“Omics” Techniques Used in Marine Biofouling Studies
Abstract
:1. Introduction
1.1. Biofouling
1.2. Antifouling Techniques
1.3. Enhancement of Biofouling
1.4. Omics and Biofouling Studies
Omics Approach | Methods | Propose | Applications | Selected References |
---|---|---|---|---|
Metagenomics | DNA sequencing | The genome of biofouling organisms and their genes | Identification of micro- and macroorganisms in complex communities | [39,40,41,42,43] |
Identification of genes of biofouling organisms | ||||
Transcriptomics | RNA sequencing | Transcripts and their functions | Analysis of the activity of organisms, and phenotype analysis | [44,45,46] |
Metabolomics | Identification of compounds via MS (LC-MS/MS, GC-MS) | Analysis of all metabolites | Metabolites and pathways of a single biofouling organism or complex communities | [47,48] |
Proteomics | Identification of proteins via MALDI-TOF and X-ray crystallography | Analysis of proteins | Proteins, enzymes, settlement cues, and glues of biofouling organisms | [49] |
2. Omics in Context
3. Use of Metagenomics in Biofouling Research
Sequencing Generation | Tools Used | Features | Propose of Study | Example of Publications |
---|---|---|---|---|
1st sequencing generation | Sanger sequencing | Uses capillary electrophoresis | Sequencing of genes; Identification of single biofouling organisms; Full genome sequencing | [54,55,56] |
2nd sequencing generation | Pyrosequencing MiSeq; HiSeq; Ion Torrent | Uses labeled nucleotides or detection of hydrogen or light | Identification of microbes in biofilms; Identification of genes | [39,40,41,42,43] |
3rd sequencing generation | Oxford Nanopore | No need for PCR amplification | Full genome sequencing; Identification of microbes in biofilms | [57] |
3.1. Metagenomics of Biofilms on Man-Made Substrata
3.2. Metagenomics of Biofilms on Antifouling Coatings and Biocides
3.3. Environmental DNA (e-DNA)
4. Transcriptomics
5. Proteomics
Group | Species | Propose of Study | References |
---|---|---|---|
Prokaryotes | Cyanobacteria | Effect of hydrodynamics | [108] |
mixed communities | Biocorrosion | [109] | |
mixed communities | Effect of contaminants | [110] | |
Arthropoda | Balanus amphitrite | Proteins during larval metamorphosis | [100] |
Balanus amphitrite | Larval response to AF compound | [111] | |
Balanus amphitrite | Glue proteins | [107] | |
Bryozoa | Bugula neritina | Proteins during larval metamorphosis | [101] |
Bugula neritina | Impact of AF compound | [112] | |
Polychaeta | Hydroides elegans | Proteins during larval metamorphosis | [49] |
Mollusca | Crasosstrea gigas | Effect of climate change | [102] |
Crassostrea hongkongensis | Effect of climate change | [103] | |
Saccostrea glomerata | Effect of climate change | [104] | |
Mytilus trossulus M. galloprovincialis | Effect of salinity | [105] |
6. Metabolomics
7. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wahl, M. Marine Epibiosis. I. Fouling and Antifouling: Some Basic Aspects. Mar. Ecol. Prog. Ser. 1989, 58, 175–189. [Google Scholar] [CrossRef] [Green Version]
- de Carvalho, C.C.C.R. Marine Biofilms: A Successful Microbial Strategy with Economic Implications. Front. Mar. Sci. 2018, 5, 334062. [Google Scholar] [CrossRef] [Green Version]
- Railkin, A.I. Marine Biofouling: Colonization Processes and Defenses; CRC Press: Boca Raton, FL, USA, 2003; ISBN 978-0-203-50323-2. [Google Scholar]
- Flemming, H.-C.; Neu, T.R.; Wozniak, D.J. The EPS Matrix: The “House of Biofilm Cells”. J. Bacteriol. 2007, 189, 7945–7947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flemming, H.-C.; Wingender, J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Rittschof, D. Body Odors and Neutral-Basic Peptide Mimics: A Review of Responses by Marine Organisms. Integr Comp Biol 1993, 33, 487–493. [Google Scholar] [CrossRef]
- Dobretsov, S.; Rittschof, D. Love at First Taste: Induction of Larval Settlement by Marine Microbes. Int. J. Mol. Sci. 2020, 21, 731. [Google Scholar] [CrossRef] [Green Version]
- Dobretsov, S.; Dahms, H.-U.; Qian, P.-Y. Inhibition of Biofouling by Marine Microorganisms and Their Metabolites. Biofouling 2006, 22, 43–54. [Google Scholar] [CrossRef]
- Hadfield, M.G. Biofilms and Marine Invertebrate Larvae: What Bacteria Produce That Larvae Use to Choose Settlement Sites. Annu. Rev. Mar. Sci. 2011, 3, 453–470. [Google Scholar] [CrossRef]
