2 | Compound 26/UNC1999 | IGFBP3 depletion is a potential therapy through the induction of DNA damage and apoptosis |
Grinshtein et al. [144] | 2016 | GBM | BAG3 | BAG3 siRNA | HDAC and EZH2 inhibition in combination lead to synergistic effects in vitro |
Festa et al. [145] | 2011 | GBM and IDH-mutant Astrocytoma | miR-27a (FOXO3a) | Antagomir-27a | BAG3 is highly expressed in gliomas; effective therapeutic target |
Ge et al. [146] | 2013 | GBM | Tumor checkpoint controller targeting microtubules | BAL101553 | MiR-27a may be up-regulated in human glioma, and antagomiR-27a of could inhibit proliferation and invasion ability |
Genoud et al. [147] | 2021 | GBM | PAK5 | PAK5 shRNA | BAL101553 is a promising therapeutic agent for glioblastoma and could synergize with innate immune stimulation |
Gu et al. [148] | 2015 | GBM | DR4/5 | TRAIL + Doxorubicin | PAK5 is overexpressed in glioma, and its inhibition blocks anti-apoptotic signals and promotes arrest |
Guo et al. [149] | 2011 | GBM | CDK 4/6 + PDGFRα | Lenvatinib + Crenolanib + Abemaciclib + Palbociclib | TRAIL-LP and DOX-LP displayed stronger antiGBM effects than free drugs or liposomal drugs alone in vivo |
Hamada et al. [150] | 2022 | Embryonic Kidney Cells | Procaspase-3 | PAC-1 (*Activating Molecule) | Inhibitors targeting PDGFRα and CDK 4/6 signaling can treat patients with the p.K455_N468delinsN splice variant |
Joshi et al. [96] | 2017 | GBM | Phospholipase C | D609 | PAC1 + TMZ is feasible in a rodent model and a promising therapeutic regime |
Kalluri et al. [151] | 2017 | Oligodendroglioma Stem Cells | NEK9 | NEK9-siRNA | Chronic D609 treatment leads to decreased biomarker (Olig2) levels and G1 arrest |
Kaneta et al. [152] | 2013 | GBM | BMI-1 | Ptc-209 | NEK9 inhibition causes spindle inhibition and mitotic catastrophe |
Kong et al. [153] | 2018 | GBM | OPN | shRNA | Tumor growth is attenuated by PTC-2009; proof-of-concept for BMI-1 oncogene inhibition |
Lamour et al. [154] | 2015 | GBM | PLK1 | Bi2536 | Tumorigenic potential of U87-MG sphere cells was completely abrogated upon OPN (osteopontin) silencing |
Lee et al. [26] | 2012 | GBM | Wee1K | Mk-1775 | PLK1 (polo-like kinase 1) is critical to survival of glioma cells; inhibition kills cells |
Lescarbeau et al. [155] | 2016 | GBM | p53/MDM2 | D-PMNIbeta | Wee1K phosphorylation is an effective anti-tumor target site |
Li et al. [156] | 2012 | GBM | miR-23a (APAF1) | Anti-mir-23a | D-PMIBeta is an effective inhibitor of p53 |
Lian et al. [157] | 2013 | GBM | EGFR | AZD9291 | miR-23a is upregulated in gliomas; knockdown reduces tumor survivability |
Liu et al. [158] | 2019 | GBM | STK17A | Anti-STK17A shRNA | AZD9291 demonstrated efficient preclinical activity in GBM in vitro and in vivo models |
Mao et al. [159] | 2013 | GBM | MDM2/4 + α5β1/αvβ3 | Compound 9 | STK17A portends a worse prognosis; knockdown reduces tumor survivability |
Merlino et al. [160] | 2018 | GBM | CDK 4/6 | PD-0332991 | Compound 9 has the potential to be a potent anti-glioma therapy via MDM2/4 and α5β1/αvβ3 inhibition |
Michaud et al. [161] | 2010 | GBM | FOXM1 | Plumbagin | PD-0332991 inhibits glioma growth and increases survival |
Niu et al. [162] | 2015 | GBM | XIAP + BCL-2 | RIST + ARIST | Plumbagin significantly inhibited glioma cell proliferation and induced cell apoptosis |
Nonnenmacher et al. [163] | 2015 | GBM | MGMT | PRIMA-1MET | RIST (rapamycin, irinotecan, sunitinib, and temozolomide) and aRIST (alternative to rapamycin, GDC-0941) prolonged survival time and reduced tumor burden |
Patyka et al. [164] | 2016 | GBM and IDH-mutant Astrocytoma | MDM2 | SP-141 | p53 is the probable target of PRIMA-1MET, making it an effective targeted therapy. |
Punganuru et al. [165] | 2020 | GBM | HSP90 | BIIB021 + 17-AAG (HSP90 Inhibitor) + BRAFi +/Or MEKi | MDM2 inhibition by SP-141 can effectively curtail the growth of brain tumors in vitro and in vivo |
Sasame J et al. [166] | 2022 | Embryonic Kidney Cells | HGFR/MET | Crizotinib | HSP90 inhibitor (plus BRAF or MEK inhibitors) overcome the limitations of current BRAFV600E mutant therapy |
Tasaki et al. [167] | 2016 | IDH-mutant Astrocytoma and Glioma | IAPs | Gdc-0152 | HGFR/MET is highly expressed in GSCs and could be inhibited by crizotinib |
Tchoghandjian et al. [168] | 2016 | GBM | EGFR | Afatinib + TMZ | Inhibitors of apoptosis proteins (IAPs) are associated with lower survival rates, and GDC-0152 increases survival |
Vengoji et al. [169] | 2019 | GBM | Survivin | Survivin-siRNA/Transferrin Receptor Conjugate | Afatinib plus TMZ significantly delayed progression and growth in vivo and in vitro |
Wang et al. [170] | 2011 | GBM | EZH2 | EZH2si-DMC | Conjugate decreases survivin expression and increases survival |
Wang et al. [171] | 2019 | GBM | Carbamoyl-phosphate synthetase (CAD) | Teriflunomide | DMC nanoparticle-mediated EZH2-siRNA decreases tumor growth |
Wang et al. [133] | 2023 | GBM | BCL6 | RI-BPi | Targeting pyrimidine synthesis may yield an improved clinical outcome |
Xu et al. [172] | 2017 | GBM and other cell types | CUL7 | MIR-3940-5p | BCL6 is overexpressed in glioma and is associated with worse prognosis; RI-BPI reduces tumor growth |
Xu et al. [173] | 2020 | Glioma | EGFRvIII | L8A4 | CUL7 promotes tumorigenesis via NF-kappa B activation and can be negatively regulated by miR-3940-5p |
Yang et al. [136] | 2006 | GBM | EF2-kinase | EF2-siRNA | Show the therapeutic efficacy of molecular targeting of EGFRvIII |
Zhang et al. [174] | 2011 | GBM | ID2 | Anti ID2 siRNA | EF2 (elongation factor 2) inhibits anoikis and regulates cell migration; knockdown inhibits these properties in tumor cells |
Zhao et al. [175] | 2015 | GBM | CDK + Aurora (dual inhibitor) | Jnj-7706621 | ID2 upregulation decreases apoptosis in glioma; targeting increases apoptosis and drug sensitivity |
Zhong et al. [176] | 2018 | GBM and other cell types | ATG9A | Bevacizumab + Chloroquine | JNJ-7706621 was a potential drug for the treatment of patients with glioblastoma |
Microenvironmental Targets (angiogenesis, cell-cell adhesion, iron/cation regulation) | |||||
Abdul Rahim et al. [177] | 2017 | GBM | Phosphatidylserine | SAPC-DOPS | ATG9A depletion leads to cell death; however, chloroquine was found ineffective at non-toxic doses |
Angara et al. [178] | 2017 | GBM | Endothelial pigpen protein | Aptamer III.1 | HET0016 targets therapeutic resistance in glioma |
Blanco et al. [179] | 2014 | GBM | NRP-1 | NRP-1 Mab | SAPc-DOPS selectively targets GBM, crosses the BBB, and may be an effective treatment |
Blank et al. [180] | 2001 | GBM | O-acetyl GD2 ganglioside | Anti-GD2 Antibody | Aptamer III.1 found to selectively target GBM and is a potential treatment |
Chen et al. [181] | 2013 | GBM | TFAM | Melatonin + TMZ | NRP-1Mab is an inhibitor of glioma growth and invasion and may be an effective treatment |
Fleurence et al. [182] | 2016 | GBM | Pan-VEGF | Cediranib + TMZ | O-acetyl GD2 ganglioside represents a new molecular target to prevent glioma proliferation |
Franco et al. [183] | 2018 | GBM | LTβR | Light-VTP | Melatonin causes cell death and potentiates TMZ effects by inhibiting TFAM (mitochondrial transcription factor A) |
Grossman et al. [184] | 2013 | GBM | TRPV4 | Cannabidiol (CBD) | Intratumoral concentrations of TMZ in tumor ECF were slightly, but not statistically significantly, increased when compared to the treatment of TMZ alone |
