Transcriptomic, Physiological, and Metabolomic Response of an Alpine Plant, Rhododendron delavayi, to Waterlogging Stress and Post-Waterlogging Recovery
Abstract
:1. Introduction
2. Results
2.1. Waterlogging Stress Caused the Aged Leaf Wilting in R. delavayi Seedlings
2.2. Transcriptome Assembly, Analysis of Differentially Expressed Genes (DEGs), and qRT-PCR Validation
2.3. KEGG Pathways by DEGs of Waterlogging Stress Versus Control
2.4. KEGG Pathways by Common DEGs between Waterlogging Stress and Post-Waterlogging Recovery
2.5. Major Transcription Factors Families Active during Waterlogging Stress and Post-Waterlogging Recovery
2.6. Metabolites Accumulations in Response to Waterlogging Stress and Post-Waterlogging Recovery
3. Discussion
3.1. Waterlogging Stress Inhibited Photosynthesis in R. delavayi Leaves
3.2. Waterlogging Stress Induced Oxidative Stress in R. delavayi Seedlings
3.3. Lignin and Cuticle Biosynthesis was Continuously Inhibited during Post-Waterlogging Recovery
3.4. Waterlogging Stress Prevented Transportation of Soluble Sugar from Leaves
4. Materials and Methods
4.1. Plant Material and Waterlogging Treatment
4.2. Measurement of Photosynthesis Parameters and Chlorophyll Fluorescence
4.3. Measurement of Hydrogen Peroxide and Lignin
4.4. RNA Extraction, Library Preparation, and Sequencing
4.5. Transcriptome Assembly and Differentially Expressed Genes (DEGs) Analysis
4.6. Annotation and Classification of DEGs
4.7. Quantitative Real-Time PCR (qRT-PCR) Validation
4.8. Gas Chromatograph Coupled with a Time-of-Flight Mass Spectrometer (GC-TOF-MS) Analysis
4.9. Data Preprocessing and Compound Identification
4.10. Data Analysis
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herzog, M.; Striker, G.G.; Colmer, T.D.; Pedersen, O. Mechanisms of waterlogging tolerance in wheat—A review of root and shoot physiology. Plant Cell Environ. 2016, 39, 1068–1086. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Sharif, R.; Xu, X.; Chen, X. Mechanisms of waterlogging tolerance in plants: Research progress and prospects. Front. Plant Sci. 2021, 11, 627331. [Google Scholar] [CrossRef] [PubMed]
- Bhusal, N.; Kim, H.S.; Han, S.G.; Yoon, T.M. Photosynthetic traits and plant–water relations of two apple cultivars grown as bi-leader trees under long-term waterlogging conditions. Environ. Exp. Bot. 2020, 176, 104111. [Google Scholar] [CrossRef]
- Gibbs, J.; Greenway, H. Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 2003, 30, 353. [Google Scholar] [CrossRef]
- Phukan, U.J.; Mishra, S.; Shukla, R.K. Waterlogging and submergence stress: Affects and acclimation. Crit. Rev. Biotechnol. 2016, 36, 956–966. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, D.Y.; Zhou, Q.G.; Zhu, P.; Luo, G.M.; Luo, Y.J. Physiological and transcriptomic analyses of leaves from Gardenia jasminoides Ellis under waterlogging stress. Braz. J. Bio. 2022, 84, e263092. [Google Scholar] [CrossRef]
- Hong, B.; Zhou, B.; Peng, Z.; Yao, M.; Wu, J.; Wu, X.; Guan, C.; Guan, M. Tissue-specific transcriptome and metabolome analysis reveals the response mechanism of Brassica napus to waterlogging stress. Int. J. Mol. Sci. 2023, 24, 6015. [Google Scholar] [CrossRef]
- Cao, M.; Zheng, L.; Li, J.; Mao, Y.; Zhang, R.; Niu, X.; Geng, M.; Zhang, X.; Huang, W.; Luo, K.; et al. Transcriptomic profiling suggests candidate molecular responses to waterlogging in cassava. PLoS ONE 2022, 17, e0261086. [Google Scholar] [CrossRef] [PubMed]