- Yebra, D.M.; Kiil, S.; Dam-Johansen, K. Antifouling Technology—Past, Present and Future Steps towards Efficient and Environmentally Friendly Antifouling Coatings. Prog. Org. Coat. 2004, 50, 75–104. [Google Scholar] [CrossRef]
- Jones, G. 2—The Battle against Marine Biofouling: A Historical Review. In Advances in Marine Antifouling Coatings and Technologies; Hellio, C., Yebra, D., Eds.; Woodhead Publishing Series in Metals and Surface Engineering; Woodhead Publishing: Cambridge, UK, 2009; pp. 19–45. ISBN 978-1-84569-386-2. [Google Scholar]
- Maréchal, J.-P.; Hellio, C. Challenges for the Development of New Non-Toxic Antifouling Solutions. Int. J. Mol. Sci. 2009, 10, 4623–4637. [Google Scholar] [CrossRef] [Green Version]
- Pérez, H.; Vargas, G.; Silva, R. Use of Nanotechnology to Mitigate Biofouling in Stainless Steel Devices Used in Food Processing, Healthcare, and Marine Environments. Toxics 2022, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ye, F.; Dobretsov, S.; Dutta, J. Nanocoating Is a New Way for Biofouling Prevention. Front. Nanotechnol. 2021, 3, 771098. [Google Scholar] [CrossRef]
- Uskoković, V.; Bertassoni, L.E. Nanotechnology in Dental Sciences: Moving towards a Finer Way of Doing Dentistry. Materials 2010, 3, 1674–1691. [Google Scholar] [CrossRef] [Green Version]
- Al-Fori, M.; Dobretsov, S.; Myint, M.T.Z.; Dutta, J. Antifouling Properties of Zinc Oxide Nanorod Coatings. Biofouling 2014, 30, 871–882. [Google Scholar] [CrossRef]
- Carl, C.; Poole, A.J.; Vucko, M.J.; Williams, M.R.; Whalan, S.; de Nys, R. Enhancing the Efficacy of Fouling-Release Coatings against Fouling by Mytilus Galloprovincialis Using Nanofillers. Biofouling 2012, 28, 1077–1091. [Google Scholar] [CrossRef] [PubMed]
- Rittschof, D.; Orihuela, B.; Genzer, J.; Efimenko, K. PDMS Networks Meet Barnacles: A Complex and Often Toxic Relationship. Biofouling 2022, 38, 876–888. [Google Scholar] [CrossRef]
- Rittschof, D.; Dobretsov, S. Ecosystem Restoration: Enhancing Ecosystem Services with Floating Aquaculture. J. Fish. Sci. 2022, 4, 40–48. [Google Scholar] [CrossRef]
- Bonar, D.B.; Coon, S.L.; Walch, M.; Weiner, R.M.; Fitt, W. Control of Oyster Settlement and Metamorphosis by Endogenous and Exogenous Chemical Cues. Bull. Mar. Sci. 1990, 46, 484–498. [Google Scholar]
- Hidu, H. Gregarious Setting in the American Oyster Crassostrea Virginica Gmelin. Chesap. Sci. 1969, 10, 85–92. [Google Scholar] [CrossRef]
- Paul, V.J.; Ritson-Williams, R. Marine Chemical Ecology. Nat. Prod. Rep. 2008, 25, 662–695. [Google Scholar] [CrossRef]
- Webster, N.S.; Smith, L.D.; Heyward, A.J.; Watts, J.E.M.; Webb, R.I.; Blackall, L.L.; Negri, A.P. Metamorphosis of a Scleractinian Coral in Response to Microbial Biofilms. Appl. Environ. Microbiol. 2004, 70, 1213–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, C.; Hadfield, M.G. Larvae of Pocillopora Damicornis (Anthozoa) Settle and Metamorphose in Response to Surface-Biofilm Bacteria. Mar. Ecol. Prog. Ser. 2011, 433, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhang, L.; Wang, K.-L.; Zhang, Y.; Wong, Y.H. Transcriptomic Analysis of the Mode of Action of the Candidate Anti-Fouling Compound Di(1H-Indol-3-Yl)Methane (DIM) on a Marine Biofouling Species, the Bryozoan Bugula Neritina. Mar. Pollut. Bull. 2020, 152, 110904. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Quinto, A.; Falcón, L.I. Metagenome of Acropora Palmata Coral Rubble: Potential Metabolic Pathways and Diversity in the Reef Ecosystem. PLoS ONE 2019, 14, e0220117. [Google Scholar] [CrossRef] [Green Version]
- Littman, R.; Willis, B.L.; Bourne, D.G. Metagenomic Analysis of the Coral Holobiont during a Natural Bleaching Event on the Great Barrier Reef. Environ. Microbiol. Rep. 2011, 3, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Rothäusler, E.; Dobretsov, S.; Gómez, M.F.; Jofré-Madariaga, D.; Thiel, M.; Véliz, K.; Tala, F. Effect of UV-Radiation on the Physiology of the Invasive Green Seaweed Codium Fragile and Its Associated Bacteria. Mar. Environ. Res. 2022, 180, 105708. [Google Scholar] [CrossRef] [PubMed]
- Egan, S.; Harder, T.; Burke, C.; Steinberg, P.; Kjelleberg, S.; Thomas, T. The Seaweed Holobiont: Understanding Seaweed–Bacteria Interactions. FEMS Microbiol Rev 2013, 37, 462–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Sponge Hologenome | MBio. Available online: https://journals.asm.org/doi/full/10.1128/mBio.00135-16 (accessed on 6 May 2023).