He et al. [185] | 2018 | GBM | VEGF + Src Family kinases | Bevacizumab + Dasatinib | LIGHT-VTP prevents angiogenesis, normalizes blood vessels, and promotes immune infiltration |
Huang T et al. [186] | 2021 | GBM | Growth-Hormone Releasing Hormone | MIA-604 + MIA-690 | Antitumor effect of CBD in glioma is caused by lethal mitophagy, and we identified TRPV4 as a molecular target |
Huveldt et al. [187] | 2013 | GBM | Nrf2 | siRNA | Dasatinib may block bevacizumab-induced invasion, and a phase II trial is being planned |
Jaszberenyi et al. [188] | 2013 | GBM | MRP3 | Anti-MRP Antibody | GHRH antagonists have potent anti-cancer activity, which can augment standard chemotherapeutic treatments |
Ji et al. [189] | 2013 | GBM | VEGFR | Axitinib | Nrf2 promotes glioma proliferation and is inversely correlated with prognosis; siRNA may be a potential drug |
Kuan et al. [190] | 2010 | GBM | TfR (transferrin receptor) | T12 + B6 + T7 (Tfr-Targeting Peptides) | MRP3 is overexpressed in gliomas; antibodies used in the study are specific to the tumors and decrease growth |
Lu et al. [191] | 2015 | GBM and Glioma Stem Cells | CX43 + miR-21 | B2 cAMP Agonist | Axitinib exhibits antiangiogenic activity and prolongs survival |
Mojarad-Jabali et al. [192] | 2022 | GBM | Fibulin-3 | Mab428.2 | T7-modified liposomes (T7-LS) show BBB penetration capacity and demonstrate in vitro effectiveness |
Mostafavi et al. [193] | 2015 | GBM and IDH-mutant Astrocytoma | LAT1 | BCH | CX43 and miR-21 modulation using B2 agonists is effective therapy for low- but not high-grade glioma |
Nandhu et al. [194] | 2018 | GBM | NHE9 | Gold NEPTT | mAb428.2 inhibited fibulin-3, reduced tumor growth, and extended survival |
Nawashiro et al. [195] | 2006 | GBM and Glioma | Lanosterol synthase | Mi-2 | LAT1 expression is inversely correlated with survival time, and BCH arrested growth and killed tumor cells |
Pall et al. [196] | 2019 | GBM | HIF2α | PT2385 | Gold nanoparticle-enabled photothermal therapy (NEPTT) crosses the BBB, delivers the gold nanoparticles, and kills tumor cells |
Phillips et al. [197] | 2019 | DIPG and GBM | EDB-FN | Docetaxel-Loaded EDB-FN Specific Micelles | Characterized pathway of MI-2 (menin inhibitor), existing glioma treatment |
Renfrow et al. [198] | 2020 | GBM | VEGF | Anti-VEGF AB + Nimustine | HIF2α is a reasonable therapeutic target; PT2385 is an efficacious anti-tumor agent |
Saw et al. [199] | 2021 | GBM, IDH-mutant Astrocytoma, and other cell types | tmTNFa | Recombinant IL2 or dsDNA | EDB-FN (extra domain B fibronectin) is a useful biomarker and has antitumor efficacy |
Takano et al. [200] | 2003 | GBM | CTL1 (choline transporter-like protein 1) | AMB4269951 | Combination of antiangiogenic therapy with standard chemotherapy is a promising avenue for future therapy |
Tyrinova et al. [201] | 2018 | Glioma | VEGFR2 | Apatinib | tmTNFa is upregulated by rIL-2 or dsDNA, which helps to restore dendritic cell anti-tumor activity |
Watanabe et al. [202] | 2020 | GBM | Calmodulin, EGFR, aromatase | W-13 + Gefitinib + Exemestane | Amb4269951 has significant antitumor effects in glioma and was also without significant weight loss |
Xia et al. [203] | 2022 | GBM | ITGA9 | miR-148a | Apatinib decreases tumor growth through the induction of ferroptosis via the VEGFR2/Nrf2/Keap1 pathway |
Xiong et al. [204] | 2019 | GBM | STING | ASA404 | Identified three existing miRNA-based chemicals for use as therapy |
Xu et al. [205] | 2019 | GBM | CD73 | Anti-CD73 | miR-148a can suppress the malignant phenotype of GBM by targeting ITGA9 |
Immunotherapy Pathways | |||||
Baehr et al. [206] | 2017 | GBM | ATX + LPA receptors | siRNA | ASA404, an inhibitor of STING (stimulator of interferon gene), demonstrates efficacy subcutaneously but has no relevant activity in orthotopic brain models |
Goswami et al. [207] | 2020 | GBM | EMMPRIN | Icaritin | Propose a combination therapy to target CD73 plus blockade of PD1 and CTLA-4, suggesting anti-CD73 be tested |
Merrill et al. [208] | 2004 | GBM and Glioma | NFkB | BAY117082 + MG132 | CD155 is highly expressed in glioma, and PVS-RIPO is highly effective in vitro |
Schleicher et al. [209] | 2011 | GBM | FPR | F2 Procyanidins | ATX and LPA receptor downregulation radio-sensitizes tumor cells |
Xu et al. [210] | 2015 | GBM | CXCR4 | POL5551 + MCR89 | Icaritin inhibits the invasion and EMT of GBM cells by targeting EMMPRIN (extracellular matrix metalloproteinase) |
Zanotto-Filho et al. [211] | 2011 | GBM and Glioma | Site-1 protease | PF-429242 | NFkB inhibition helps defeat resistance mechanisms, decreases viability, and exhibits some toxicity |
Zhang et al. [212] | 2009 | GBM and Glioma | CXCR4 | Tetramethylpyrazine | F2 procyanidins downregulates FPR (formyl peptide receptor) causing a cytotoxic effect |
Other Pathways/Targets | |||||
Barone et al. [213] | 2014 | GBM | Lactate (monocarboxylate) transporters | ACCA | Higher POL5551 tumor concentrations are associated with better survival, improving in combination with VEGF antagonism |
Caruana et al. [214] | 2017 | GBM | APLNR | MM54 Or MM193 (APLNR Antagonists) | PF-429242 decreases viability, increases apoptosis and inflammation, and downregulates lipid synthesis |
Chen et al. [215] | 2013 | GBM | Nestin | Anti-Nestin IGG | Tetramethylpyrazine’s effect on gliomas comes through the inhibition of CXCR4 |
Chen et al. [216] | 2021 | GBM | EEF1A1 + RPL11 | Puromycin + Doxorubicin + Daunorubicin + Mitoxantrone | circ-ITCH inhibits tumor progression by regulating the miR-106a-5p/SASH1 axis |
Colen et al. [217] | 2011 | GBM | MALAT1 | Nanocomplex Targeting MALAT1 + TMZ | ACCA (α-cyano-4-hydroxycinnamic acid) inhibits lactate transport and can be used to target brain tumors |
Harford-Wright et al. [218] | 2017 | GBM | IDH1R132H | AGI-5198 (In Combo with HDACi) | Inhibition of APLNR (apelin G-protein coupled receptor) results in a significant reduction in tumor growth |
Ishiwata et al. [219] | 2011 | GBM | hnRNP A1/B2 | Β-Asarone | Downregulating nestin is associated with decreased glioma proliferation, growth, and migration |
Jiang et al. [220] | 2021 | Glioma | CRM1 | S109 | Database analysis comparing glioma and normal tissue resulted in the identification of two target genes and four possible drugs for glioma treatment |
Kim et al. [221] | 2018 | GBM | LPAR1/3 | KI16425 | Concurrent treatment of TMZ and nanocomplex-mediated silencing of MALAT1 has a survival benefit |
Kim et al. [222] | 2019 | IDH-mutant Astrocytoma | Dynamin 2 | Dynole 34-2 + Cydyn 4-36 | AGI-5198 attenuates histone deacetylase inhibitor (HDACi) resistance and presents a potential therapy combination |
Li et al. [223] | 2018 | GBM and other cell types | c-Myb | Telomestatin | β-Asarone blocks the invasion and epithelial-mesenchymal transition of glioma cells via inhibiting hnRNP A1/B2 |
Liu et al. [224] | 2016 | GBM and Glioma | miR-25 | miR-25 Inhibitor (Cat. No. 4464084) | CRM1 is a novel molecular target; S109 inhibits the proliferation of tumor cells |
Loskutov et al. [225] | 2018 | GBM | PRC2 + BET bromodomain proteins | JQ1 + I-BET | LPA signaling knockdown reduced tumor growth |
Luwor et al. [226] | 2019 | GBM | eIF-5A, DHS, DOHH (both eIF-5A activators) | Gc7 | Dynamin 2 inhibition via CyDyn 4-36 reduces tumor growth |
