The Relationship between All-Cause Natural Mortality and Copy Number of Mitochondrial DNA in a 15-Year Follow-Up Study
Abstract
:1. Introduction
2. Results
2.1. General Baseline Characteristics of the Studied Groups
2.2. Association between Baseline mtDNA-CN and Risk of Non-External Death
2.3. Association between Baseline mtDNA-CN and Risk of of Cause-Specific Death
2.4. Other Sensitivity Analyses
3. Discussion
Study Limitations and Strengths
4. Materials and Methods
4.1. Study Population and Design
4.2. Sample Selection
4.3. Data Collection
4.4. The Measurement of mtDNA-CN
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables: Working Paper No. ESA/P/WP/248. 2017. Available online: https://population.un.org/wpp/publications/files/wpp2017_keyfindings.pdf (accessed on 20 February 2023).
- World Health Organization. [Ageing]—Mortality/Causes of Death. Available online: https://www.who.int/data/gho/data/themes/topics/topic-details/mca/ageing---mortality-causes-of-death (accessed on 15 March 2023).
- Cheng, X.; Yang, Y.; Schwebel, D.C.; Liu, Z.; Li, L.; Cheng, P.; Ning, P.; Hu, G. Population ageing and mortality during 1990–2017: A global decomposition analysis. PLoS Med. 2020, 17, e1003138. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Health Estimates 2019: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019. 2020. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed on 15 March 2023).
- Centers for Disease Control and Prevention, National Center for Health Statistics. About Underlying Cause of Death, 2018–2021, Single Race. 2021. Available online: http://wonder.cdc.gov/ucd-icd10-expanded.html (accessed on 15 March 2023).
- Filograna, R.; Mennuni, M.; Alsina, D.; Larsson, N.-G. Mitochondrial DNA copy number in human disease: The more the better? FEBS Lett. 2021, 595, 976–1002. [Google Scholar] [CrossRef]
- Sevini, F.; Giuliani, C.; Vianello, D.; Giampieri, E.; Santoro, A.; Biondi, F.; Garagnani, P.; Passarino, G.; Luiselli, D.; Capri, M.; et al. mtDNA mutations in human aging and longevity: Controversies and new perspectives opened by high-throughput technologies. Exp. Gerontol. 2014, 56, 234–244. [Google Scholar] [CrossRef]
- Cui, H.; Kong, Y.; Zhang, H. Oxidative stress, mitochondrial dysfunction, and aging. J. Signal Transduct. 2012, 2012, 46354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühl, I.; Miranda, M.; Atanassov, I.; Kuznetsova, I.; Hinze, Y.; Mourier, A.; Filipovska, A.; Larsson, N.G. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. eLife 2017, 6, e30952. [Google Scholar] [CrossRef] [PubMed]
- Knez, J.; Winckelmans, E.; Plusquin, M.; Thijs, L.; Cauwenberghs, N.; Gu, Y.; Staessen, J.A.; Nawrot, T.S.; Kuznetsova, T. Correlates of peripheral blood mitochondrial DNA content in a general population. Am. J. Epidemiol. 2016, 183, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Mengel-From, J.; Thinggaard, M.; Dalgard, C.; Kyvik, K.O.; Christensen, K.; Christiansen, L. Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly. Hum. Genet. 2014, 133, 1149–1159. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Wang, Y.; Ye, K.; Picard, M.; Gu, Z. Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genom. 2017, 18, 890. [Google Scholar] [CrossRef] [Green Version]