- Hess, N.; Klode, M.; Anders, M.; Sauter, M. The hypoxia responsive transcription factor genes ERF71/HRE2 and ERF73/HRE1 of Arabidopsis are differentially regulated by ethylene. Physiol. Plant. 2011, 143, 41–49. [Google Scholar] [CrossRef]
- Ruperti, B.; Botton, A.; Populin, F.; Eccher, G.; Brilli, M.; Quaggiotti, S.; Trevisan, S.; Cainelli, N.; Guarracino, P.; Schievano, E.; et al. Flooding responses on grapevine: A physiological, transcriptional, and metabolic perspective. Front. Plant Sci. 2019, 10, 339. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.W.; Wang, H.H.; Qi, X.H.; Xu, Q.; Chen, X.H. Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber (Cucumis sativus L.). Sci. Hortic. 2014, 179, 388–395. [Google Scholar]
- Le, P.G.; Lesur, I.; Lalanne, C.; Da, S.C.; Labadie, K.; Aury, J.M.; Leple, J.C.; Plomion, C. Implication of the suberin pathway in adaptation to waterlogging and hypertrophied lenticels formation in pedunculate oak (Quercus robur L.). Tree Physiol. 2016, 36, 1330–1342. [Google Scholar]
- León, J.; Castillo, M.C.; Gayubas, B. The hypoxia-reoxygenation stress in plants. J. Exp. Bot. 2021, 72, 5841–5856. [Google Scholar] [CrossRef]
- Cisse, E.M.; Zhang, J.; Li, D.D.; Miao, L.F.; Yin, L.Y.; Yang, F. Exogenous ABA and IAA modulate physiological and hormonal adaptation strategies in Cleistocalyx operculatus and Syzygium jambos under long-term waterlogging conditions. BMC Plant Biol. 2022, 22, 523. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Qin, X.; Lyu, D.; Qin, S.; Zhang, P. ROS production and scavenging in three cherry rootstocks under short-term waterlogging conditions. Sci. Hortic. 2019, 257, 108647. [Google Scholar] [CrossRef]
- Zúñiga-Feest, A.; Bustos-Salazar, A.; Alves, F.; Martinez, V.; Smith-Ramírez, C. Physiological and morphological responses to permanent and intermittent waterlogging in seedlings of four evergreen trees of temperate swamp forests. Tree Physiol. 2017, 37, 779–789. [Google Scholar] [CrossRef] [Green Version]
- Kreuzwieser, J.; Hauberg, J.; Howell, K.A.; Carroll, A.; Rennenberg, H.; Millar, A.H.; Whelan, J. Differential response of gray poplar leaves and roots underpins stress adaptation during hypoxia. Plant Physiol. 2009, 149, 461–473. [Google Scholar] [CrossRef] [Green Version]
- Juntawong, P.; Sirikhachornkit, A.; Pimjan, R.; Sonthirod, C.; Sangsrakru, D.; Yoocha, T.; Tangphatsornruang, S.; Srinives, P. Elucidation of the molecular responses to waterlogging in Jatropha roots by transcriptome profiling. Front. Plant Sci. 2014, 5, 658. [Google Scholar] [CrossRef]
- Ribeiro, I.M.; Vinson, C.C.; Coca, G.C.; Ferreira, C.D.S.; Franco, A.C.; Williams, T.C.R. Differences in the metabolic and functional mechanisms used to tolerate flooding in Guazuma ulmifolia (Lam.) from flood-prone Amazonian and dry Cerrado savanna populations. Tree Physiol. 2022, 42, 2116–2132. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Liu, G.Y.; Dong, H.Z.; Li, C.D. Waterlogging stress in cotton: Damage, adaptability, alleviation strategies, and mechanisms. Crop J. 2020, 9, 257–270. [Google Scholar] [CrossRef]
- Kreuzwieser, J.; Rennenberg, H. Molecular and physiological responses of trees to waterlogging stress. Plant Cell Environ. 2014, 37, 2245–2259. [Google Scholar] [CrossRef]