Miyazaki et al. [227] | 2012 | GBM | TRAILR | Recombinant TRAIL + TMZ | Telomestatin impairs survival and growth via disrupting the c-myb protoconcogene |
Peng et al. [228] | 2019 | GBM | EFTUD1 | EFTUD1 shRNA | miR-25, through wnt signaling, may serve as a promising molecular target for the treatment of glioma |
Piunti et al. [229] | 2017 | DIPG and Glioma | PFK1 | Clotrimazole | Oncogenic properties of the histone point mutation H3K27M are reduced by inhibiting PRC2 and BET proteins |
Preukschas et al. [230] | 2012 | GBM | YAP1 | Nsc682769 | eIF5-A is overexpressed in gliomas and its activator DHS represents a possible molecular target |
Saito et al. [231] | 2004 | GBM | α7 nAChR | Rslurp-1 | TMZ + TRAIL have a synergistic effect on survival while being safe in tumor-bearing rats |
Saito et al. [232] | 2014 | GBM | A1CF + FAM224A | shRNA | EFTUD1 (elongation factor such as GTPase 1) is overexpressed in glioma, and its downregulation induces arrest and apoptosis |
Sanzey et al. [233] | 2015 | GBM | DLL3 | Rova-T | Clotrimazole inhibits PFK1 (phosphofructokinase 1) and increases survivability |
Saunders et al. [234] | 2021 | GBM | Smoothened | Gdc-0449 | NSC682769 represents a new YAP1 (yes-associated protein 1) inhibitor that decreases glioma growth and proliferation |
Shulepko et al. [235] | 2020 | GBM | KIF11 | Ipinesib | rSLURP-1 demonstrates antitumor activity through nAChR inhibition |
Song Y et al. [236] | 2019 | GBM and other cell types | Brevican | Anti-Deglycosylated Brevican Peptide | A1CF/FAM224A/miR-590-3p/ZNF143 positive feedback loop regulates the malignant progression of tumor cells |
Spino et al. [126] | 2019 | GBM and IDH-mutant Astrocytoma | miR-128 | Ginsenoside Rh2 | DLL3 (delta-like ligand 3) is selectively and homogeneously expressed in this tumor type; it is target with Rova-T (rovalpituzumab tesirine) |
Tu et al. [237] | 2017 | GBM | 14-3-3 | siRNA | Smoothened is an effective prognostic biomarker, and GDC-0449 should be further evaluated as a potential drug |
Venere et al. [238] | 2015 | GBM | IDH1R132H | Wm17 | Inhibition of KIF11 (kinesin family member 11) stopped tumor growth, impeded tumor initiation, and prolonged survival |
von Spreckelsen et al. [239] | 2021 | GBM | FTO | SPI1 Inhibitor DB2313 | Deglycosylated Brevican is specific to high-grade gliomas; its knockdown by the BTP-7 peptide presents a new therapy |
Wu et al. [240] | 2011 | GBM | Rh2 inhibits tumor proliferation via miR-128 upregulation | ||
Yan et al. [241] | 2013 | GBM | mTOR + RAF | Metformin + Sorafenib | 14-3-3 downregulation causes decreased glioma survival |
Zhang et al. [242] | 2021 | IDH-mutant Astrocytoma | Ras | Nobiletin | WM17 is a novel mutant IDH1 inhibitor that inhibits cell migration but not proliferation |
Zhang et al. [243] | 2022 | GBM, IDH-mutant Astrocytoma, Oligodendroglioma | mTOR | Rapamycin | FTO (fat mass and obesity-associated protein) is a novel prognostic indicator and decreases tumor burden |
Study Author | Year | Tumor Type | Molecular Target | Finding |
---|---|---|---|---|
Protein Kinase Pathways | ||||
Chen et al. [244] | 2021 | GBM | ACTL6A | ACTL6A (actin-like 6A) knockdown inhibits tumor migration via suppressing the Akt pathway and increases sensitivity to TMZ |
Edwards et al. [245] | 2006 | GBM | Phosphatidylinositol 3-kinase/Akt | Treatment of GBM cells with ILKAS can decrease ILK protein levels and downstream phosphorylation of the cell survival protein PKB/Akt on Ser473, the site specifically phosphorylated by ILK |
Gabler et al. [246] | 2019 | BRAF V600E-mutated glioma | ETS1 | Concomitant BRAFV600E and TERT promoter mutations synergistically support cancer cell proliferation and immortalization through ETS1 (e-twenty-six transcription factor) |
Gu et al. [247] | 2015 | GBM | ITSN1S | ITSN1 (Intersectin1-S) contributes to glioma growth through the Raf/MEK/ERK pathway; overexpression correlates with higher grade gliomas |
Hou et al. [248] | 2015 | GBM | PERK | PERK (PKR-like kinase) silencing decreases tumor cell viability and ATP/lactate production; decreases tumor formation capacity |
Iqbal et al. [249] | 2016 | GBM | PIM | Combination PIM (Proto-oncogene serine/threonine-protein kinase) and PI3K inhibition may be an effective regimen in treating heterogeneous tumors |
Keating et al. [250] | 2010 | Astrocytoma | Mer and Axl RTKs | Mer and Axl RTK inhibition is a novel method to improve apoptotic response and chemosensitivity in astrocytoma |
Kim et al. [251] | 2016 | Glioma Stem Cells | MLK4 | MLK4 regulates the mesenchymal identity of GSCs |
Lerner et al. [252] | 2015 | GBM | PLK1 | PLK1 inhibition is especially effective against CD133+ GBM cell subpopulations |
Liu et al. [253] | 2013 | GBM | EF-2 kinase | Targeting EF-2 kinase can enhance the anti-glioma activity of TMZ |
Liu et al. [254] | 2015 | Glioma | GCN5 | GCN5 (general control of nucleotide synthesis 5) potentiates tumor proliferation and invasion via STAT3 and Akt signaling pathways |
Mao et al. [159] | 2013 | GBM | STK17A | STK17A is a p53 target gene that is upregulated in GBM and associated with worse outcomes, while knockdown reduces proliferation, invasion, and migration |
Martinez-Saez et al. [255] | 2016 | Glioma | peIF4E | peIF4E (eukaryotic translation initiation factor 4E), activated by the Ras-Raf-MAPK pathway, is an independent predictor of survival |
Qin et al. [117] | 2014 | GBM | EMP2 | EMP2 is an activator of Src and represents a potential molecular target for glioma therapy |
Shoshan et al. [256] | 1999 | Oligodendroma | NG2 and PDGFRa | NG2 and PDGFRa are both overexpressed in oligodendromas and may represent molecular target |
Sulzmaier et al. [257] | 2016 | GBM | RSK2 | RSK2 serine/threonine-protein kinase is upregulated in glioma and is associated with decreased survival rates; knockdown reduces proliferation |
Sun et al. [258] | 2020 | GBM | Nrf2 | Nrf2 inhibition leads to increased oxidative stress and decreased Ras/Raf/MEK activity |
Thanasupawat et al. [127] | 2018 | GBM | CTRP8 | The CTRP8-STAT3 axis has strong anti-apoptotic properties involved in TMZ resistance |
Tsuruta et al. [259] | 2011 | Glioma | PDGFRa and G-CSFR | Gliomas highly express PDGFRa (Platelet-derived growth factor receptor) and G-CSFR (colony stimulating factor receptor) |
Wang et al. [133] | 2019 | GBM | Pyrimidine Synthesis Pathway | GSCs are vulnerable to inhibition of both the mutated enzyme and the rate-limiting (carbamoyl phosphate synthetase 2) |
Yamanaka et al. [260] | 2006 | Glioma | DDR1 | DDR1 (discoidin domain receptor tyrosine kinase 1) is associated with glioma proliferation and a worsened prognosis |
Zhang et al. [261] | 2016 | GBM | YAP1/TAZ-BIRC5 | The Hippo/YAP kinase pathway is abnormally activated by LATS downregulation and not affected by MST in glioma tissues |
Zhang et al. [262] | 2022 | GBM | NDRG1 promoter | CW-type zinc finger 2 promotes the proliferation, invasion, migration, and EMT of glioma by regulating PTEN/PI3K/AKT signaling via binding to the N-myc downstream regulated gene 1 promoter (NDRG1) |
Zhao et al. [263] | 2016 | GBM | PI3K/Akt and JNK | Combined inhibition of the PI3K p110β isoform and JNK may serve as a potent and promising therapeutic approach |
Zhou et al. [264] | 2005 | GBM | FPR | FPR (Formyl Peptide receptor) acts through the JAK/STAT pathway and is highly expressed in GBM and other high-grade gliomas |