- Ashar, F.N.; Moes, A.; Moore, A.Z.; Grove, M.L.; Chaves, H.M.; Coresh, J.; Newman, A.B.; Matteini, A.M.; Bandeen-Roche, K.; Boerwinkle, E.; et al. Association of mitochondrial DNA levels with frailty and all-cause mortality. J. Mol. Med. 2015, 93, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Koller, A.; Fazzini, F.; Lamina, C.; Rantner, B.; Kollerits, B.; Stadler, M.; Klein-Weigel, P.; Fraedrich, G.; Kronenberg, F. Mitochondrial DNA copy number is associated with all-cause mortality and cardiovascular events in patients with peripheral arterial disease. J. Intern. Med. 2020, 287, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, N.; Beekman, M.; Deelen, J.; van den Akker, E.B.; de Craen, A.J.M.; Slagboom, P.E.; ’t Hart, L.M. Low mitochondrial DNA content associates with familial longevity: The Leiden Longevity Study. Age 2014, 36, 9629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.-H.; Lu, X.; Wu, H.; Cai, W.-W.; Yang, L.-Q.; Xu, L.-Y.; Sun, H.-P.; Kong, Q.-P. Mitochondrial DNA content contributes to healthy aging in Chinese: A study from nonagenarians and centenarians. Neurobiol. Aging 2014, 35, 1779e1-4. [Google Scholar] [CrossRef]
- Ashar, F.N.; Zhang, Y.; Longchamps, R.J.; Lane, J.; Moes, A.; Grove, M.L.; Mychaleckyj, J.C.; Taylor, K.D.; Coresh, J.; Rotter, J.I.; et al. Association of mitochondrial DNA copy number with cardiovascular disease. JAMA Cardiol. 2017, 2, 1247–1255. [Google Scholar] [CrossRef]
- Zhang, Y.; Guallar, E.; Ashar, F.N.; Longchamps, R.J.; Castellani, C.A.; Lane, J.; Grove, M.L.; Coresh, J.; Sotoodehnia, N.; Ilkhanoff, L.; et al. Association between mitochondrial DNA copy number and sudden cardiac death: Findings from the Atherosclerosis Risk in Communities study (ARIC). Eur. Heart J. 2017, 38, 3443–3448. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.; Li, L.; Demello, C.; Guo, D.; Jaber, B.L.; Pereira, B.J.G.; Balakrishnan, V.S.; HEMO Study Group. Mitochondrial DNA injury and mortality in hemodialysis patients. J. Am. Soc. Nephrol. 2009, 20, 189–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.C.; Lee, W.C.; Liao, S.C.; Lee, L.-C.; Su, Y.-J.; Lee, C.-T.; Chen, J.-B. Mitochondrial DNA copy number correlates with oxidative stress and predicts mortality in nondiabetic hemodialysis patients. J. Nephrol. 2011, 24, 351–358. [Google Scholar] [CrossRef]
- Yoon, C.Y.; Park, J.T.; Kee, Y.K.; Han, S.G.; Han, I.M.; Kwon, Y.E.; Park, K.S.; Lee, M.J.; Han, S.H.; Kang, S.-W.; et al. Low mitochondrial DNA copy number is associated with adverse clinical outcomes in peritoneal dialysis patients. Medicine 2016, 95, e2717. [Google Scholar] [CrossRef]
- Hertweck, K.L.; Dasgupta, S. The Landscape of mtDNA Modifications in Cancer: A Tale of Two Cities. Front. Oncol. 2017, 7, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reznik, E.; Miller, M.L.; Senbabaoglu, Y.; Riaz, N.; Sarungbam, J.; Tickoo, S.K.; Al-Ahmadie, H.A.; Lee, W.; Seshan, V.E.; Hakimi, A.A.; et al. Mitochondrial DNA copy number variation across human cancers. eLife 2016, 5, e10769. [Google Scholar] [CrossRef]
- Li, Y.; Sundquist, K.; Wang, X.; Zhang, N.; Hedelius, A.; Sundquist, J.; Memon, A.A. Association of Mitochondrial DNA Copy Number and Telomere Length with Prevalent and Incident Cancer and Cancer Mortality in Women: A Prospective Swedish Population-Based Study. Cancers 2021, 13, 3842. [Google Scholar] [CrossRef]
- Stefler, D.; Malyutina, S.; Maximov, V.; Orlov, P.; Ivanoschuk, D.; Nikitin, Y.; Gafarov, V.; Ryabikov, A.; Voevoda, M.; Bobak, M.; et al. Leukocyte telomere length and risk of coronary heart disease and stroke mortality: Prospective evidence from a Russian cohort. Sci. Rep. 2018, 8, 16627. [Google Scholar] [CrossRef]