- Ferner, E.; Rennenberg, H.; Kreuzwieser, J. Effect of flooding on C metabolism of flood-tolerant (Quercus robur) and non-tolerant (Fagus sylvatica) tree species. Tree Physiol. 2012, 32, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Parent, C.; Crèvecoeur, M.; Capelli, N.; Dat, J.F. Contrasting growth and adaptive responses of two oak species to flooding stress: Role of non-symbiotic hemoglobin. Plant Cell Environ. 2011, 34, 1113–1126. [Google Scholar] [CrossRef]
- Doupis, G.; Kavroulakis, N.; Psarras, G.; Papadakis, I.E. Growth, photosynthetic performance and antioxidative response of ‘Hass’ and ‘Fuerte’ avocado (Persea americana Mill.) plants grown under high soil moisture. Photosynthetica 2017, 55, 655–663. [Google Scholar] [CrossRef]
- Pezeshki, S.R. Wetland plant responses to soil flooding. Environ. Exp. Bot. 2001, 46, 299–312. [Google Scholar] [CrossRef]
- Ahmed, S.; Nawata, E.; Hosokawa, M.; Domae, Y.; Sakuratani, T. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 2002, 163, 117–123. [Google Scholar] [CrossRef]
- Yan, K.; Zhao, S.; Cui, M.; Han, G.; Wen, P. Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging. Plant Physiol. Biochem. 2018, 125, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Christianson, J.A.; Llewellyn, D.J.; Dennis, E.S.; Wilson, I.W. Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.). Plant Cell Physiol. 2010, 51, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kong, X.; Dai, J.; Luo, Z.; Li, Z.; Lu, H.; Xu, S.; Tang, W.; Zhang, D.; Li, W.; et al. Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress. PLoS ONE 2017, 12, e0185075. [Google Scholar] [CrossRef]
- Wang, X.; Niu, Y.; Zheng, Y. Multiple functions of MYB transcription factors in abiotic stress responses. Int. J. Mol. Sci. 2021, 22, 6125. [Google Scholar] [CrossRef]
- Guo, J.; Sun, B.; He, H.; Zhang, Y.; Tian, H.; Wang, B. Current understanding of bHLH transcription factors in plant abiotic stress tolerance. Int. J. Mol. Sci. 2021, 22, 4921. [Google Scholar] [CrossRef]
- Pan, D.L.; Wang, G.; Wang, T.; Jia, Z.H.; Guo, Z.R.; Zhang, J.Y. AdRAP2.3, a novel ethylene response factor VII from Actinidia deliciosa, enhances waterlogging resistance in transgenic tobacco through improving expression levels of PDC and ADH Genes. Int. J. Mol. Sci. 2019, 20, 1189. [Google Scholar] [CrossRef] [Green Version]
- Arbona, V.; Zandalinas, S.I.; Manzi, M.; González-Guzmán, M.; Rodriguez, P.L.; Gómez-Cadenas, A. Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. × Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors. Plant Mol. Biol. 2017, 93, 623–640. [Google Scholar] [CrossRef] [Green Version]
- Bashar, K.K. Hormone dependent survival mechanisms of plants during post-waterlogging stress. Plant Signal. Behav. 2018, 13, e1529522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pintó-Marijuan, M.; Munné-Bosch, S. Photo-oxidative stress markers as a measure of abiotic stress-induced leaf senescence: Advantages and limitations. J. Exp. Bot. 2014, 65, 3845–3857. [Google Scholar] [CrossRef] [Green Version]
- Baxter, A.; Mittler, R.; Suzuki, N. ROS as key players in plant stress signalling. J. Exp. Bot. 2014, 65, 1229–1240. [Google Scholar] [CrossRef]
- Pallavi, S.; Bhushan, J.A.; Shanker, D.R.; Mohammad, P. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 12, 681. [Google Scholar]
