Clinical and Molecular Aspects of C2orf71/PCARE in Retinal Diseases
Abstract
:1. Introduction
2. Relevant Sections
2.1. Retina and Photoreceptors
2.2. Biogenesis of Primary Cilium
2.3. OS Disk Neogenesis
2.4. Molecular Aspects of PCARE
2.5. The Function of PCARE in the Retina
2.6. Retinal Diseases Associated with Mutations in C2orf71/PCARE
2.6.1. Retinitis Pigmentosa Type 54
2.6.2. Cone-Rod Dystrophy
Family | Sex | Age | Type of Mutation | Allele 1 | Protein | Allele 2 | Protein | Clinical Phenotype | Refs. |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | (1) Missense (2) Frameshift | c.8G > A | p.Cys3Tyr | c.958_959insA | p.Arg320Glnfs*29 | - | [56] |
2 | M | 10 | Missense | c.85C > T | p.Arg29Trp | c.3748C > T | p.Arg1250Cys | Ring-shaped macular hyper-fluorescence, EZ present in the fovea | [57] |
3 | F | 63 | (1) Frameshift (2) Nonsense | c.402_405del | p.Ser134Argfs*47 | c.3604C > T | p.Arg1202 * | Large patches of hypo, retinal thinning | [39,58,59] |
4 | F | 14 | Missense | c.403G > T | p.Glu135 * | c.403G > T | p.Glu135 * | Small atrophic spots grouped in the foveal area | [60] |
5 | Missense | c.407A > G | p.GLu136Gly | c.3704C > T | p.Pro1235Leu | Peripherally speckled, Retinal thinning, puckering | [54] | ||
6 | F | 20 | Missense | c.478_479insA | p.Cys160 * | c.478_479insA | p.Cys160 * | Outer retinal dystrophy with thinning of the photoreceptor layers, mid-peripheral fundus atrophy, and some bony spicules | [59] |
7 | M | 39 | Nonsense | c.556C > T | p.Gln186 * | c.556C > T | p.Gln186 * | Poor night vision, peripheral bone-spicule-type pigment deposits, attenuation of retinal blood vessels, severe retinal atrophy, and pale appearance of the optic disk. Myopic since childhood | [2] |
M | 37 | Nonsense | c.556C > T | p.Gln186 * | c.556C > T | p.Gln186 * | |||
M | 25 | Nonsense | c.556C > T | p.Gln186 * | c.556C > T | p.Gln186 * | |||
F | - | Nonsense | c.556C > T | p.Gln186 * | c.556C > T | p.Gln186 * | |||
8 | M | 18 | Missense | c.601A > T | p.Ile201Phe | c.601A > T | p.Ile201Phe | Pale optic disc, retina vessels attenuation, bone spicule pigmentation, macular unstructured, atrophy in left macula | [1,61] |
9 | M | 31 | Nonsense | c.712A > T | p.Lys238 * | c.712A > T | p.Lys238 * | RP | [62] |
10 | F | 26 | Nonsense | c.759G > A | p.Trp253 * | c.759G > A | p.Trp253 * | Perifoveal ring, central mottling atrophy ODS, photoreceptor and retinal layer structure loss | [1] |
F | 17 | Nonsense | c.759G > A | p.Trp253 * | c.759G > A | p.Trp253 * | Perifoveal ring, central mottling atrophy ODS, Vitelliform lesion subfoveal, photoreceptor layer loss | ||
M | 26 | Nonsense | c.759G > A | p.Trp253 * | c.759G > A | p.Trp253 * | Foveal sparing, hyper ring macula, hypo background, and many nummular atrophic areas ODS, photoreceptor loss with abnormal retina lamination | ||
M | 41 | Nonsense | c.759G > A | p.Trp253 * | c.759G > A | p.Trp253 * | Extensive widespread hypo, few small hyper areas throughout ODS | ||
M | 20 | Nonsense | c.759G > A | p.Trp253 * | c.759G > A | p.Trp253 * | Extensive widespread hypo, few small hyper areas throughout ODS, photoreceptor loss with a chaotic retinal structure | ||
F | 42 | Nonsense | c.759G > A | p.Trp253 * | c.759G > A | p.Trp253 * | Macular and mid-peripheral speckled, retinal thinning, puckering | ||
M | - | Nonsense | c.759G > A | p.Trp253 * | c.759G > A | p.Trp253 * | Earlier-onset and severe generalized dystrophy (<5 years) associated with nystagmus. | ||
M | - | Nonsense | c.759G > A | p.Trp253 * | c.759G > A | p.Trp253 * | - | ||
11 | M | 48 | Nonsense | c.769A > T | p.Lys257 * | c.769A > T | p.Lys257 * | [63] | |
12 | M | 15 | (1) Nonsense (2) Frameshift | c.802C > T | p.Gln268 * | c.2756_2768del | p.Lys919Thrfs*2 | Perifoveal speckled, retinal thinning | [59] |
13 | F | 38 | (1) Frameshift (2) Missense | c.860dup | p.Leu288Alafs*23 | c.1795T > C | p.Cys599Arg | CRD—severe retinal dysfunction with marked macular atrophy | [3] |
14 | F | 42 | Nonsense | c.920T > A | p.Leu307 * | c.920T > A | p.Leu307 * | Severe peripheral atrophy with pigment, macular, and mid-peripheral speckled hypo/ hyper-AF | [59] |