Zhu et al. [265] | 2014 | GBM | Pyk2 or Orai1 | SOCE (store-operated Ca2+ entry) is enhanced in gliomas, and knockdown by either Pyk2 (proline-rich tyrosine kinase 2) or Orai 1 inhibition can act as a novel approach |
Zohrabian et al. [266] | 2009 | GBM | MEK and ROCK | Rho/ROCK signaling is involved in GBM cell migration and proliferation and represents an ideal target |
Cell Cycle/Apoptosis/Transcription Pathways | ||||
Abe et al. [267] | 2019 | Glioma | CDK5 | CDK (cyclin-dependent kinase) 5 regulates lamellipodia and filopodia; blockade may decrease cell migration |
Bai et al. [268] | 2014 | Glioma Stem Cells | TRF2 | TRF2 (telomeric repeat binding factor 2) inhibition blocks tumor proliferation and increases survival |
Bai et al. [269] | 2020 | GBM | TTDA | TTDA (trichothiodystrophy group A protein) is an upstream regulator of p53-mediated apoptosis and acts as an oncogene |
Cai et al. [270] | 2021 | GBM | TRIM32 | TRIM32 (tripartite motif protein 32) is overexpressed in glioma cells, and its knockdown decreases tumor growth and potentiates the TMZ response |
Cao et al. [271] | 2010 | GBM and IDH-mutant Astrocytoma | 14-3-3-protein | 14-3-3 inhibition is associated with increased apoptosis, while 14-3-3 is upregulated in glioma cells |
Chiang et al. [272] | 2012 | GBM | WOX1 | WOX1 overexpression inhibits p53 mutant glioma cells independent of the intrinsic apoptosis pathway |
Feng et al. [273] | 2019 | GBM | TRIM14 | TRIM 14 (Tripartite motif-containing 14) tumor suppressor promotes EMT via ZEB2 (Zinc finger E-box-binding homeobox 2) |
Godoy et al. [274] | 2021 | GBM | E2F1 | E2F1 suppression is associated with decreased growth, increased apoptosis and susceptibility to radiation, and delayed differentiation |
Kang et al. [275] | 2019 | GBM | lncRNA RP11-732M18.3 | Inhibition of thelncRNA RP11-732M18.3, which promotes G1/S cell cycle transition, could provide a novel therapeutic target for glioma treatment |
Kikuchi et al. [276] | 2017 | GBM | DEPDC1 | DEPDC1 (DEP domain containing 1) induced apoptosis through NF-κβ signaling |
Klose et al. [277] | 2011 | GBM | BMP7 | BMP7 (Bone Morphogenetic Protein 7) is a potent tumor suppressor that induces G1/S cell cycle arrest via the BMP/TGF-β pathway |
Lan et al. [278] | 2020 | GBM and other cell types | SNRPG | Downregulation of SNRPG (Small Nuclear Ribonucleoprotein Polypeptide G) induces cell cycle arrest and sensitizes tumor cells to TMZ by targeting Myc through a p53-dependent signaling pathway |
Li et al. [279] | 2018 | GBM | CDK10 | CDK10 overexpression is associated with the inactivation of snail-mediated EMT |
Luo et al. [280] | 2014 | Glioma and GBM | PAR2 | PAR2 (protease-activated receptor 2) is overexpressed in glioma cells and is involved in preventing apoptosis |
Ma et al. [281] | 2017 | GBM | miR-96 | miR-96 suppresses the PDCD4 (programmed cell death protein 4) tumor suppressor and is associated with increased tumor growth |
Meuth et al. [282] | 2008 | GBM | TASK3 | TASK1 and TASK3 (TWIK-related acid-sensitive K channel 3) are expressed in human glioma cells and are linked to glioma apoptosis |
Tong et al. [283] | 2019 | GBM | YB-1 | YB-1 (Y-box binding protein 1) facilitates resistance of glioma cells to TMZ by activating MDM2/p53 signaling |
Wirsching et al. [284] | 2014 | GBM and Glioma | TB4 | TB4 (thymosin beta 4) expression is correlated with glioma grade, and it modulates p53 and TGF-β |
Yan et al. [285] | 2014 | Glioma | PRMT5 | PRMT5 (protein arginine methyltransferase 5) is a protein arginine methyltransferase that is overexpressed in gliomas; attenuation leads to cell-cycle arrest |
Yuan et al. [286] | 2022 | GBM | HSP27 | HSP27 (heat shock protein 27) depletion promotes erastin-induced ferroptosis of tumor cells |
Microenvironmental Targets (angiogenesis, cell-cell adhesion, cation regulation) | ||||
Chung et al. [287] | 2018 | Glioma and GBM | EMP2 | EMP2 is a biomarker for glioma differentiation and correlates with decreased survival |
Bao et al. [288] | 2016 | GBM and IDH-mutant Astrocytoma | CAP1 | CAP1 (adenylate cyclase-associated protein 1), a cytoskeleton regulator, significantly contributes to tumor proliferation, migration, and invasion |
Haining et al. [289] | 2012 | Glioma | LAT1/4F2hc | LAT1/4F2hc amino acid transporter expression is correlated with proliferation, angiogenesis, and worsened outcomes |
Ji et al. [189] | 2013 | GBM | Nrf2 and HIF1α | Nrf2 expression is directly correlated with HIF1α expression and is associated with worse outcomes |
Kaur et al. [290] | 2012 | GBM | Cadherin-11 | cadherin-11 is associated with increased glioma survivability and mobility |
Lan et al. [291] | 2014 | GBM and other cell types | miR-497 | Hypoxia-induced miR-497 is overexpressed in glioma and decreases glioma cell sensitivity to TMZ by inhibiting apoptosis |
Li et al. [292] | 2017 | Glioma | miR-150 | miR-150 modulates the HIF1α pathway and upregulates glycolysis in glioma cells |
Li et al. [293] | 2020 | Glioma | TWIST | TWIST transcription factor could be a predictor of poor prognosis in glioma patients; it shows a correlation with microvascular density |
Liu et al. [294] | 2016 | Glioma and GBM | XBP1 | XBP1 (X-box binding protein 1) silencing reduces glioma cell viability and tumor formation capacity; it decreases glioma cell viability and ATP/lactate production |
Ljubimova et al. [295] | 2004 | Glioma and Meningioma | Laminin-8 | Laminin-8 expression is highly correlated with tumor grades and inversely correlated with survival time |
Martina et al. [296] | 2010 | GBM, IDH-mutant Astrocytoma, Oligodendroglioma | Tenascin-W | Tenascin-W is overexpressed in brain tumors and not in normal tissue; it is a marker for glioma-associated blood vessels and stimulates angiogenesis |
Okubo et al. [297] | 2010 | Glioma | LAT1 | LAT1 (L-type amino acid transporter 1) expression corresponds with a higher density of microvessels in glioma |
Pointer et al. [298] | 2017 | GBM | hERG | High hERG (human ether-à-go-go-related gene) potassium ion channel expression is correlated with decreased survival |
Shi et al. [299] | 2019 | GBM | SLC2A1 | LINC00174 promotes cell invasion, migration, and upregulated SLC2A1(solute carrier family 2 member 1) |
Wu et al. [300] | 2016 | GBM | 37LRP | 37LRP (37-kDa laminin receptor precursor) is a novel glioma target whose downregulation by siRNA is associated with decreased growth, invasion, and proliferation |
Immunotherapy Pathways | ||||
Han et al. [301] | 2019 | Glioma | HVEM | Immune checkpoint molecule herpesvirus entry mediator (HVEM) is overexpressed and associated with poor prognosis |
Hong et al. [92] | 2014 | GBM and other tumor types | L1-CAM | The CE7 epitope of the L1-CAM adhesion molecule on tumors may be amenable to targeting by CE7R T cells, making it a promising target for adoptive immunotherapy |
Ku et al. [302] | 2011 | GBM | CHI3L1 | CHI3L1 (Chitinase 3 like 1) contributes to glioma progression through invasion, resistance, and growth |
Lou et al. [303] | 2017 | GBM | NUDT21 | NUDT21(nudix hydrolase 1) is an upstream regulator of the NF-κB pathway and a potential molecular target for the MES subtype of GBM |
Saito et al. [304] | 2017 | GBM | KIF-20A | KIF-20A (kinesin family member 20A) is highly expressed in glioma cells but not normal brain tissue; its suppression blocks proliferation and reduces cytokinesis |