- Pita, L.; Rix, L.; Slaby, B.M.; Franke, A.; Hentschel, U. The Sponge Holobiont in a Changing Ocean: From Microbes to Ecosystems. Microbiome 2018, 6, 46. [Google Scholar] [CrossRef]
- Loghmannia, J.; Nasrolahi, A.; Dobretsov, S. Epibiotic Bacteria on the Carapace of Hawksbill and Green Sea Turtles. Biofouling 2023, 39, 1–14. [Google Scholar] [CrossRef]
- Lauritano, C.; Ferrante, M.I.; Rogato, A. Marine Natural Products from Microalgae: An -Omics Overview. Mar. Drugs 2019, 17, 269. [Google Scholar] [CrossRef] [Green Version]
- Pierella Karlusich, J.J.; Ibarbalz, F.M.; Bowler, C. Phytoplankton in the Tara Ocean. Annu. Rev. Mar. Sci. 2020, 12, 233–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beata, G. The Use of -Omics Tools for Assessing Biodeterioration of Cultural Heritage: A Review. J. Cult. Herit. 2020, 45, 351–361. [Google Scholar] [CrossRef]
- Chandramouli, K.H.; Qian, P.-Y.; Ravasi, T. Proteomics Insights: Proteins Related to Larval Attachment and Metamorphosis of Marine Invertebrates. Front. Mar. Sci. 2014, 1, 96156. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.V.; Alfaro, A.C.; Mundy, C.; Petersen, J.; Ragg, N.L.C. Omics Research on Abalone (Haliotis Spp.): Current State and Perspectives. Aquaculture 2022, 547, 737438. [Google Scholar] [CrossRef]
- Qian, P.-Y.; Cheng, A.; Wang, R.; Zhang, R. Marine Biofilms: Diversity, Interactions and Biofouling. Nat. Rev. Genet. 2022, 20, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Dobretsov, S.; Abed, R.M.M.; Voolstra, C.R. The Effect of Surface Colour on the Formation of Marine Micro and Macrofouling Communities. Biofouling 2013, 29, 617–627. [Google Scholar] [CrossRef]
- Zhang, Q.; Jie, Y.W.; Loong, W.L.C.; Zhang, J.; Fane, A.G.; Kjelleberg, S.; Rice, S.A.; McDougald, D. Characterization of Biofouling in a Lab-Scale Forward Osmosis Membrane Bioreactor (FOMBR). Water Res. 2014, 58, 141–151. [Google Scholar] [CrossRef]
- Guo, X.; Miao, Y.; Wu, B.; Ye, L.; Yu, H.; Liu, S.; Zhang, X.-X. Correlation between Microbial Community Structure and Biofouling as Determined by Analysis of Microbial Community Dynamics. Bioresour. Technol. 2015, 197, 99–105. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, L.; Graham, N.; Yu, W. Unraveling Membrane Fouling Induced by Chlorinated Water Versus Surface Water: Biofouling Properties and Microbiological Investigation. Engineering 2022, 15, 154–164. [Google Scholar] [CrossRef]
- Yang, J.-L.; Feng, D.-D.; Liu, J.; Xu, J.-K.; Chen, K.; Li, Y.-F.; Zhu, Y.-T.; Liang, X.; Lu, Y. Chromosome-Level Genome Assembly of the Hard-Shelled Mussel Mytilus Coruscus, a Widely Distributed Species from the Temperate Areas of East Asia. GigaScience 2021, 10, giab024. [Google Scholar] [CrossRef]
- Barbosa, M.; Schwaner, C.; Pales Espinosa, E.; Allam, B. A Transcriptomic Analysis of Phenotypic Plasticity in Crassostrea Virginica Larvae under Experimental Acidification. Genes 2022, 13, 1529. [Google Scholar] [CrossRef]
- Todgham, A.E.; Hofmann, G.E. Transcriptomic Response of Sea Urchin Larvae Strongylocentrotus Purpuratus to CO2-Driven Seawater Acidification. J. Exp. Biol. 2009, 212, 2579–2594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffith, A.W.; Harke, M.J.; DePasquale, E.; Berry, D.L.; Gobler, C.J. The Harmful Algae, Cochlodinium Polykrikoides and Aureococcus Anophagefferens, Elicit Stronger Transcriptomic and Mortality Response in Larval Bivalves (Argopecten Irradians) than Climate Change Stressors. Ecol. Evol. 2019, 9, 4931–4948. [Google Scholar] [CrossRef] [Green Version]
- Briand, J.-F.; Pochon, X.; Wood, S.A.; Bressy, C.; Garnier, C.; Réhel, K.; Urvois, F.; Culioli, G.; Zaiko, A. Metabarcoding and Metabolomics Offer Complementarity in Deciphering Marine Eukaryotic Biofouling Community Shifts. Biofouling 2018, 34, 657–672. [Google Scholar] [CrossRef]