- Maximov, V.; Malyutina, S.; Orlov, P.; Ivanoschuk, D.; Mikhailova, S.V.; Shapkina, M.Y.; Hubacek, J.; Holmes, M.; Bobak, M.; Voevoda, M. Copy Number of the Mitochondrial DNA of Leucocytes as an Aging Marker and Risk Factors for the Development of Age-Related Diseases in Humans. Adv. Gerontol. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Malyutina, S.; Chervova, O.; Tillmann, T.; Maximov, V.; Ryabikov, A.; Gafarov, V.; Hubacek, J.A.; Pikhart, H.; Beck, S.; Bobak, M. The Relationship between Epigenetic Age and Myocardial Infarction/Acute Coronary Syndrome in a Population-Based Nested Case-Control Study. J. Pers. Med. 2022, 12, 110. [Google Scholar] [CrossRef] [PubMed]
- Malyutina, S.; Maximov, V.; Chervova, O.; Orlov, P.; Voloshin, V.; Ryabikov, A.; Voevoda, M.; Nikitenko, T. Leukocyte telomere length and mitochondrial DNA copy number association with colorectal cancer risk in an aging population. Glob. Transl. Med. 2023, 2, 184. [Google Scholar] [CrossRef]
- Chervova, O.; Chernysheva, E.; Panteleeva, K.; Widayati, T.A.; Hrbkova, N.; Schneider, J.; Maximov, V.; Ryabikov, A.; Tillmann, T.; Pikhart, H.; et al. Evaluation of Epigenetic Age Acceleration Scores and Their Associations with CVD-Related Phenotypes in a Population Cohort. Biology 2023, 12, 68. [Google Scholar] [CrossRef] [PubMed]
- Sundquist, K.; Sundquist, J.; Wang, X.; Palmer, K. and Memon, A.A. Baseline mitochondrial DNA copy number and heart failure incidence and its role in overall and heart failure mortality in middle-aged women. Front. Cardiovasc. Med. 2022, 9, 1012403. [Google Scholar] [CrossRef] [PubMed]
- Longchamps, R.J.; Yang, S.Y.; Castellani, C.A.; Shi, W.; Lane, J.M.; Grove, L.; Bartz, T.M.; Sarnowski, C.; Liu, C.; Burrows, K.; et al. Genome-wide analysis of mitochondrial DNA copy number reveals loci implicated in nucleotide metabolism, platelet activation, and megakaryocyte proliferation. Hum. Genet. 2022, 141, 127–146. [Google Scholar] [CrossRef]
- Moore, A.Z.; Ding, J.; Tuke, M.A.; Wood, A.R.; Bandinelli, S.; Frayling, T.M.; Ferrucci, L. Influence of cell distribution and diabetes status on the association between mitochondrial DNA copy number and aging phenotypes in the InCHIANTI study. Aging Cell 2018, 17, e12683. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Tan, L.; Shen, R.; Zhang, L.; Zuo, H.; Wang, D.W. Decreased Peripheral Mitochondrial DNA Copy Number is Associated with the Risk of Heart Failure and Long-term Outcomes. Medicine 2016, 95, e3323. [Google Scholar] [CrossRef]
- Yue, P.; Jing, S.; Liu, L.; Ma, F.; Zhang, Y.; Wang, C.; Duan, H.; Zhou, K.; Hua, Y.; Wu, G.; et al. Association between mitochondrial DNA copy number and cardiovascular disease: Current evidence based on a systematic review and meta-analysis. PLoS ONE 2018, 13, e0206003. [Google Scholar] [CrossRef]
- Huang, B.; Gao, Y.T.; Shu, X.O.; Wen, W.; Yang, G.; Li, G.; Courtney, R.; Ji, B.T.; Li, H.L.; Purdue, M.P.; et al. Association of leukocyte mitochondrial DNA copy number with colorectal cancer risk: Results from the Shanghai Women’s Health Study Cancer. Epidemiol. Biomark. Prev. 2014, 23, 2357–2365. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.M.; Baccarelli, A.; Shu, X.O.; Gao, Y.T.; Ji, B.T.; Yang, G.; Li, H.-L.; Hoxha, M.; Dioni, L.; Rothman, N.; et al. Mitochondrial DNA copy number and risk of gastric cancer: A report from the Shanghai Women’s Health Study. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1944–1949. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhang, L.; Yu, X.; Zhou, H.; Luo, Y.; Wang, W.; Wang, L. Clinical application of plasma mitochondrial DNA content in patients with lung cancer. Oncol. Lett. 2018, 16, 7074–7081. [Google Scholar] [CrossRef] [PubMed]