Xu et al. [305] | 2020 | Glioma | PARP9 | PARP9 may serve as an unfavorable prognosis predictor for glioma |
Yuan et al. [306] | 2019 | Glioma | CD204 | CD204 contributes to dysfunction of T cells in glioma |
Yuan et al. [307] | 2022 | GBM | BACH1 | BACH1 (BTB Domain and CNC Homolog 1) attenuates the tumor-associated macrophage mediated immune response, therefore creating an immunosuppressive tumor environment |
Zhang et al. [308] | 2021 | Oligodendroglioma and Glioma | S100A | Via databases, the S100A family was heavily involved in glioma immune infiltration and may represent an effective target |
Zhu et al. [309] | 2022 | Glioma | PYGL | PYGL (Glycogen Phosphorylase L) can be used as a new biomarker and molecular target for evaluating the prognosis and immunotherapy of glioma |
Wnt/β-catenin Pathways | ||||
Chen et al. [310] | 2021 | Glioma | WTN5A | WNT5A gene, which expresses Wnt-5a, is overexpressed in gliomas; promotes EMT and angiogenesis |
Di et al. [311] | 2021 | GBM | SPZ1, CXXC4 pathway | SPZ1 (Spermatogenic Leucine Zipper 1) stimulates glioma’s malignant progression via targeting CXXC4 |
Friedmann-Morvinski et al. [312] | 2016 | GBM | OPN | OPN (osteopontin) plays a role in dedifferentiating glioma cells |
Guo et al. [313] | 2020 | GBM | FRAT1 | FRAT1 (frequently rearranged in advanced T cell lymphomas-1) contributes to the tumorigenesis of glioma cells through wnt signaling |
Lan et al. [314] | 2015 | GBM | PomGnT1 | Forced overexpression of PomGnT1 (peptide-O-linked mannose beta-1,2-N-acetylglucosaminyltransferase 1) promotes tumor progression via activation of beta-catenin |
Mizobuchi et al. [315] | 2008 | GBM | REIC/Dkk-3 | REIC/Dkk-3 (reduced expression in immortalized cells /Dickkopf-related protein 3) is involved in Wnt-mediated apoptosis and is downregulated in glioma |
Zhou et al. [316] | 2015 | GBM and IDH-mutant Astrocytoma | HOTAIR | High HOTAIR (HOX Transcript Antisense RNA) expression was associated with poor outcomes; depletion inhibits tumor cell migration/invasion |
Other Pathways/Targets | ||||
Borsics et al. [317] | 2010 | GBM | PRAF2 | PRAF2 (rab acceptor 1 domain family, member 2) downregulation reduces the invasiveness of tumor cells |
Cui et al. [318] | 2019 | GBM | RHPN1-AS1 | Knockdown of RHPN1-AS1 inhibits the proliferation, migration, and invasion of tumor cells |
Dong et al. [319] | 2021 | GBM | ANTXR1 | miR-381-3p could repress malignant behaviors in glioma by modulating ANTXR1 (anthrax toxin receptor 1) |
Feve et al. [320] | 2014 | GBM | 13 different GPCRs | The transcriptome study shows 13 possible novel pathways that can be targeted by new drugs; refer to Table 1 of Feve et al., 2014 [320] |
Han et al. [321] | 2017 | GBM | TAGLN2 | TAGLN2 (Transgelin-2) plays a role in promoting the development of human glioma |
Hou et al. [322] | 2022 | Glioma Stem Cells | CircASPM | CircASPM is up-regulated in glioma tissues and is correlated with tumor progression and poor prognosis |
Huang et al. [323] | 2020 | GBM | GAS5-AS1 | LncRNA GAS5-AS1 (growth arrest specific 5) inhibits glioma proliferation, migration, and invasion via miR-106b-5p/TUSC2 axis |
Li et al. [324] | 2011 | GBM | DLL4-Notch | Combination therapy to block DLL4-Notch signaling may enhance the efficacy of VEGF inhibitors |
Li et al. [325] | 2014 | GBM | miRNA network | There are 14 miRNAs and 5 pathways in the network that can represent glioma targets; refer to Figure 6A of Li et al., 2014 [325] |
Li et al. [326] | 2019 | GBM | LINC00319 | LINC00319 (long intergenic non-protein coding RNA 319) is an oncogenic factor for glioma tumorigenesis; knockdown arrests the cell cycle and induces apoptosis |
Li et al. [327] | 2021 | GBM and other cell types | IGF2BP2 | SUMOylation of IGF2BP2 (insulin-like growth factor 2 mRNA binding protein 2) regulated the OIP5-AS1/miR-495-3p axis to promote vasculogenic mimicry in tumor cells |
Liu et al. [328] | 2015 | GBM and Glioma | miR-27b | miR-27b may promote glioma cell invasion through direct inhibition of Spry2 (sprouty homolog 2) expression |
Liu et al. [329] | 2022 | GBM | LINC01094 | LINC01094 promotes glioma progression by modulating miR-224-5p/CHSY1 axis |
Miller et al. [330] | 2017 | GBM | JMJD6 | JMJD6 (Jumonji Domain Containing 6) mediates tumor growth in vivo; targeting reduces glioma progression |
Noorani et al. [331] | 2020 | GBM | 147 druggable genes | Whole genome sequencing of human tumors identified 147 druggable targets for EGFR-mutant GBM, refer to Table S8 in Noorani et al., 2020 [331] |
Qiu et al. [332] | 2015 | GBM and Glioma | FoxJ2 | FoxJ2 (forkhead box J2) suppresses cell migration and invasion in glioma, so upregulating may be a strategy |
Rose et al. [333] | 2021 | GBM and other tumor types | 11 surface proteins | Shotgun proteomics identified 11 new potential targets for glioma therapy; refer to Figure 2A of Rose et al., 2021 [333] |
Sanzey et al. [233] | 2015 | GBM | PFK1 and PDK1 | Knockdown of PFK1 and PDK1, as well as some other glycolytic enzymes, acts an important enzyme in the metabolic escape pathways of GBM |
Sharma et al. [334] | 2016 | IDH-mutant Astrocytoma | EZH2 | EZH2 (enhancer of zeste homologue 2) and miRNA reactors act as biomarkers for tumor progression |
Sun et al. [335] | 2017 | GBM | FOXP3/ARHGAP15 | FOXP3 (forkhead box P3) and ARHGAP15 are both underexpressed in glioma tissues, and their absence plays a role in EMT |
Visvanathan et al. [336] | 2018 | GBM and Glioma | METTL3 | METTL3 (methyltransferase-like 3) preserves stem-cell-like capabilities in glioma cells and mediates SOX2 radiation salvage |
Wang et al. [337] | 2014 | GBM | TIP-1 | TIP1 (tax interacting protein 1) increases glioma invasion and angiogenesis; knockdown increases survivability |
Wei et al. [338] | 2014 | GBM and Glioma | ADAR2 | The ADAR2 (adenosine deaminases acting on RNA 2) alternative splicing variant is upregulated in glioma cells and may contribute to the malignancy of gliomas |
Weigle et al. [339] | 2005 | GBM and IDH-mutant Astrocytoma | SOX11 | SOX11 is highly and specifically expressed in glioma cells; it reactivates during tumorigenesis |
Xin et al. [340] | 2020 | GBM | NFIA-AS2 | NFIA-AS2 (nuclear factor I A antisense RNA2 gene) could be a novel biomarker and therapeutic target for glioma patients |
Zhang et al. [341] | 2022 | GBM and Oligodendroglioma | ANXA1 | ANXA1 is overexpressed in glioma tissues, plays a role in invasion and infiltration, and is an independent prognostic factor in glioma |
Zhou et al. [342] | 2021 | GBM and Glioma | miR-190a-3p | miR-190a-3p contributes to glioma proliferation/migration and negatively regulates YOD1; can be suppressed by miR inhibition |
Title | NCT # | Year Started | Last Update | Tumor Type | Molecular Target | Intervention |
---|---|---|---|---|---|---|
Protein Kinase Pathways | ||||||
Imatinib Mesylate in Treating Patients with Recurrent Malignant Glioma or Meningioma | 00010049 | 2001 | 2018 | Recurrent Malignant Glioma or Meningioma | multiple tyrosine kinases | imatinib |
Gefitinib in Treating Patients with Newly Diagnosed Glioblastoma Multiforme | 00014170 | 2001 | 2013 | GBM | EGFR | Gefitinib |
CCI-779 in Treating Patients with Recurrent Glioblastoma Multiforme | 00016328 | 2001 | 2013 | GBM or Gliosarcoma | mTOR | temsirolimus |