- Chandramouli, K.H.; Dash, S.; Zhang, Y.; Ravasi, T.; Qian, P.-Y. Proteomic and Metabolomic Profiles of Marine Vibrio Sp. 010 in Response to an Antifoulant Challenge. Biofouling 2013, 29, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, J.; Xiao, K.; Arellano, S.M.; Thiyagarajan, V.; Qian, P.-Y. 2D Gel-Based Multiplexed Proteomic Analysis during Larval Development and Metamorphosis of the Biofouling Polychaete Tubeworm Hydroides Elegans. J. Proteome Res. 2010, 9, 4851–4860. [Google Scholar] [CrossRef] [PubMed]
- Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation. Microbiol. Rev. 1995, 59, 143–169. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Zepeda, A.; Vera-Ponce de León, A.; Sanchez-Flores, A. The Road to Metagenomics: From Microbiology to DNA Sequencing Technologies and Bioinformatics. Front. Genet. 2015, 6, 155161. [Google Scholar] [CrossRef] [Green Version]
- Machida, R.J.; Knowlton, N. PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences. PLoS ONE 2012, 7, e46180. [Google Scholar] [CrossRef]
- Schmidt, T.M.; DeLong, E.F.; Pace, N.R. Analysis of a Marine Picoplankton Community by 16S RRNA Gene Cloning and Sequencing. J. Bacteriol. 1991, 173, 4371–4378. [Google Scholar] [CrossRef] [Green Version]
- Devereux, R.; Mundfrom, G.W. A Phylogenetic Tree of 16S RRNA Sequences from Sulfate-Reducing Bacteria in a Sandy Marine Sediment. Appl. Environ. Microbiol. 1994, 60, 3437–3439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.-L.; Li, M.; Yu, Z.; Qian, P.-Y. Correlation between Pigmentation and Larval Settlement Deterrence by Pseudoalteromonas Sp. Sf57. Biofouling 2011, 27, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Egan, S.; James, S.; Holmström, C.; Kjelleberg, S. Correlation between Pigmentation and Antifouling Compounds Produced by Pseudoalteromonas Tunicata. Environ. Microbiol. 2002, 4, 433–442. [Google Scholar] [CrossRef]
- Colston, S.M.; Ellis, G.A.; Kim, S.; Wijesekera, H.W.; Leary, D.H.; Lin, B.; Kirkup, B.C.; Hervey, W.J.; Vora, G.J. Complete Genome Sequences of Two Bioluminescent Vibrio Campbellii Strains Isolated from Biofouling Communities in the Bay of Bengal. Genome Announc. 2018, 6, e00422-18. [Google Scholar] [CrossRef] [Green Version]
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of Next-Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, Z.; Yang, Y.; Mei, X.; Wu, Z. Correlating Microbial Community Structure and Composition with Aeration Intensity in Submerged Membrane Bioreactors by 454 High-Throughput Pyrosequencing. Water Res. 2013, 47, 859–869. [Google Scholar] [CrossRef]
- Papadatou, M.; Robson, S.C.; Dobretsov, S.; Watts, J.E.M.; Longyear, J.; Salta, M. Marine Biofilms on Different Fouling Control Coating Types Reveal Differences in Microbial Community Composition and Abundance. Microbiologyopen 2021, 10, e1231. [Google Scholar] [CrossRef]
- Muthukrishnan, T.; Abed, R.M.M.; Dobretsov, S.; Kidd, B.; Finnie, A.A. Long-Term Microfouling on Commercial Biocidal Fouling Control Coatings. Biofouling 2014, 30, 1155–1164. [Google Scholar] [CrossRef]
- Winfield, M.O.; Downer, A.; Longyear, J.; Dale, M.; Barker, G.L.A. Comparative Study of Biofilm Formation on Biocidal Antifouling and Fouling-Release Coatings Using next-Generation DNA Sequencing. Biofouling 2018, 34, 464–477. [Google Scholar] [CrossRef]
- Dobretsov, S.; Abed, R.M.M.; Muthukrishnan, T.; Sathe, P.; Al-Naamani, L.; Queste, B.Y.; Piontkovski, S. Living on the Edge: Biofilms Developing in Oscillating Environmental Conditions. Biofouling 2018, 34, 1064–1077. [Google Scholar] [CrossRef]
- Antunes, J.T.; Sousa, A.G.G.; Azevedo, J.; Rego, A.; Leão, P.N.; Vasconcelos, V. Distinct Temporal Succession of Bacterial Communities in Early Marine Biofilms in a Portuguese Atlantic Port. Front. Microbiol. 2020, 11, 1938. [Google Scholar] [CrossRef]