- Hasanuzzaman, M.; Bhuyan, M.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef] [PubMed]
- Hossain, Z.; López-Climent, M.; Arbona, V.; Pérez-Clemente, R.; Gómez-Cadenas, A. Modulation of the antioxidant system in Citrus under waterlogging and subsequent drainage. J. Plant Physiol. 2009, 166, 1391–1404. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhao, Y.; Chen, Y.; Xu, J.; Jiang, C.; Wang, X. Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. For. Res. 2022, 2, 9. [Google Scholar] [CrossRef]
- Gong, X.; Xu, Y.; Li, H.; Chen, X.; Song, Z. Antioxidant activation, cell wall reinforcement, and reactive oxygen species regulation promote resistance to waterlogging stress in hot pepper (Capsicum annuum L.). BMC Plant Biol. 2022, 22, 425. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Son, S.; Jordan, M.C.; Levin, D.B.; Ayele, B.T. Lignin biosynthesis in wheat (Triticum aestivum L.): Its response to waterlogging and association with hormonal levels. BMC Plant Biol. 2016, 16, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Huang, L.; Kang, L.; Jetter, R.; Yao, L.; Li, Y.; Xiao, Y.; Wang, D.; Xiao, Q.; Ni, Y.; et al. Comparative analyses of cuticular waxes on various organs of faba bean (Vicia faba L.). Plant Physiol. Biochem. 2019, 139, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Tellechea-Robles, L.E.; Cesea, M.S.; Bullock, S.H.; Cadena-Nava, R.D.; Méndez-Alonzo, R. Is leaf water-repellency and cuticle roughness linked to flooding regimes in plants of coastal wetlands? Wetlands 2019, 40, 515–525. [Google Scholar] [CrossRef]
- Herrera, A. Responses to flooding of plant water relations and leaf gas exchange in tropical tolerant trees of a black-water wetland. Front. Plant Sci. 2013, 4, 106. [Google Scholar] [CrossRef] [Green Version]
- Merchant, A.; Peuke, A.D.; Keitel, C.; Macfarlane, C.; Warren, C.R.; Adams, M.A. Phloem sap and leaf delta13C, carbohydrates, and amino acid concentrations in Eucalyptus globulus change systematically according to flooding and water deficit treatment. J. Exp. Bot. 2010, 61, 1785–1793. [Google Scholar] [CrossRef] [Green Version]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef]
- Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: Mass spectral and retention index libraries for metabolomics based on Quadrupole and Time-of-Flight Gas Chromatography/Mass Spectrometry. Anal. Chem. 2009, 81, 10038–10048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
#ID | FPKM | FDR | log2FC | KEGG_Annotation | |
---|---|---|---|---|---|
CK | WS30d | ||||
Purine Metabolism | |||||
c61670.graph_c0 | 24 | 121.11 | 5.95 × 10−8 | 2.32 | 3′-phosphoadenosine 5′-phosphosulfate synthase |
c68596.graph_c0 | 21.65 | 222.9 | 1.81 × 10−10 | 2.88 | 3′-phosphoadenosine 5′-phosphosulfate synthase |
c48065.graph_c0 | 24.05 | 66.58 | 0.009568452 | 1.19 | adenylate kinase |
c55902.graph_c0 | 5.9 | 17.61 | 0.002497335 | 1.31 | adenylate kinase |
c61967.graph_c0 | 31.45 | 45.22 | 0.001423826 | 1.30 | amidophosphoribosyltransferase |
c54389.graph_c0 | 0.69 | 2.94 | 5.56 × 10−8 | 1.77 | AMP deaminase |
c56269.graph_c0 | 5.46 | 9.79 | 0.002969771 | 0.68 | DNA polymerase delta subunit 3 |
c61104.graph_c0 | 3.61 | 7.69 | 3.14 × 10−5 | 0.94 | DNA polymerase I |
c67065.graph_c1 | 11.34 | 23.74 | 2.70 × 10−5 | 0.72 | DNA polymerase I |
c61560.graph_c1 | 7.9 | 16.7 | 0.000143442 | 1.37 | DNA primase small subunit |