Gefitinib in Treating Patients with Recurrent or Progressive CNS Tumors | 00025675 | 2001 | 2018 | GBM or Anaplastic Gliomas | EGFR | gefitinib |
Erlotinib in Treating Patients with Solid Tumors and Liver or Kidney Dysfunction | 00030498 | 2001 | 2013 | Gliomas and Brain Metastases | EGFR | Erlotinib |
Gefitinib and Radiation Therapy in Treating Patients with Glioblastoma Multiforme | 00052208 | 2002 | 2020 | GBM, Gliosarcoma | EGFR | Gefitinib |
Imatinib Mesylate in Treating Patients with Gliomas | 00039364 | 2002 | 2012 | Glioma | Multiple tyrosine kinases | Imatinib |
Erlotinib in Treating Patients with Recurrent Malignant Glioma or Recurrent or Progressive Meningioma | 00045110 | 2002 | 2017 | Glioma on EIADs | EGFR | erlotinib |
Erlotinib and Temozolomide with Radiation Therapy in Treating Patients with Glioblastoma Multiforme or Other Brain Tumors | 00039494 | 2002 | 2013 | GBM or Gliosarcoma | EGFR | Erlotinib |
A Phase II Exploratory, Multicentre, Open-label, Non-comparative Study of ZD1839 (Iressa) and Radiotherapy in the Treatment of Patients with Glioblastoma Multiforme | 00238797 | 2003 | 2011 | GBM | EGFR | Gefitinib |
Imatinib Mesylate in Treating Patients with Recurrent Brain Tumor | 00049127 | 2003 | 2019 | Adult glioma | Multiple tyrosine kinases | Imatinib |
Everolimus and Gefitinib in Treating Patients with Progressive Glioblastoma Multiforme or Progressive Metastatic Prostate Cancer | 00085566 | 2004 | 2016 | Progressive GBM | mTOR, EGFR | everolimus + gefinib |
Erlotinib Compared with Temozolomide or Carmustine in Treating Patients with Recurrent Glioblastoma Multiforme | 00086879 | 2004 | 2017 | GBM | EGFR | erlotinib + carmustine + TMZ |
Sorafenib in Treating Patients with Recurrent or Progressive Malignant Glioma | 00093613 | 2004 | 2014 | GBM | PDGFR | Sorafenib |
Lapatinib in Treating Patients with Recurrent Glioblastoma Multiforme | 00099060 | 2004 | 2014 | Recurrent GBM | HER2, EGFR | lapatinib |
GW572016 to Treat Recurrent Malignant Brain Tumors | 00107003 | 2005 | 2018 | GBM or gliosarcoma | EGFR/HER2 | lapatinib |
Ph I Gleevec in Combo w RAD001 + Hydroxyurea for Pts w Recurrent MG | 613132 | 2005 | 2013 | Recurrent Malignant GBM | multiple tyrosine kinases, mTOR | imatinib + RAD001 + hydroxyurea |
Phase II Imatinib + Hydroxyurea in Treatment of Patients with Recurrent/Progressive Grade II Low-Grade Glioma (LGG) | 00615927 | 2006 | 2013 | Astrocytomas or oligodendromas | Multiple tyrosine kinases | Imatinib + hydroxyurea |
Oral Tarceva Study for Recurrent/Residual Glioblastoma Multiforme and Anaplastic Astrocytoma | 00301418 | 2006 | 2016 | GBM and Anaplastic Astrocytoma | EGFRvIII | Erlotinib |
Sorafenib Tosylate and Temsirolimus in Treating Patients with Recurrent Glioblastoma | 00329719 | 2006 | 2018 | Recurrent GBM | multiple kinases, mTOR | sorafenib + temsirolimus |
Sorafenib Combined with Erlotinib, Tipifarnib, or Temsirolimus in Treating Patients with Recurrent Glioblastoma Multiforme or Gliosarcoma | 00335764 | 2006 | 2018 | GBM or Gliosarcoma | PDGFR, EGFR, farnesyltransferase, mTOR | Sorafenib, erlotinib, tipifarnib, and temsirolimus |
Temsirolimus, Temozolomide, and Radiation Therapy in Treating Patients with Newly Diagnosed Glioblastoma Multiforme | 00316849 | 2006 | 2013 | GBM or Gliosarcoma | mTOR | temsirolimus + RT + TMZ |
Tumor Tissue Analysis in Patients Receiving Imatinib Mesylate for Malignant Glioma | 00401024 | 2006 | 2018 | Glioma | Multiple tyrosine kinases | Imatinib |
Erlotinib and Sorafenib in Treating Patients with Progressive or Recurrent Glioblastoma Multiforme | 00445588 | 2007 | 2016 | Recurrent GBM | ras-raf-MEK, mTOR | erlotinib + sorafenib |
Dasatinib in Treating Patients with Recurrent Glioblastoma Multiforme or Gliosarcoma | 00423735 | 2007 | 2019 | GBM or Gliosarcoma | Multiple Kinases | Dasatinib |
A Phase II Trial of Sutent (Sunitinib; SU011248) for Recurrent Anaplastic Astrocytoma and Glioblastoma | 00606008 | 2007 | 2012 | GBM or Anaplastic Astrocytoma | Multiple kinases | Sunitinib |
Ph II Erlotinib + Sirolimus for Pts w Recurrent Malignant Glioma Multiforme | 00672243 | 2007 | 2013 | GBM | EGFR + IL2 | Erlotinib + sirolimus |
Radiation Therapy and Temozolomide Followed by Temozolomide Plus Sorafenib for Glioblastoma Multiforme | 00544817 | 2007 | 2016 | GBM | PDGR | Sorafenib + TMZ + RT |
Sunitinib Tumor Levels in Patients Not on Enzyme-Inducing Anti-Epileptic Drugs Undergoing Debulking Surgery for Recurrent Glioblastoma | 00864864 | 2007 | 2016 | Recurrent GBM | multiple tyrosine kinases | sunitinib |
Sunitinib in Treating Patients with Recurrent Malignant Gliomas | 00499473 | 2007 | 2016 | Recurrent Malignant Gliomas | multiple kinases | sunitinib |
Ph. 2 Sorafenib + Protracted Temozolomide in Recurrent GBM | 00597493 | 2007 | 2013 | Recurrent GBM | PDGFR | Sorafenib + TMZ |
Ph I Dasatinib + Erlotinib in Recurrent MG | 00609999 | 2008 | 2014 | Recurrent Malignant Glioma | multiple kinases, EGFR | dasatinib + erlotinib |
Ph I SU011248 + Irinotecan in Treatment of Pts w MG | 00611728 | 2008 | 2014 | GBM | Multiple kinases | Sunitinib + Irinotecan |
BIBW 2992 (Afatinib) with or without Daily Temozolomide in the Treatment of Patients with Recurrent Malignant Glioma | 00727506 | 2008 | 2017 | Recurrent Grade III and IV glioma | ErbB | Afatinib |
A Study of Temsirolimus and Bevacizumab in Recurrent Glioblastoma Multiforme | 00800917 | 2008 | 2010 | recurrent primary GBM | mTOR, VEGF | temsirolimus + bevacizumab |
Everolimus in Treating Patients with Recurrent Low-Grade Glioma | 00823459 | 2009 | 2020 | Low-Grade Glioma | mTOR | everolimus |
Sorafenib in Newly Diagnosed High Grade Glioma | 00884416 | 2009 | 2014 | Newly Diagnosed High Grade Glioma | Multiple Kinases | sorafenib + TMZ + RT |
Everolimus, Temozolomide, and Radiation Therapy in Treating Patients with Newly Diagnosed Glioblastoma | 00553150 | 2009 | 2020 | Grade IV gliomas | mTOR | everolimus + TMZ |
Study of Sunitinib Before and During Radiotherapy in Newly Diagnosed Biopsy-only Glioblastoma Patients | 01100177 | 2009 | 2013 | GBM | Multiple kinases | Sunitinib |
Dasatinib or Placebo, Radiation Therapy, and Temozolomide in Treating Patients with Newly Diagnosed Glioblastoma Multiforme | 00869401 | 2009 | 2020 | GBM | Multiple kinases | TMZ + RT +/− dasatinib |
Open Label Trial to Explore Safety of Combining Afatinib (BIBW 2992) and Radiotherapy with or without Temozolomide in Newly Diagnosed Glioblastoma Multiform | 00977431 | 2009 | 2019 | GBM | EGFR | afatinib + RT + TMZ |
Radiation Therapy and Temsirolimus or Temozolomide in Treating Patients with Newly Diagnosed Glioblastoma | 01019434 | 2009 | 2018 | GBM | mTOR | temsirolimus + TMZ |
Temsirolimus and Perifosine in Treating Patients with Recurrent or Progressive Malignant Glioma | 01051557 | 2010 | 2021 | Glioma | mTOR | perifosine + temsirolimus |
A Study in Subjects with Recurrent Malignant Glioma | 01137604 | 2010 | 2022 | Recurrent Malignant Gliomas | multiple tyrosine kinase inhibitor, VEGF | lenvatinib + bevacizumab |
Bafetinib in Treating Patients with Recurrent High-Grade Glioma or Brain Metastases | 01234740 | 2010 | 2018 | Glioma or brain met | ABL1 | Bafetinib |
Everolimus, Temozolomide, and Radiation Therapy in Treating Patients with Newly Diagnosed Glioblastoma Multiforme | 01062399 | 2010 | 2022 | Newly Diagnosed GBM | mTOR | everolimus + RT + TMZ |