- Sushmitha, T.J.; Rajeev, M.; Murthy, P.S.; Ganesh, S.; Toleti, S.R.; Pandian, S.K. Bacterial Community Structure of Early-Stage Biofilms Is Dictated by Temporal Succession Rather than Substrate Types in the Southern Coastal Seawater of India. PLoS ONE 2021, 16, e0257961. [Google Scholar] [CrossRef] [PubMed]
- Vaksmaa, A.; Egger, M.; Lüke, C.; Martins, P.D.; Rosselli, R.; Asbun, A.A.; Niemann, H. Microbial Communities on Plastic Particles in Surface Waters Differ from Subsurface Waters of the North Pacific Subtropical Gyre. Mar. Pollut. Bull. 2022, 182, 113949. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.M.; de Oliveira, L.S.; Tschoeke, D.A.; Meirelles, P.M.; Neves, M.H.C.B.; Batista, D.; Carvalho, A.P.; Santos Costa, R.D.; Dobretsov, S.; Coutinho, R.; et al. Metagenomic Insights Into Ecosystem Function in the Microbial Mats of a Large Hypersaline Coastal Lagoon System. Front. Mar. Sci. 2021, 8, 715335. [Google Scholar] [CrossRef]
- Lema, K.A.; Constancias, F.; Rice, S.A.; Hadfield, M.G. High Bacterial Diversity in Nearshore and Oceanic Biofilms and Their Influence on Larval Settlement by Hydroides Elegans (Polychaeta). Environ. Microbiol. 2019, 21, 3472–3488. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, L.; Cong, W.; Jiang, Z.; Liang, Z. Comparative Analysis of the Ecological Succession of Microbial Communities on Two Artificial Reef Materials. Microorganisms 2021, 9, 120. [Google Scholar] [CrossRef]
- Ribani, A.; Schiavo, G.; Utzeri, V.J.; Bertolini, F.; Geraci, C.; Bovo, S.; Fontanesi, L. Application of next Generation Semiconductor Based Sequencing for Species Identification and Analysis of Within-Species Mitotypes Useful for Authentication of Meat Derived Products. Food Control 2018, 91, 58–67. [Google Scholar] [CrossRef]
- Harb, M.; Xiong, Y.; Guest, J.; Amy, G.; Hong, P.-Y. Differences in Microbial Communities and Performance between Suspended and Attached Growth Anaerobic Membrane Bioreactors Treating Synthetic Municipal Wastewater. Environ. Sci. Water Res. Technol. 2015, 1, 800–813. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Jeraldo, P.; Mendes-Soares, H.; Masters, T.; Asangba, A.E.; Nelson, H.; Patel, R.; Chia, N.; Walther-Antonio, M. Amplification of Femtograms of Bacterial DNA Within 3 h Using a Digital Microfluidics Platform for MinION Sequencing. ACS Omega 2021, 6, 25642–25651. [Google Scholar] [CrossRef]
- Colston, S.M.; Hervey, W.J.; Horne, W.C.; Haygood, M.G.; Petersen, B.D.; van Kessel, J.C.; Vora, G.J. Complete Genome Sequence of Vibrio Campbellii DS40M4. Microbiol. Resour. Announc. 2019, 8, e01187-18. [Google Scholar] [CrossRef] [Green Version]
- Hosoe, A.; Suenaga, T.; Sugi, T.; Iizumi, T.; Nagai, N.; Terada, A. Complete Genome Sequence of Pseudomonas Putida Strain TS312, Harboring an HdtS-Type N-Acyl-Homoserine Lactone Synthase, Isolated from a Paper Mill. Microbiol. Resour. Announc. 2020, 9, e00055-20. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-F.; Chen, Y.-R.; Yang, J.-L.; Bao, W.-Y.; Guo, X.-P.; Liang, X.; Shi, Z.-Y.; Li, J.-L.; Ding, D.-W. Effects of Substratum Type on Bacterial Community Structure in Biofilms in Relation to Settlement of Plantigrades of the Mussel Mytilus Coruscus. Int. Biodeterior. Biodegrad. 2014, 96, 41–49. [Google Scholar] [CrossRef]
- Petersen, L.-E.; Moeller, M.; Versluis, D.; Nietzer, S.; Kellermann, M.Y.; Schupp, P.J. Mono- and Multispecies Biofilms from a Crustose Coralline Alga Induce Settlement in the Scleractinian Coral Leptastrea Purpurea. Coral Reefs 2021, 40, 381–394. [Google Scholar] [CrossRef]