c66963.graph_c1 | 7.71 | 15.06 | 0.002704535 | 0.80 | DNA-directed RNA polymerase I subunit RPA1 |
c66139.graph_c0 | 6.19 | 15.02 | 4.30 × 10−5 | 1.08 | DNA-directed RNA polymerase I subunit RPA2 |
c65110.graph_c0 | 0.12 | 1.13 | 0.00607105 | 2.12 | DNA-directed RNA polymerase II subunit RPB1 |
c54215.graph_c1 | 4.71 | 10.21 | 0.001854865 | 0.87 | DNA-directed RNA polymerase II subunit RPB4 |
c55954.graph_c1 | 3.04 | 5.27 | 0.003121169 | 0.73 | DNA-directed RNA polymerase III subunit RPC1 |
c63522.graph_c0 | 14.72 | 29.28 | 1.94 × 10−6 | 0.84 | DNA-directed RNA polymerase III subunit RPC2 |
c61042.graph_c0 | 0.61 | 2.01 | 0.006880565 | 1.56 | DNA-directed RNA polymerase subunit |
c61639.graph_c0 | 32.03 | 62.06 | 7.63 × 10−5 | 0.80 | DNA-directed RNA polymerase subunit |
c44354.graph_c0 | 3 | 10.15 | 1.84 × 10−5 | 1.53 | DNA-directed RNA polymerases I and III subunit RPAC1 |
c66477.graph_c0 | 40.5 | 123.45 | 2.42 × 10−9 | 1.43 | hydroxyisourate hydrolase |
c61783.graph_c1 | 53.95 | 124.98 | 0.004522204 | 1.06 | nucleoside-diphosphate kinase |
c56191.graph_c0 | 15.05 | 37.97 | 2.23 × 10−5 | 1.14 | phosphoglucomutase |
c66317.graph_c0 | 0.56 | 2.54 | 5.01 × 10−8 | 1.88 | polyribonucleotide nucleotidyltransferase |
c46598.graph_c0 | 12.84 | 30.73 | 0.001705575 | 1.06 | pyruvate kinase |
c56447.graph_c0 | 11.28 | 30.88 | 0.000148805 | 1.24 | pyruvate kinase |
c46598.graph_c1 | 13.17 | 35.15 | 0.005231922 | 1.16 | pyruvate kinase |
c67771.graph_c1 | 20.81 | 59.57 | 0.001272097 | 1.27 | pyruvate kinase |
c65971.graph_c0 | 3.1 | 8.33 | 1.43 × 10−7 | 1.27 | ribonucleoside-diphosphate reductase subunit M1 |
c65971.graph_c2 | 3.17 | 7.96 | 1.74 × 10−5 | 1.16 | ribonucleoside-diphosphate reductase subunit M1 |
c51808.graph_c0 | 2.91 | 8.08 | 1.11 × 10−6 | 1.32 | ribonucleoside-diphosphate reductase subunit M2 |
c59718.graph_c0 | 2.19 | 7.62 | 1.01 × 10−6 | 1.60 | ribose-phosphate pyrophosphokinase |
c65143.graph_c1 | 35.14 | 88.48 | 0.001053369 | 1.18 | urate oxidase |
Glutathione metabolism | |||||
c58797.graph_c0 | 28.29 | 59.89 | 0.000787329 | 0.82 | glutamate-cysteine ligase |
c49129.graph_c0 | 17.02 | 64.83 | 0.000110947 | 1.66 | glutathione peroxidase |
c56863.graph_c0 | 45.09 | 111.71 | 3.73 × 10−13 | 1.11 | glutathione reductase |
c59612.graph_c0 | 94.14 | 241.87 | 0.002044808 | 1.18 | glutathione reductase |
c64812.graph_c0 | 18.45 | 130.44 | 2.77 × 10−5 | 1.92 | glutathione S-transferase |
c59164.graph_c0 | 1.5 | 11.4 | 3.70 × 10−6 | 2.53 | glutathione S-transferase |
c63277.graph_c1 | 25.21 | 729.15 | 3.79 × 10−9 | 3.91 | glutathione S-transferase |
c64156.graph_c0 | 11.59 | 23.7 | 0.000578537 | 0.95 | glutathione S-transferase |
c60034.graph_c0 | 1.33 | 89.58 | 0.000390662 | 3.12 | glutathione S-transferase |
c47361.graph_c0 | 2.25 | 13.34 | 0.000218054 | 2.10 | glutathione S-transferase |
c61754.graph_c0 | 1.38 | 3.79 | 0.006001931 | 1.04 | glutathione S-transferase |
c51875.graph_c0 | 102.67 | 346.18 | 0.00021695 | 1.49 | glutathione S-transferase |
c50282.graph_c0 | 18.24 | 139.8 | 9.15 × 10−7 | 2.53 | glutathione S-transferase |
c67680.graph_c0 | 149.26 | 673.04 | 0.000191146 | 1.90 | glutathione S-transferase |
c65078.graph_c0 | 19.02 | 45.97 | 2.39 × 10−5 | 1.14 | glutathione S-transferase |
c60993.graph_c0 | 4.01 | 18.46 | 3.33 × 10−6 | 2.04 | glutathione S-transferase |