- Mi, J.; Tian, G.; Liu, S.; Li, X.; Ni, T.; Zhang, L.; Wang, B. The Relationship Between Altered Mitochondrial DNA Copy Number and Cancer Risk: A Meta-Analysis. Sci. Rep. 2015, 5, 10039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, N.; Wen, S.; Sun, X.; Fang, Q.; Huang, L.; Liu, S.; Li, W.; Qiu, M. Elevated mitochondrial DNA copy number in peripheral blood and tissue predict the opposite outcome of cancer: A meta-analysis. Sci. Rep. 2016, 6, 37404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Osch, F.H.M.; Voetsm, A.M.; Schouten, L.J.; Gottschalk, R.W.H.; Simons, C.C.J.M.; Vanengeland, M.; Lentjes, M.H.F.M.; Vandenbrandt, A.; Smeets, H.J.M.; Weijenberg, M.P. Mitochondrial DNA copy number in colorectal cancer: Between tissue comparisons, clinicopathological characteristics and survival. Carcinogenesis 2015, 36, 1502–1510. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.N.; Czajka, A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 2013, 13, 481–492. [Google Scholar] [CrossRef]
- Yang, K.C.; Bonini, M.G.; Dudley, S.C., Jr. Mitochondria and arrhythmias. Free Radic. Biol. Med. 2014, 71, 351–361. [Google Scholar] [CrossRef] [Green Version]
- Muszynski, P.; Bonda, T.A. Mitochondrial Dysfunction in Atrial Fibrillation—Mechanisms and Pharmacological Interventions. J. Clin. Med. 2021, 10, 2385. [Google Scholar] [CrossRef]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef] [Green Version]
- Oka, T.; Hikoso, S.; Yamaguchi, O.; Taneike, M.; Takeda, T.; Tamai, T.; Oyabu, J.; Murakawa, T.; Nakayama, H.; Nishida, K.; et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 2012, 485, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Kopinski, P.K.; Singh, L.N.; Zhang, S.; Lott, M.T.; Wallace, D.C. Mitochondrial DNA variation and cancer. Nat. Rev. Cancer 2021, 21, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.L.M.; Whitehall, J.C.; Bradshaw, C.; Gay, D.; Robertson, F.; Blain, A.P.; Hudson, G.; Pyle, A.; Houghton, D.; Hunt, M.; et al. Age-associated mitochondrial DNA mutations cause metabolic remodeling that contributes to accelerated intestinal tumorigenesis. Nat. Cancer. 2020, 1, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Guo, W.; Gu, X.; Guo, S.; Zhou, K.; Su, L.; Yuan, Q.; Liu, Y.; Guo, X.; Huang, Q.; et al. Mutational profiling of mtDNA control region reveals tumor-specific evolutionary selection involved in mitochondrial dysfunction. eBioMedicine 2022, 80, 104058. [Google Scholar] [CrossRef]
- Castellani, C.A.; Longchamps, R.J.; Sumpter, J.A.; Newcomb, C.E.; Lane, J.A.; Grove, M.L.; Bressler, J.; Brody, J.A.; Floyd, J.S.; Bartz, T.M.; et al. Mitochondrial DNA Copy Number (mtDNA-CN) Can Influence Mortality and Cardiovascular Disease via Methylation of Nuclear DNA CpGs. Genome Med. 2020, 12, 84. [Google Scholar] [CrossRef]