- Cacabelos, E.; Ramalhosa, P.; Canning-Clode, J.; Troncoso, J.S.; Olabarria, C.; Delgado, C.; Dobretsov, S.; Gestoso, I. The Role of Biofilms Developed under Different Anthropogenic Pressure on Recruitment of Macro-Invertebrates. Int. J. Mol. Sci. 2020, 21, 2030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, S.; Rout, A.K.; Behera, B.K.; Ghosh, K. Plastisphere Community Assemblage of Aquatic Environment: Plastic-Microbe Interaction, Role in Degradation and Characterization Technologies. Environ. Microbiome 2022, 17, 32. [Google Scholar] [CrossRef]
- Zhurina, M.V.; Bogdanov, K.I.; Gannesen, A.V.; Mart’yanov, S.V.; Plakunov, V.K. Microplastics as a New Ecological Niche For Multispecies Microbial Biofilms within the Plastisphere. Microbiology 2022, 91, 107–123. [Google Scholar] [CrossRef]
- Singh, S.P.; Sharma, P.; Bano, A.; Nadda, A.K.; Varjani, S. Microbial Communities in Plastisphere and Free-Living Microbes for Microplastic Degradation: A Comprehensive Review. Green Anal. Chem. 2022, 3, 100030. [Google Scholar] [CrossRef]
- Wright, R.J.; Erni-Cassola, G.; Zadjelovic, V.; Latva, M.; Christie-Oleza, J.A. Marine Plastic Debris: A New Surface for Microbial Colonization. Environ. Sci. Technol. 2020, 54, 11657–11672. [Google Scholar] [CrossRef]
- Briand, J.-F.; Barani, A.; Garnier, C.; Réhel, K.; Urvois, F.; LePoupon, C.; Bouchez, A.; Debroas, D.; Bressy, C. Spatio-Temporal Variations of Marine Biofilm Communities Colonizing Artificial Substrata Including Antifouling Coatings in Contrasted French Coastal Environments. Microb. Ecol. 2017, 74, 585–598. [Google Scholar] [CrossRef]
- Sathe, P.; Laxman, K.; Myint, M.T.Z.; Dobretsov, S.; Richter, J.; Dutta, J. Bioinspired Nanocoatings for Biofouling Prevention by Photocatalytic Redox Reactions. Sci. Rep. 2017, 7, 3624. [Google Scholar] [CrossRef]
- von Ammon, U.; Wood, S.A.; Laroche, O.; Zaiko, A.; Tait, L.; Lavery, S.; Inglis, G.; Pochon, X. The Impact of Artificial Surfaces on Marine Bacterial and Eukaryotic Biofouling Assemblages: A High-Throughput Sequencing Analysis. Mar. Environ. Res. 2018, 133, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Ward, C.S.; Diana, Z.; Ke, K.M.; Orihuela, B.; Schultz, T.P.; Rittschof, D. Microbiome Development of Seawater-Incubated Pre-Production Plastic Pellets Reveals Distinct and Predictive Community Compositions. Front. Mar. Sci. 2022, 8, 807327. [Google Scholar] [CrossRef]
- Joardar, I.; Dutta, S. A Selective Review on the Novel Approaches and Potential Control Agents of Anti-Biofouling and Anti-Biofilming. Appl. Biochem. Biotechnol. 2022. [Google Scholar] [CrossRef]
- Xia, Z.; Gu, J.; Wen, Y.; Cao, X.; Gao, Y.; Li, S.; Haffner, G.D.; MacIsaac, H.J.; Zhan, A. EDNA-Based Detection Reveals Invasion Risks of a Biofouling Bivalve in the World’s Largest Water Diversion Project. Ecol. Appl. 2023, e2826. [Google Scholar] [CrossRef]
- Ibabe, A.; Rayón, F.; Martinez, J.L.; Garcia-Vazquez, E. Environmental DNA from Plastic and Textile Marine Litter Detects Exotic and Nuisance Species Nearby Ports. PLoS ONE 2020, 15, e0228811. [Google Scholar] [CrossRef]
- Bowers, H.A.; Pochon, X.; von Ammon, U.; Gemmell, N.; Stanton, J.-A.L.; Jeunen, G.-J.; Sherman, C.D.H.; Zaiko, A. Towards the Optimization of EDNA/ERNA Sampling Technologies for Marine Biosecurity Surveillance. Water 2021, 13, 1113. [Google Scholar] [CrossRef]
- Pawlowski, J.; Bruce, K.; Panksep, K.; Aguirre, F.I.; Amalfitano, S.; Apothéloz-Perret-Gentil, L.; Baussant, T.; Bouchez, A.; Carugati, L.; Cermakova, K.; et al. Environmental DNA Metabarcoding for Benthic Monitoring: A Review of Sediment Sampling and DNA Extraction Methods. Sci. Total Environ. 2022, 818, 151783. [Google Scholar] [CrossRef]
- Kumar, L.; Patel, S.K.S.; Kharga, K.; Kumar, R.; Kumar, P.; Pandohee, J.; Kulshresha, S.; Harjai, K.; Chhibber, S. Molecular Mechanisms and Applications of N-Acyl Homoserine Lactone-Mediated Quorum Sensing in Bacteria. Molecules 2022, 27, 7584. [Google Scholar] [CrossRef]