EGFR Inhibition Using Weekly Erlotinib for Recurrent Malignant Gliomas | 01257594 | 2011 | 2023 | Glioma | EGFR | Erlotinib |
AZD8055 for Adults with Recurrent Gliomas | 01316809 | 2011 | 2019 | Recurrent gliomas | mTOR | AZD8055 |
Phase I-II Everolimus and Sorafenib in Recurrent High-Grade Gliomas | 01434602 | 2012 | 2022 | GBM or anaplastic gliomas | mTOR1/2 + PDGFR | everolimus + sorafenib |
Lapatinib with Temozolomide and Regional Radiation Therapy for Patients with Newly-Diagnosed Glioblastoma Multiforme | 01591577 | 2012 | 2022 | Newly-Diagnosed GBM Multiforme | EGFR | lapatinib + TMZ |
Sorafenib, Valproic Acid, and Sildenafil in Treating Patients with Recurrent High-Grade Glioma | 01817751 | 2013 | 2023 | Recurrent High-Grade Glioma PDGFRa+ | PDGFRA | kinase inhibitor Sorafenib + Valproic acid + Sildenafil |
Lapatinib Ditosylate Before Surgery in Treating Patients with Recurrent High-Grade Glioma | 02101905 | 2014 | 2023 | EGFR Amplified Recurrent High-Grade Glioma | EGFR | Lapatinib |
Study to Evaluate Safety and Activity of Crizotinib with Temozolomide and Radiotherapy in Newly Diagnosed Glioblastoma | 02270034 | 2014 | 2022 | GBM | ALK | crizotinib |
Perifosine and Torisel (Temsirolimus) for Recurrent/Progressive Malignant Gliomas | 02238496 | 2014 | 2023 | Recurrent Glioma | mTOR | Temsirolimus, Perifostine |
Study of LY2228820 with Radiotherapy Plus Concomitant TMZ in the Treatment of Newly Diagnosed Glioblastoma | 02364206 | 2015 | 2019 | GBM | p38 MAPK | LY2228820 |
Study of Tesevatinib Monotherapy in Patients with Recurrent Glioblastoma | 02844439 | 2016 | 2021 | GBM | EGFR, VEGFR, HER2 | Tesevatinib |
Dabrafenib and/or Trametinib Rollover Study | 03340506 | 2017 | 2023 | High Grade Glioma | B-Raf, MEKi | dabrafenib + trametinib |
Ruxolitinib with Radiation and Temozolomide for Grade III Gliomas and Glioblastoma | 03514069 | 2018 | 2023 | Grade III Gliomas and GBM | JAK/STAT | Ruxolitinib + RT +TMZ |
A Trial of Ipatasertib in Combination with Atezolizumab | 03673787 | 2018 | 2022 | GBM | AKT, PD-L1 | Ipatasertib, Atezolizumab |
18F-FDG PET and Osimertinib in Evaluating Glucose Utilization in Patients with EGFR Activated Recurrent Glioblastoma | 03732352 | 2018 | 2023 | EGFR Activated Recurrent GBM | EGFR | Osimertinib |
9-ING-41 in Patients with Advanced Cancers | 03678883 | 2019 | 2023 | Malignant glioma | GSK-3β | 9-ING-41 |
Nedisertib and Radiation Therapy, Followed by Temozolomide for the Treatment of Patients with Newly Diagnosed MGMT Unmethylated Glioblastoma or Gliosarcoma | 04555577 | 2020 | 2022 | Newly Diagnosed MGMT Unmethylated GBM or Gliosarcoma | DNA-dependent protein kinase (DNA-PK) | Nedisertib + RT |
Tofacitinib in Recurrent GBM Patients | 05326464 | 2022 | 2023 | Recurrent GBM | JAK | Tofacitinib |
DETERMINE Trial Treatment Arm 5: Vemurafenib in Combination with Cobimetinib in Adult Patients with BRAF Positive Cancers. | 05768178 | 2023 | 2023 | Glioma | BRAF V600 | Vemurafenib + Cobimetinib |
Superselective Intra-arterial Cerebral Infusion of Temsirolimus in HGG | 05773326 | 2023 | 2023 | recurrent high-grade glioma (grade 3 or 4 per WHO criteria) | mTOR | Temsirolimus |
Microenvironmental Targets (angiogenesis, cell-cell adhesion, iron/cation regulation) | ||||||
Gefitinib Plus Temozolomide in Treating Patients with Malignant Primary Glioma | 00027625 | 2002 | 2018 | Malignant Primary Glioma | EGFR | gefitinib + TMZ |
Safety and Efficacy Study of Tarceva, Temodar, and Radiation Therapy in Patients with Newly Diagnosed Brain Tumors | 00187486 | 2004 | 2017 | GBM or Gliosarcoma | EGFR | erlotinib + TMZ |
Erlotinib and Temsirolimus in Treating Patients with Recurrent Malignant Glioma | 00112736 | 2005 | 2015 | Recurrent Malignant Glioma | EGFR, mTOR | erlotinib + temsirolimus |
Temozolomide and Radiation Therapy with or without Vatalanib in Treating Patients with Newly Diagnosed Glioblastoma Multiforme | 00128700 | 2005 | 2012 | GBM | VEGFR | vatalanib + TMZ |
Imatinib Mesylate, Vatalanib, and Hydroxyurea in Treating Patients with Recurrent or Relapsed Malignant Glioma | 00387933 | 2005 | 2015 | Recurrent or Relapsed Malignant Glioma | VEGF, multiple tyrosine kinases | imatinib + vatalanib + hydroxyurea |
Cetuximab, Bevacizumab and Irinotecan for Patients with Malignant Glioblastomas | 00463073 | 2006 | 2008 | Malignant GBM | VEGF, EGFR | bevacizumab + cetuximab + irinotecan |
PTK787/ZK 222584 in Combination with Temozolomide and Radiation in Patients with Glioblastoma Taking Enzyme-Inducing Anti-Epileptic Drugs | 00385853 | 2006 | 2013 | GBM | VEGF | PTK787/ZK (volitinib) + TMZ + RT |
Pazopanib In Combination with Lapatinib in Adult Patients with Relapsed Malignant Glioma | 00350727 | 2006 | 2013 | Recurrent Glioma | VEGFR, HER2 | pazopanib and lapatinib |
Phase (Ph) II Bevacizumab + Erlotinib for Patients (Pts) with Recurrent Malignant Glioma (MG) | 00671970 | 2007 | 2013 | Recurrent Malignant Gliomas | EGFR, VEGF | erlotinib + bevacizumab |
Bevacizumab and Cediranib Maleate in Treating Patients with Metastatic or Unresectable Solid Tumor, Lymphoma, Intracranial Glioblastoma, Gliosarcoma or Anaplastic Astrocytoma | 00458731 | 2007 | 2014 | Metastatic GBM, Gliosarcoma, or Anaplastic Astrocytoma | VEGF | bevacizumab + cediranib maleate |
Study of Bevacizumab Plus Temodar and Tarceva in Patients with Glioblastoma or Gliosarcoma | 00525525 | 2007 | 2014 | GBM or Gliosarcoma | VEGF + EGFR | bevacizumab + erlotinib + TMZ |
Ph I Zactima + Imatinib Mesylate and Hydroxyurea for Pts w Recurrent Malignant Glioma | 00613054 | 2007 | 2012 | Recurrent Malignant Glioma | VEGFR, PI3KT, EGFR, PDGFR | Zactima + imatinib + hydroxyurea |
Cediranib, Temozolomide, and Radiation Therapy in Treating Patients with Newly Diagnosed Glioblastoma | 00662506 | 2008 | 2017 | GBM or Gliosarcoma | VEGFR | Cediranib |
Bevacizumab and Sorafenib in Treating Patients with Recurrent Glioblastoma Multiforme | 00621686 | 2008 | 2018 | Recurrent GBM | VEGF + multiple tyrosine kinases | bevacizumab + sorafenib |
RT, Temozolomide, and Bevacizumab Followed by Bevacizumab/Everolimus in First-line Treatment of GBM | 00805961 | 2009 | 2021 | GBM | VEGF, mTOR1/2 | Bevacizumab + Everolimus + RT + TMZ |
Afatinib (BIBW 2992) QTcF Trial in Patients with Relapsed or Refractory Solid Tumours | 00875433 | 2009 | 2013 | Relapsed or Refractory Solid Tumours (GBM and brain metastases) | EGFR | Afatinib |
Bevacizumab and Erlotinib After Radiation Therapy and Temozolomide in Treating Patients with Newly Diagnosed Glioblastoma Multiforme or Gliosarcoma | 00720356 | 2009 | 2018 | GBM | VEGF + EGFR | Bevacizumab + Erlotinib |
Dasatinib and Bevacizumab in Treating Patients with Recurrent or Progressive High-Grade Glioma or Glioblastoma Multiforme | 00892177 | 2009 | 2019 | GBM | VEGF + multiple kinases | Bevacizumab + dasatinib |
Temozolomide and Radiation Therapy with or without Cediranib Maleate in Treating Patients with Newly Diagnosed Glioblastoma | 01062425 | 2010 | 2022 | GBM | VEGFR | TMZ + RT +/− cediranib |
Cediranib Maleate and Cilengitide in Treating Patients with Progressive or Recurrent Glioblastoma | 00979862 | 2010 | 2015 | GBM or Gliosarcoma | VEGFR, integrins | Cediranib and Cilengitide |