c65367.graph_c0 | 37.95 | 463.28 | 1.92 × 10−11 | 3.32 | glutathione S-transferase |
c50305.graph_c0 | 1.07 | 8.46 | 0.002469129 | 2.14 | glutathione S-transferase |
c64290.graph_c0 | 9.52 | 84.97 | 2.20 × 10−6 | 2.72 | glutathione S-transferase |
c52719.graph_c0 | 5.53 | 21.94 | 6.37 × 10−5 | 1.82 | glutathione synthase |
c62411.graph_c0 | 5.21 | 15.07 | 7.17 × 10−8 | 1.36 | isocitrate dehydrogenase |
c55430.graph_c0 | 287.94 | 520.51 | 0.00599229 | 0.64 | L-ascorbate peroxidase |
c65971.graph_c0 | 3.1 | 8.33 | 1.43 × 10−7 | 1.27 | ribonucleoside-diphosphate reductase subunit M1 |
c65971.graph_c2 | 3.17 | 7.96 | 1.74 × 10−5 | 1.16 | ribonucleoside-diphosphate reductase subunit M1 |
c51808.graph_c0 | 2.91 | 8.08 | 1.11 × 10−6 | 1.32 | ribonucleoside-diphosphate reductase subunit M2 |
Photosynthesis | |||||
c68574.graph_c2 | 46.26 | 13.35 | 5.24 × 10−8 | −2.1001 | cytochrome b6/f |
c50907.graph_c1 | 158.23 | 86.54 | 1.12 × 10−6 | −1.078 | ferredoxin |
c44849.graph_c0 | 40.66 | 26.51 | 0.000278672 | −0.7568 | ferredoxin-NADP+ reductase |
c63271.graph_c3 | 62.05 | 18.73 | 5.44 × 10−11 | −1.7936 | F-type H+-transporting ATPase subunit a |
c57998.graph_c0 | 67.2 | 20.66 | 1.48 × 10−12 | −2.0903 | F-type H+-transporting ATPase subunit alpha |
c61006.graph_c0 | 469.97 | 258.81 | 0.00101548 | −0.9944 | F-type H+-transporting ATPase subunit delta |
c55205.graph_c0 | 1.32 | 0.29 | 0.003579127 | −1.9289 | F-type H+-transporting ATPase subunit epsilon |
c67974.graph_c4 | 112.42 | 21.02 | 3.21 × 10−8 | −2.3965 | photosystem I P700 chlorophyll a apoprotein A1 |
c66205.graph_c2 | 1099.4 | 676.68 | 0.005253358 | −0.8404 | photosystem I subunit II |
c44286.graph_c0 | 1447.6 | 631.02 | 0.000768555 | −1.3079 | photosystem I subunit IV |
c43761.graph_c0 | 1209.2 | 551.7 | 0.000426669 | −1.2402 | photosystem I subunit PsaN |
c50596.graph_c0 | 603.5 | 317.38 | 5.96 × 10−5 | −1.0638 | photosystem I subunit V |
c47764.graph_c0 | 2073.3 | 1148.2 | 0.001696486 | −0.9827 | photosystem I subunit VI |
c50541.graph_c0 | 1059.1 | 428.24 | 0.00013698 | −1.3976 | photosystem I subunit X |
c46857.graph_c0 | 1711 | 892.21 | 0.000848878 | −1.0656 | photosystem I subunit XI |
c63847.graph_c0 | 28.52 | 4.57 | 3.13 × 10−15 | −2.6784 | photosystem II CP43 chlorophyll apoprotein |
c63896.graph_c0 | 32.78 | 14.67 | 7.23 × 10−7 | −1.3887 | photosystem II CP43 chlorophyll apoprotein |
c55414.graph_c0 | 37.83 | 8.26 | 1.30 × 10−10 | −2.3996 | photosystem II CP47 chlorophyll apoprotein |
c48666.graph_c0 | 42.45 | 22.47 | 9.08 × 10−5 | −1.0589 | photosystem II oxygen-evolving enhancer protein 2 |
c56596.graph_c0 | 1509.8 | 767.15 | 0.000796919 | −1.1323 | photosystem II oxygen-evolving enhancer protein 3 |
c62948.graph_c3 | 391.53 | 79.36 | 9.84 × 10−12 | −2.3642 | photosystem II P680 reaction center D1 protein |
c59404.graph_c0 | 46.69 | 10.13 | 5.63 × 10−11 | −2.2111 | photosystem II P680 reaction center D2 protein |
c53605.graph_c0 | 1317.5 | 669.41 | 2.04 × 10−6 | −1.1168 | photosystem II PsbW protein chloroplastic-like |
c65097.graph_c0 | 49.88 | 25.08 | 8.91 × 10−5 | −1.1178 | photosystem II PsbY protein |
Fatty acid biosynthesis | |||||
c67210.graph_c2 | 5.34 | 3.78 | 0.005595171 | −0.8695 | 3-oxoacyl-[acyl-carrier-protein] synthase II (FabF) |
c57955.graph_c0 | 44.1 | 21.27 | 1.60 × 10−8 | −1.0614 | 3-oxoacyl-[acyl-carrier-protein] synthase II (FabF) |