- Li, Y.-F.; Zhu, X.; Cheng, Z.-Y.; Liang, X.; Zhu, Y.-T.; Feng, D.-D.; Dobretsov, S.; Yang, J.-L. 2(5H)-Furanone Disrupts Bacterial Biofilm Formation and Indirectly Reduces the Settlement of Plantigrades of the Mussel Mytilus Coruscus. Front. Mar. Sci. 2020, 7, 564075. [Google Scholar] [CrossRef]
- Dineshram, R.; Xiao, S.; Ko, G.W.K.; Li, J.; Smrithi, K.; Thiyagarajan, V.; Zhang, Y.; Yu, Z. Ocean Acidification Triggers Cell Signaling, Suppress Immune and Calcification in the Pacific Oyster Larvae. Front. Mar. Sci. 2021, 8, 782583. [Google Scholar] [CrossRef]
- Al-Aqeel, S.; Ryu, T.; Zhang, H.; Chandramouli, K.H.; Ravasi, T. Transcriptome and Proteome Studies Reveal Candidate Attachment Genes during the Development of the Barnacle Amphibalanus Amphitrite. Front. Mar. Sci. 2016, 3, 210171. [Google Scholar] [CrossRef] [Green Version]
- Rees, D.J.; Hanifi, A.; Obille, A.; Alexander, R.; Sone, E.D. Fingerprinting of Proteins That Mediate Quagga Mussel Adhesion Using a De Novo Assembled Foot Transcriptome. Sci. Rep. 2019, 9, 6305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Zhang, R. Identification of Novel Adhesive Proteins in Pearl Oyster by Proteomic and Bioinformatic Analysis. Biofouling 2021, 37, 299–308. [Google Scholar] [CrossRef]
- Dupree, E.J.; Jayathirtha, M.; Yorkey, H.; Mihasan, M.; Petre, B.A.; Darie, C.C. A Critical Review of Bottom-Up Proteomics: The Good, the Bad, and the Future of This Field. Proteomes 2020, 8, 14. [Google Scholar] [CrossRef]
- Slattery, M.; Ankisetty, S.; Corrales, J.; Marsh-Hunkin, K.E.; Gochfeld, D.J.; Willett, K.L.; Rimoldi, J.M. Marine Proteomics: A Critical Assessment of an Emerging Technology. J. Nat. Prod. 2012, 75, 1833–1877. [Google Scholar] [CrossRef] [PubMed]
- Thiyagarajan, V.; Wong, T.; Qian, P.-Y. 2D Gel-Based Proteome and Phosphoproteome Analysis During Larval Metamorphosis in Two Major Marine Biofouling Invertebrates. J. Proteome Res. 2009, 8, 2708–2719. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-F.; Zhang, H.; Wang, H.; Matsumura, K.; Wong, Y.H.; Ravasi, T.; Qian, P.-Y. Quantitative Proteomics Study of Larval Settlement in the Barnacle Balanus Amphitrite. PLoS ONE 2014, 9, e88744. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wong, Y.H.; Wang, H.; Chen, Z.; Arellano, S.M.; Ravasi, T.; Qian, P.-Y. Quantitative Proteomics Identify Molecular Targets That Are Crucial in Larval Settlement and Metamorphosis of Bugula Neritina. J. Proteome Res. 2011, 10, 349–360. [Google Scholar] [CrossRef]
- Dineshram, R.; Chandramouli, K.; Ko, G.W.K.; Zhang, H.; Qian, P.-Y.; Ravasi, T.; Thiyagarajan, V. Quantitative Analysis of Oyster Larval Proteome Provides New Insights into the Effects of Multiple Climate Change Stressors. Glob. Chang. Biol. 2016, 22, 2054–2068. [Google Scholar] [CrossRef]
- Dineshram, R.; Quan, Q.; Sharma, R.; Chandramouli, K.; Yalamanchili, H.K.; Chu, I.; Thiyagarajan, V. Comparative and Quantitative Proteomics Reveal the Adaptive Strategies of Oyster Larvae to Ocean Acidification. Proteomics 2015, 15, 4120–4134. [Google Scholar] [CrossRef]
- Parker, L.; Ross, P.; Raftos, D.; Thompson, E.; O’Connor, W. The Proteomic Response of Larvae of the Sydney Rock Oyster, Saccostrea Glomerata to Elevated PCO2. Aust. Zool. 2012, 35, 1011–1023. [Google Scholar] [CrossRef] [Green Version]
- Tomanek, L.; Zuzow, M.J.; Hitt, L.; Serafini, L.; Valenzuela, J.J. Proteomics of Hyposaline Stress in Blue Mussel Congeners (Genus Mytilus): Implications for Biogeographic Range Limits in Response to Climate Change. J. Exp. Biol. 2012, 215, 3905–3916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, G.H.; Vega, I.E.; Wahl, K.J.; Orihuela, B.; Beyley, V.; Rodriguez, E.N.; Everett, R.K.; Bonaventura, J.; Rittschof, D. Barnacle Cement: A Polymerization Model Based on Evolutionary Concepts. J. Exp. Biol. 2009, 212, 3499–3510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essock-Burns, T.; Soderblom, E.J.; Orihuela, B.; Moseley, M.A.; Rittschof, D. Hypothesis Testing With Proteomics: A Case Study Using Wound Healing Mechanisms in Fluids Associated With Barnacle Glue. Front. Mar. Sci. 2019, 6, 453637. [Google Scholar] [CrossRef] [Green Version]