Gamma-Secretase Inhibitor RO4929097 and Cediranib Maleate in Treating Patients with Advanced Solid Tumors | 01131234 | 2010 | 2014 | Gliomas and Brain Mets | VEGFR and gamma secretase | Cediranib + RO4929097 |
A Study of Avastin (Bevacizumab) and Irinotecan Versus Temozolomide Radiochemistry in Patients with Glioblastoma | 00967330 | 2010 | 2015 | Newly diagnosed GBM, non-methylated MGMT promoter | VEGF | bevacizumab + irinotecan + TMZ + RT |
BIBF 1120 in Recurrent Glioblastoma Multiforme | 01251484 | 2011 | 2012 | Recurrent GBM | VEGFR | Cediranib |
BIBF 1120 for Recurrent High-Grade Gliomas | 01380782 | 2012 | 2014 | GBM or Anaplastic Gliomas | VEGFR/PDGFR/FGFR | Nintedanib |
CAR T Cell Receptor Immunotherapy Targeting EGFRvIII for Patients with Malignant Gliomas Expressing EGFRvIII | 01454596 | 2012 | 2019 | Malignant Gliomas Expressing EGFRvIII | EGFRvIII | CAR T cell targeting EGFRvIII |
Tivozanib for Recurrent Glioblastoma | 01846871 | 2013 | 2019 | GBM | VEGFR | Tivozanib |
A Randomized Phase II Clinical Trial on the Efficacy of Axitinib as a Monotherapy or in Combination with Lomustine for the Treatment of Patients with Recurrent Glioblastoma | 01562197 | 2014 | 2019 | GBM | VEGFR | Axitinib |
Apatinib in Recurrent or Refractory Intracranial Central Nervous System Malignant Tumors | 03660761 | 2016 | 2019 | GBM | VEGFR2 | Apatinib + TMZ |
Safety Study of Afatinib for Brain Cancer | 02423525 | 2016 | 2022 | Recurrent or Progressive Brain Cancer | VEGF | afatinib |
Clinical Trial on the Combination of Avelumab and Axitinib for the Treatment of Patients with Recurrent Glioblastoma | 03291314 | 2017 | 2019 | Recurrent GBM | VEGFR, PD1L | Axitinib + Avelumab |
Prediction of Therapeutic Response of Apatinib in Recurrent Gliomas | 04216550 | 2018 | 2021 | Recurrent Gliomas | VEGFR-2 | Apatinib |
Ketoconazole Before Surgery in Treating Patients with Recurrent Glioma or Breast Cancer Brain Metastases | 03796273 | 2019 | 2022 | Recurrent Glioma or Breast Cancer Brain Metastases | tGLI1 | ketoconazole |
Anlotinib Combined with STUPP for MGMT Nonmethylated Glioblastoma | 04725214 | 2021 | 2021 | MGMT nonmethylated GBM | VEGF | anlotinib |
Cell Cycle/Apoptosis/Transcription Pathways | ||||||
Study of the Poly (ADP-ribose) Polymerase-1 (PARP-1) Inhibitor BSI-201 in Patients with Newly Diagnosed Malignant Glioma | 00687765 | 2008 | 2022 | Newly diagnosed Malignant Glioma | PARP-1 | iniparib (BSI-201) + TMZ + RT |
Virus DNX2401 and Temozolomide in Recurrent Glioblastoma | 01956734 | 2013 | 2017 | GBM | Rb | DNX2401 |
Trial of Ponatinib in Patients with Bevacizumab-Refractory Glioblastoma | 02478164 | 2013 | 2018 | GBM | cKIT | Ponatinib |
Safety and Efficacy of PD0332991 (Palbociclib), a Cyclin-dependent Kinase 4 and 6 Inhibitor, in Patients with Oligodendroglioma or Recurrent Oligoastrocytoma Anaplastic with the Activity of the Protein RB Preserved | 02530320 | 2015 | 2020 | Oligodendroma and oligoastrocytoma | CDK4/6 | Palbociclib |
Zotiraciclib (TG02) Plus Dose-Dense or Metronomic Temozolomide Followed by Randomized Phase II Trial of Zotiraciclib (TG02) Plus Temozolomide Versus Temozolomide Alone in Adults with Recurrent Anaplastic Astrocytoma and Glioblastoma | 02942264 | 2016 | 2021 | Glioma | CDK9 | dinaciclib + TMZ |
Phase I/IIa Study of Concomitant Radiotherapy with Olaparib and Temozolomide in Unresectable High Grade Gliomas Patients | 03212742 | 2017 | 2023 | Unresectable High Grade Glioma | poly(ADP-ribose) polymerase (PARP) inhibitor | olaparib + TMZ |
A Phase 0/II Study of Ribociclib (LEE011) in Combination with Everolimus in Preoperative Recurrent High-Grade Glioma Patients Scheduled for Resection | 03834740 | 2018 | 2023 | Preoperative Recurrent High-Grade Glioma | CDK4/6, mTOR | ribociclib + everolimus |
BGB-290 and Temozolomide in Treating Isocitrate Dehydrogenase (IDH)1/2-Mutant Grade I–IV Gliomas | 03749187 | 2019 | 2023 | Isocitrate Dehydrogenase (IDH)1/2-Mutant Grade I-IV Gliomas | Poly (ADP-Ribose) polymerase (PARP) inhibitor BGB-290 | BGB-29 + TMZ |
Anticancer Therapeutic Vaccination Using Telomerase-derived Universal Cancer Peptides in Glioblastoma | 04280848 | 2020 | 2022 | Primary GBM | TERT | UCPVax + anti-cancer vaccine based on the telomerase-derived helper peptides |
B7-H3 CAR-T for Recurrent or Refractory Glioblastoma | 04077866 | 2023 | 2022 | Recurrent or refractory GBM | B7-H3 | B7-H3 CAR-T |
Immunotherapy Pathways | ||||||
A Dose Escalation and Cohort Expansion Study of Anti-CD27 (Varlilumab) and Anti-PD-1 (Nivolumab) in Advanced Refractory Solid Tumors | 02335918 | 2015 | 2019 | Refractory GBM | CD27, PD-1 | varlilumab + nivolumab |
Ipilimumab and/or Nivolumab in Combination with Temozolomide in Treating Patients with Newly Diagnosed Glioblastoma or Gliosarcoma | 02311920 | 2015 | 2023 | Newly diagnosed GBM | CTLA-4, PD-1 | ipilimumab and/or nivolumab + TMZ |
Study of Cabiralizumab in Combination with Nivolumab in Patients with Selected Advanced Cancers | 02526017 | 2015 | 2022 | Malignant Glioma | CSF1R TAMs, PD-1 | cabiralizumab + nivolumab |
Intra-tumoral Ipilimumab Plus Intravenous Nivolumab Following the Resection of Recurrent Glioblastoma | 03233152 | 2016 | 2020 | Recurrent GBM | CTLA-4, PD1 | ipilimumab + nivolumab |
Nivolumab for Recurrent or Progressive IDH Mutant Gliomas | 03557359 | 2018 | 2022 | Recurrent or Progressive IDH Mutant Gliomas | PD-1 | Nivolumab |
Efficacy and Safety of Pembrolizumab (MK-3475) Plus Lenvatinib (E7080/MK-7902) in Previously Treated Participants with Select Solid Tumors (MK-7902-005/E7080-G000-224/LEAP-005) | 03797326 | 2019 | 2022 | GBM | PD-1, multiple kinase inhibitors | Pembrolizumab, Lenvatinib |
Efficacy of Nivolumab for Recurrent IDH Mutated High-Grade Gliomas | 03925246 | 2019 | 2021 | Recurrent IDH Mutated High-Grade Gliomas | PD-1 | nivolumab |
Trial of Anti-Tim-3 in Combination with Anti-PD-1 and SRS in Recurrent GBM | 03961971 | 2020 | 2023 | Recurrent GBM | TIM-3, PD-1 | Sabatolimab, high-affinity, humanized, IgG4 (S228P) antibody + Spartalizumab + RT |
Neoadjuvant Carilizumab and Apatinib for Recurrent High-Grade Glioma | 04588987 | 2020 | 2020 | Recurrent High-Grade Glioma | PD-1, TKI | carilizumab + apatinib |
Ivosidenib (AG-120) with Nivolumab in IDH1 Mutant Tumors | 04056910 | 2021 | 2023 | IDH1 Mutant Tumors | IDH1, PD1 | ivosidenib |
Other | ||||||
A Phase 2b Clinical Study with a Combination Immunotherapy in Newly Diagnosed Patients with Glioblastoma | 04485949 | 2023 | 2023 | Newly diagnosed GBM | IGF1 | IGV-001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzyka, L.; Goff, N.K.; Choudhary, N.; Koltz, M.T. Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies. Int. J. Mol. Sci. 2023, 24, 10456. https://doi.org/10.3390/ijms241310456
Muzyka L, Goff NK, Choudhary N, Koltz MT. Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies. International Journal of Molecular Sciences. 2023; 24(13):10456. https://doi.org/10.3390/ijms241310456
Chicago/Turabian StyleMuzyka, Logan, Nicolas K. Goff, Nikita Choudhary, and Michael T. Koltz. 2023. "Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies" International Journal of Molecular Sciences 24, no. 13: 10456. https://doi.org/10.3390/ijms241310456
APA StyleMuzyka, L., Goff, N. K., Choudhary, N., & Koltz, M. T. (2023). Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies. International Journal of Molecular Sciences, 24(13), 10456. https://doi.org/10.3390/ijms241310456