c58354.graph_c0 | 12.57 | 0.62 | 2.47 × 10−12 | −3.9695 | 3-oxoacyl-[acyl-carrier-protein] synthase II (FabF) |
c62774.graph_c0 | 32.83 | 20.68 | 5.66 × 10−5 | −0.7974 | 3-oxoacyl-[acyl-carrier-protein] synthase III (FabH) |
c53077.graph_c0 | 29.14 | 9.74 | 2.39 × 10−11 | −1.6865 | acetyl-CoA carboxylase biotin carboxyl carrier protein |
c67708.graph_c1 | 60.53 | 43.04 | 0.001805159 | −0.638 | acetyl-CoA carboxylase carboxyl transferase subunit alpha |
c46335.graph_c0 | 50.52 | 31.1 | 4.92 × 10−5 | −0.8391 | acetyl-CoA carboxylase, biotin carboxylase subunit |
c46455.graph_c0 | 31.28 | 20.51 | 0.002644038 | −0.7592 | enoyl-[acyl-carrier protein] reductase I (FabI) |
c50059.graph_c0 | 36.92 | 11.05 | 2.67 × 10−9 | −1.8325 | enoyl-[acyl-carrier protein] reductase I (FabI) |
c60574.graph_c0 | 55.26 | 7.04 | 5.88 × 10−24 | −2.7932 | fatty acyl-ACP thioesterase A |
c64735.graph_c0 | 242.08 | 108.24 | 3.08 × 10−12 | −1.3285 | fatty acyl-ACP thioesterase B |
c66291.graph_c1 | 252.71 | 32.02 | 6.43 × 10−28 | −3.0528 | long-chain acyl-CoA synthetase |
c59094.graph_c0 | 71.72 | 20.79 | 6.86 × 10−23 | −2.2218 | long-chain acyl-CoA synthetase |
c56069.graph_c0 | 29.9 | 17.27 | 1.13 × 10−5 | −1.0826 | S-malonyltransferase |
Photosynthesis—antenna proteins | |||||
c51141.graph_c0 | 1625.3 | 463.16 | 1.29 × 10−5 | −1.838 | light-harvesting complex I chlorophyll a/b binding protein 1 |
c62753.graph_c1 | 949.2 | 442.35 | 0.000170897 | −1.2306 | light-harvesting complex I chlorophyll a/b binding protein 2 |
c65754.graph_c0 | 3672.8 | 2120.8 | 0.008139475 | −0.9203 | light-harvesting complex I chlorophyll a/b binding protein 3 |
c41195.graph_c0 | 2546.7 | 785.55 | 2.25 × 10−5 | −1.7575 | light-harvesting complex I chlorophyll a/b binding protein 4 |
c65915.graph_c0 | 66.33 | 39.48 | 4.72 × 10−5 | −0.8903 | light-harvesting complex I chlorophyll a/b binding protein 5 |
c32187.graph_c0 | 23.74 | 0.61 | 2.53 × 10−8 | −4.0809 | light-harvesting complex II chlorophyll a/b binding protein 1 |
c63116.graph_c0 | 18325 | 7434.7 | 3.70 × 10−6 | −1.5994 | light-harvesting complex II chlorophyll a/b binding protein 1 |
c68500.graph_c1 | 294.76 | 87.78 | 2.92 × 10−6 | −1.8158 | light-harvesting complex II chlorophyll a/b binding protein 2 |
c49775.graph_c0 | 30.49 | 8.1 | 6.84 × 10−5 | −1.9016 | light-harvesting complex II chlorophyll a/b binding protein 2 |
c52982.graph_c0 | 1074.5 | 316.12 | 6.09 × 10−5 | −1.7878 | light-harvesting complex II chlorophyll a/b binding protein 3 |
c56361.graph_c0 | 1720.6 | 769.22 | 0.000795542 | −1.2611 | light-harvesting complex II chlorophyll a/b binding protein 4 |
c65425.graph_c0 | 1478 | 735.17 | 0.000311123 | −1.1253 | light-harvesting complex II chlorophyll a/b binding protein 5 |
c52323.graph_c0 | 1566.1 | 601.7 | 0.000807719 | −1.4493 | light-harvesting complex II chlorophyll a/b binding protein 6 |
Glycosaminoglycan degradation | |||||
c38948.graph_c0 | 10.24 | 3.43 | 9.09 × 10−6 | −1.6616 | heparanase |
c38920.graph_c0 | 36.54 | 25.82 | 8.92 × 10−6 | −0.6415 | heparanase |
c65686.graph_c0 | 15.85 | 6.55 | 1.99 × 10−9 | −1.4827 | heparanase |
c49429.graph_c0 | 2.2 | 0.05 | 4.01 × 10−11 | −4.5862 | heparanase |
c68546.graph_c0 | 28.62 | 14.23 | 1.60 × 10−12 | −1.2804 | heparanase |
c59153.graph_c0 | 66.93 | 39.86 | 4.05 × 10−6 | −0.9714 | hexosaminidase |