- Romeu, M.J.; Domínguez-Pérez, D.; Almeida, D.; Morais, J.; Araújo, M.J.; Osório, H.; Campos, A.; Vasconcelos, V.; Mergulhão, F.J. Quantitative Proteomic Analysis of Marine Biofilms Formed by Filamentous Cyanobacterium. Environ. Res. 2021, 201, 111566. [Google Scholar] [CrossRef] [PubMed]
- Avelino-Jiménez, I.A.; Hernández-Maya, L.; Larios-Serrato, V.; Quej-Ake, L.; Castelán-Sánchez, H.; Herrera-Díaz, J.; Garibay-Febles, V.; Rivera-Olvera, J.N.; Zavala-Olivares, G.; Zapata-Peñasco, I. Biofouling and Biocorrosion by Microbiota from a Marine Oil Pipeline: A Metagenomic and Proteomic Approach. J. Environ. Chem. Eng. 2023, 11, 109413. [Google Scholar] [CrossRef]
- Ram, R.J.; VerBerkmoes, N.C.; Thelen, M.P.; Tyson, G.W.; Baker, B.J.; Blake, R.C.; Shah, M.; Hettich, R.L.; Banfield, J.F. Community Proteomics of a Natural Microbial Biofilm. Science 2005, 308, 1915–1920. [Google Scholar] [CrossRef]
- Han, Z.; Sun, J.; Zhang, Y.; He, F.; Xu, Y.; Matsumura, K.; He, L.-S.; Qiu, J.-W.; Qi, S.-H.; Qian, P.-Y. ITRAQ-Based Proteomic Profiling of the Barnacle Balanus Amphitrite in Response to the Antifouling Compound Meleagrin. J. Proteome Res. 2013, 12, 2090–2100. [Google Scholar] [CrossRef]
- Qian, P.-Y.; Wong, Y.H.; Zhang, Y. Changes in the Proteome and Phosphoproteome Expression in the Bryozoan Bugula Neritina Larvae in Response to the Antifouling Agent Butenolide. Proteomics 2010, 10, 3435–3446. [Google Scholar] [CrossRef]
- Liu, R.; Bao, Z.-X.; Zhao, P.-J.; Li, G.-H. Advances in the Study of Metabolomics and Metabolites in Some Species Interactions. Molecules 2021, 26, 3311. [Google Scholar] [CrossRef]
- Gutarowska, B.; Celikkol-Aydin, S.; Bonifay, V.; Otlewska, A.; Aydin, E.; Oldham, A.L.; Brauer, J.I.; Duncan, K.E.; Adamiak, J.; Sunner, J.A.; et al. Metabolomic and High-Throughput Sequencing Analysis—Modern Approach for the Assessment of Biodeterioration of Materials from Historic Buildings. Front. Microbiol. 2015, 6, 154203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favre, L.; Ortalo-Magné, A.; Pichereaux, C.; Gargaros, A.; Burlet-Schiltz, O.; Cotelle, V.; Culioli, G. Metabolome and Proteome Changes between Biofilm and Planktonic Phenotypes of the Marine Bacterium Pseudoalteromonas Lipolytica TC8. Biofouling 2018, 34, 132–148. [Google Scholar] [CrossRef] [PubMed]
- Favre, L.; Ortalo-Magné, A.; Greff, S.; Pérez, T.; Thomas, O.P.; Martin, J.-C.; Culioli, G. Discrimination of Four Marine Biofilm-Forming Bacteria by LC–MS Metabolomics and Influence of Culture Parameters. J. Proteome Res. 2017, 16, 1962–1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobretsov, S.; Rittschof, D. “Omics” Techniques Used in Marine Biofouling Studies. Int. J. Mol. Sci. 2023, 24, 10518. https://doi.org/10.3390/ijms241310518
Dobretsov S, Rittschof D. “Omics” Techniques Used in Marine Biofouling Studies. International Journal of Molecular Sciences. 2023; 24(13):10518. https://doi.org/10.3390/ijms241310518
Chicago/Turabian StyleDobretsov, Sergey, and Daniel Rittschof. 2023. "“Omics” Techniques Used in Marine Biofouling Studies" International Journal of Molecular Sciences 24, no. 13: 10518. https://doi.org/10.3390/ijms241310518
APA StyleDobretsov, S., & Rittschof, D. (2023). “Omics” Techniques Used in Marine Biofouling Studies. International Journal of Molecular Sciences, 24(13), 10518. https://doi.org/10.3390/ijms241310518