- Peasey, A.; Bobak, M.; Kubinova, R.; Malyutina, S.; Pajak, A.; Tamosiunas, A.; Pikhart, H.; Nicholson, A.; Marmot, M. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: Rationale and design of the HAPIEE study. BMC Public Health 2006, 6, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Ryden, L.; Standl, E.; Bartnik, M.; Van den Berghe, G.; Betteridge, J.; de Boer, M.-J.; Cosentino, F.; Jonsson, B.; Laakso, M.; Malmberg, K.; et al. Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: Executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Authors/Task Force Members. Eur. Heart J. 2007, 28, 88–136. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.L.; Kalco, S.R.; Cantor, C.R. Pulsed-field gel electrophoresis and the technology of large DNA molecules. In Genome Analysis: A Practical Approach; Davies, K.E., Ed.; IRL Press: Oxford, UK, 1988; pp. 41–72. ISBN 1-85221-110-5. [Google Scholar]
- Ajaz, S.; Czajka, A.; Malik, A. Accurate measurement of circulating mitochondrial DNA content from human blood samples using real-time quantitative PCR. Methods Mol. Biol. 2015, 1264, 117–131. [Google Scholar] [CrossRef]
- Venegas, V.; Halberg, M.C. Measurement of mitochondrial DNA copy number. Methods Mol. Biol. 2012, 837, 327–335. [Google Scholar] [CrossRef] [PubMed]
Covariates | Cases (All-Cause Death) | Controls | p-Value |
---|---|---|---|
Observed, n | 371 | 785 | |
Age at baseline, years (mean, SD) | 59.6 (6.96) | 55.7 (6.47) | <0.001 |
Women, n (%) | 167 (45.0) | 469 (59.7) | 0.009 |
Systolic blood pressure, mmHg (mean, SD) | 152.5 (27.58) | 137.6 (22.49) | <0.001 |
Diastolic blood pressure, mmHg (mean, SD) | 93.4 (14.56) | 88.2 (12.82) | <0.001 |
Heart rate, beats per min | 73.1 (12.17) | 70.1 (10.41) | <0.001 |
Body mass index, kg/m2(mean, SD) | 28.7 (5.58) | 28.0 (4.83) | 0.017 |
Waist/hip ratio, unit (mean, SD) | 0.91 (0.08) | 0.88 (0.08) | <0.001 |
Total cholesterol, mmol/L (mean, SD) | 6.41 (1.31) | 6.31 (1.22) | 0.172 |
LDL cholesterol, mmol/L (mean, SD) | 4.16 (1.15) | 4.08 (1.09) | 0.335 |
HDL cholesterol, mmol/L (mean, SD) | 1.54 (0.38) | 1.55 (0.34) | 0.565 |
TG, mmol/L (mean, SD) | 1.59 (0.90) | 1.47 (0.74) | 0.020 |
Glucose, plasma, mmol/L (mean, SD) | 6.27 (2.09) | 5.78 (1.08) | <0.001 |
Hypertension, n (%) | 273 (73.8) | 428 (54.5) | <0.001 |
HT treatment (among HT), n (%) | 121 (44.3) | 202 (47.2) | 0.457 |
Diabetes mellitus type 2, n (%) | 59 (15.9) | 45 (5.7) | <0.001 |
DM2 treatment (among DM2), n (%) | 18 (30.5) | 11 (24.4) | 0.494 |
Menopause (women), n (%) | 151 (90.4) | 355 (75.7) | <0.001 |
Smoking status, n (%) | <0.001 | ||
Present smoker | 140 (37.7) | 179 (22.8) | |
Former smoker | 44 (12.5) | 110 (14.0) | |
Never smoker | 187 (50.4) | 496 (63.2) | |
Frequency of drinking, n (%) | <0.001 | ||
5+/week | 18 (4.9) | 17 (2.2) | |
1–4/week | 85 (22.9) | 181 (23.1) | |
1–3/month | 86 (23.2) | 208 (26.5) | |
<1/month | 121 (32.6) | 308 (39.2) | |
Non-drinkers | 61 (16.4) | 71 (9.0) | |
Education, n (%) | <0.001 | ||
Primary | 50 (13.5) | 20 (2.5) | |
Vocational | 82 (22.1) | 188 (23.9) | |
Middle | 156 (42.0) | 293 (37.3) | |
High | 83 (22.4) | 284 (36.2) | |
Marital status, n (%) | 0.034 | ||
Single | 111 (29.9) | 189 (24.1) | |
Married | 260 (70.1) | 596 (75.9) | |
mtDNA-CN, unit | 1.24 (0.60) | 1.30 (0.49) | 0.098 |
Biomarker | n, Cases/ Controls | Model 1 | Model 2 | Model 3 |
---|---|---|---|---|
OR (95%CI) | OR (95%CI) | OR (95%CI) | ||
mtDNA-CN, unit per 1 decile | 371/785 | 1.08 (1.04–1.13) | 1.06 (1.01–1.12) | 1.06 (1.01–1.11) |
p-value for trends | <0.001 | 0.014 | 0.024 | |
Men * | ||||
mtDNA-CN, unit per 1 decile | 204/316 | 1.07 (1.01–1.15) | 1.05 (0.98–1.12) | 1.04 (0.97–1.12) |
p-value for trends | 0.023 | 0.192 | 0.252 | |
Women * | ||||
mtDNA-CN, unit per 1 decile | 167/469 | 1.09 (1.02–1.17) | 1.09 (1.01–1.17) | 1.08 (1.01–1.17) |
p-value for trends | 0.010 | 0.021 | 0.030 |