c64000.graph_c0 | 40.48 | 14.83 | 2.73 × 10−5 | −1.5638 | hexosaminidase |
Class | Putative Metabolites | CK | WS30d | VIP | p Value | FC | Log2FC |
---|---|---|---|---|---|---|---|
Sugars | Glucose | 1.020305382 | 1.885810307 | 1.414 | 0.026 | 1.848 | 0.886 |
Sedoheptulose | 0.039939754 | 0.384491416 | 1.674 | 0.026 | 9.627 | 3.267 | |
Galactose | 0.242448413 | 0.678832861 | 1.637 | 0.004 | 2.800 | 1.485 | |
Sucrose | 0.513948256 | 1.015253352 | 1.634 | 0.001 | 1.975 | 0.982 | |
Lyxose | 0.01002245 | 0.014270754 | 1.459 | 0.034 | 1.424 | 0.510 | |
Galactonic acid | 0.027194517 | 0.054436394 | 1.452 | 0.039 | 2.002 | 1.001 | |
N-Acetyl-beta-D-mannosamine | 0.008378467 | 0.016720616 | 1.480 | 0.023 | 1.996 | 0.997 | |
Organic acids | L-Malic acid | 0.506445001 | 1.243612412 | 1.505 | 0.044 | 2.456 | 1.296 |
Citric acid | 0.145507649 | 0.462412497 | 1.373 | 0.019 | 3.178 | 1.668 | |
Glucoheptonic acid | 0.180491598 | 0.395956908 | 1.627 | 0.001 | 2.194 | 1.133 | |
Esters | Gluconic lactone | 0.22506794 | 0.492767481 | 1.616 | 0.002 | 2.189 | 1.131 |
beta-Mannosylglycerate | 0.028496106 | 0.056197656 | 1.354 | 0.049 | 1.972 | 0.980 | |
L-Gulonolactone | 0.005848757 | 0.050757515 | 1.277 | 0.006 | 8.678 | 3.117 | |
Fatty acid | Linolenic acid | 0.087711244 | 0.205478671 | 1.505 | 0.017 | 2.343 | 1.228 |
Alcohols | Diglycerol | 0.055957005 | 0.12707336 | 1.501 | 0.025 | 2.271 | 1.183 |
Sorbitol | 0.008703194 | 0.024159015 | 1.537 | 0.020 | 2.776 | 1.473 | |
Flavonoids | Arbutin | 12.28242997 | 24.66825634 | 1.521 | 0.008 | 2.008 | 1.006 |
Phenyl beta-D-glucopyranoside | 0.007043534 | 0.018592753 | 1.623 | 0.011 | 2.640 | 1.400 | |
Others | p-Coumaric acid | 0.104651639 | 0.363258482 | 1.620 | 0.001 | 3.471 | 1.795 |
Glycocyamine | 0.005322693 | 0.028323088 | 1.261 | 0.016 | 5.321 | 2.412 | |
Glutathione | 0.006044401 | 0.011154309 | 1.370 | 0.048 | 1.845 | 0.884 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.-M.; Duan, S.-G.; Xia, Y.; Li, J.-T.; Liu, L.-X.; Tang, M.; Tang, J.; Sun, W.; Yi, Y. Transcriptomic, Physiological, and Metabolomic Response of an Alpine Plant, Rhododendron delavayi, to Waterlogging Stress and Post-Waterlogging Recovery. Int. J. Mol. Sci. 2023, 24, 10509. https://doi.org/10.3390/ijms241310509
Zhang X-M, Duan S-G, Xia Y, Li J-T, Liu L-X, Tang M, Tang J, Sun W, Yi Y. Transcriptomic, Physiological, and Metabolomic Response of an Alpine Plant, Rhododendron delavayi, to Waterlogging Stress and Post-Waterlogging Recovery. International Journal of Molecular Sciences. 2023; 24(13):10509. https://doi.org/10.3390/ijms241310509
Chicago/Turabian StyleZhang, Xi-Min, Sheng-Guang Duan, Ying Xia, Jie-Ting Li, Lun-Xian Liu, Ming Tang, Jing Tang, Wei Sun, and Yin Yi. 2023. "Transcriptomic, Physiological, and Metabolomic Response of an Alpine Plant, Rhododendron delavayi, to Waterlogging Stress and Post-Waterlogging Recovery" International Journal of Molecular Sciences 24, no. 13: 10509. https://doi.org/10.3390/ijms241310509
APA StyleZhang, X. -M., Duan, S. -G., Xia, Y., Li, J. -T., Liu, L. -X., Tang, M., Tang, J., Sun, W., & Yi, Y. (2023). Transcriptomic, Physiological, and Metabolomic Response of an Alpine Plant, Rhododendron delavayi, to Waterlogging Stress and Post-Waterlogging Recovery. International Journal of Molecular Sciences, 24(13), 10509. https://doi.org/10.3390/ijms241310509