Biomarker | n, Cases/Controls | Tertiles | Absolute Difference T3-T2 T2-T1 | Model 1 | Model 2 | Model 3 |
---|---|---|---|---|---|---|
OR (95%CI) | OR (95%CI) | OR (95%CI) | ||||
All-cause death | ||||||
mtDNA-CN, unit | 371/785 | T3 (ref) | 1.0 | 1.0 | 1.0 | |
T2 | 0.51 | 2.35 (1.70–3.26) | 2.43 (1.71–3.47) | 2.50 (1.75–3.59) | ||
T1 | 0.45 | 1.59 (1.16–2.17) | 1.44 (1.03–2.02) | 1.36 (0.96–1.91) | ||
p-value for trends | 0.003 | 0.028 | 0.064 |
Biomarker | n, Cases/ Controls | Model 1 | Model 2 | Model 3 |
---|---|---|---|---|
OR (95%CI) | OR (95%CI) | OR (95%CI) | ||
Death from CVD | ||||
mtDNA-CN, unit per 1 decile | 189/785 | 1.02 (0.96–1.09) | 0.98 (0.92–1.05) | 0.96 (0.90–1.03) |
p-value for trends | 0.448 | 0.562 | 0.963 | |
Death from cancer | ||||
mtDNA-CN, unit per 1 decile | 138/785 | 1.20 (1.12–1.29) | 1.21 (1.13–1.31) | 1.20 (1.11–1.29) |
p-value for trends | <0.001 | <0.001 | <0.001 | |
Other death causes | ||||
mtDNA-CN, unit per 1 decile | 44/785 | 1.05 (0.94–1.17) | 1.00 (0.89–1.12) | 0.99 (0.88–1.13) |
p-value for trends | 0.431 | 0.945 | 0.995 |
Biomarker | n, Cases/ Controls | Tertiles | Model 1 | Model 2 | Model 3 |
---|---|---|---|---|---|
OR (95%CI) | OR (95%CI) | OR (95%CI) | |||
Death from CVD | |||||
mtDNA-CN, unit | 189/785 | T3 (ref) | 1.0 | 1.0 | 1.0 |
T2 | 1.96 (1.29–3.00) | 1.89 (1.17–3.04) | 1.92 (1.18–3.15) | ||
T1 | 1.25 (0.83–1.86) | 1.01 (0.64–1.59) | 0.87 (0.54–1.40) | ||
p-value for trends | 0.278 | 0.974 | 0.594 | ||
Death from cancer | |||||
mtDNA-CN, unit | 138/785 | T3 (ref) | 1.0 | 1.0 | 1.0 |
T2 | 3.13 (1.96–5.02) | 3.75 (2.27–6.21) | 3.66 (2.21–6.05) | ||
T1 | 2.32 (1.48–3.65) | 2.44 (1.52–3.92) | 2.29 (1.43–3.68) | ||
p-value for trends | <0.001 | <0.001 | <0.001 | ||
Other death causes | |||||
mtDNA-CN, unit | 44/785 | T3 (ref) | 1.0 | 1.0 | 1.0 |
T2 | 1.97 (0.90–4.31) | 1.45 (0.63–3.31) | 1.52 (0.65–3.54) | ||
T1 | 1.21 (0.59–2.48) | 0.91 (0.43–1.96) | 0.91 (0.41–2.03) | ||
p-value for trends | 0.614 | 0.798 | 0.806 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malyutina, S.; Maximov, V.; Chervova, O.; Orlov, P.; Ivanova, A.; Mazdorova, E.; Ryabikov, A.; Simonova, G.; Voevoda, M. The Relationship between All-Cause Natural Mortality and Copy Number of Mitochondrial DNA in a 15-Year Follow-Up Study. Int. J. Mol. Sci. 2023, 24, 10469. https://doi.org/10.3390/ijms241310469
Malyutina S, Maximov V, Chervova O, Orlov P, Ivanova A, Mazdorova E, Ryabikov A, Simonova G, Voevoda M. The Relationship between All-Cause Natural Mortality and Copy Number of Mitochondrial DNA in a 15-Year Follow-Up Study. International Journal of Molecular Sciences. 2023; 24(13):10469. https://doi.org/10.3390/ijms241310469
Chicago/Turabian StyleMalyutina, Sofia, Vladimir Maximov, Olga Chervova, Pavel Orlov, Anastasiya Ivanova, Ekaterina Mazdorova, Andrew Ryabikov, Galina Simonova, and Mikhail Voevoda. 2023. "The Relationship between All-Cause Natural Mortality and Copy Number of Mitochondrial DNA in a 15-Year Follow-Up Study" International Journal of Molecular Sciences 24, no. 13: 10469. https://doi.org/10.3390/ijms241310469
APA StyleMalyutina, S., Maximov, V., Chervova, O., Orlov, P., Ivanova, A., Mazdorova, E., Ryabikov, A., Simonova, G., & Voevoda, M. (2023). The Relationship between All-Cause Natural Mortality and Copy Number of Mitochondrial DNA in a 15-Year Follow-Up Study. International Journal of Molecular Sciences, 24(13), 10469. https://doi.org/10.3390/ijms241310469