16 | F | 32 | Frameshift | c.946 del | p.Asn316Metfs*5 | c.946 del | p.Asn316Metfs*5 | RP—night blindness, peripheral bone spicules, and attenuated retinal vessels, but evidence of early degeneration of the cone photoreceptor system | [2] |
F | 31 | Frameshift | c.946 del | p.Asn316Metfs*5 | c.946 del | p.Asn316Metfs*5 | |||
M | 37 | Frameshift | c.946 del | p.Asn316Metfs*5 | c.946 del | p.Asn316Metfs*5 | |||
M | 30 | Frameshift | c.946 del | p.Asn316Metfs*5 | c.946 del | p.Asn316Metfs*5 | |||
17 | M | 18 | (1) Frameshift (2) Nonsense | c.946del | p.Asn316Metfs*7 | c.3002G > A | p.Trp1001 * | Severe retinal dysfunction with marked macular atrophy. | [39,44] |
18 | M | 49 | Frameshift | c.947del | p.Asn316Metfs*7 | c.1709_1728del | p.Gly570Glufs*3 | RP | [53] |
19 | F | 22 | Frameshift | c.1206_1207dup | p.Cys403Serfs*47 | c.1206_1207dup | p.Cys403Serfs*47 | Macular and mid-peripheral speckled, retinal thinning, puckering | [59] |
20 | M | 47 | Nonsense | c.1273C > T | p.Arg425 * | c.3002G > A | p.Trp1001 * | Macular and nasal patchy hypo, retinal thinning, puckering | |
21 | M | 45 | Nonsense | c.1273C > T | p.Arg425 * | c.1514G > A | p.Trp505 * | Childhood. Bilateral retinal vascular attenuation, bone spicule-like pigmentation in the mid-periphery retina, RPE degeneration, pale optic discs. | [64] |
22 | M | 25 | Frameshift | c.1709_1728del | p.Gly570Glufs*3 | c.1709_1728del | p.Gly570Glufs*3 | Macular large hypo area, speckled to mid-peripheral, retinal thinning | [53] |
F | 50 | Frameshift | c.1709_1728del | p.Gly570Glufs*3 | c.1709_1728del | p.Gly570Glufs*3 | Retinal thinning, ORT | ||
23 | M | 13 | Frameshift | c.1709_1728del | p.Gly570Glufs*3 | c.2227_2228del | p.Leu744Glufs*7 | CRD—Moderately heterogeneous macula, periphery normal, retinal thinning, loss of IS/OS | |
M | 22 | Frameshift | c.1709_1728del | p.Gly570Glufs*3 | c.2227_2228del | p.Leu744Glufs*7 | CRD—Heterogeneous macula, periphery normal, retinal thinning, loss of IS/OS | ||
24 | F | - | Frameshift | c.1764del | p.Glu589Argfs*156 | c.1764del | p.Glu589Argfs*156 | RP | [65] |
F | - | Frameshift | c.1764del | p.Glu589Argfs*156 | c.1764del | p.Glu589Argfs*156 | RP | [44] | |
25 | F | 12 | Missense | c.1795T > C | p.Cys599Arg | c.1795T > C | p.Cys599Arg | Night blindness, visual field constriction, decreased visual acuity, photophobia, abnormal color, and vision Pale optic nerve disks narrowed blood vessels, and bone spicule pigmentation in the periphery | [66] |
26 | F | 24 | Nonsense | c.1837C > T | p.Arg613 * | c.1837C > T | p.Arg613 * | - | [67] |
27 | F | 34 | (1) Nonsense (2) Frameshift | c.1837C > T | p.Arg613 * | c.3358_3359del | p.His1120Phefs*12 | Macular speckled, retinal thinning | [59] |
28 | - | Nonsense | c.1949G > A | p.Trp650 * | c.1949G > A | p.Trp650 * | CRD—primary photophobia and central vision loss associated with predominant central involvement in autofluorescence imaging | [52] | |
29 | F | 8 | Nonsense | c.1949G > A | p.Trp650 * | c.1949G > A | p.Trp650 * | Retinal thinning | |
30 | M | 28 | Frameshift | c.1979_ 1982delGCAA | p.Ser660Thrfs*84 | c.1804_ 1805delAG | p.His603Argfs*76 | - | [28] |
31 | Missense | c.2176C > G | p.Pro726Ala | c.3377C > T | p.Ala1126Val | - | [54] | ||
32 | M | 20 | Frameshift | c.2327dup | p.Leu777Phefs*34 | c.2328_2344del | p.Leu777Asnfs*28 | Perifoveal and mid-peripheral speckled, retinal thinning | [59] |
M | 14 | Frameshift | c.2327dup | p.Leu777Phefs*34 | c.2328_2344del | p.Leu777Asnfs*28 | Foveal sparing hypo, speckled periphery, spared mid-periphery, retinal thinning | ||
33 | M | Early childhood | (1) Frameshift (2) Nonsense | c.2327dup | p.Leu777Phefs*34 | c.2950C > T | p.Arg984 * | Foveal sparing hypo, speckled periphery, spared periphery, retinal thinning, ORT. | [44] |
34 | F | 6 | Frameshift | c.2756del13 | p.Lys919Thrfs * | c.2756del13 | p.Lys919Thrfs * | Peripheral-field loss, extinct ERGs, and bone-spiculated pigmentation in the peripheral retina | [2,39] |
M | 47 | Frameshift | c.2756del13 | p.Lys919Thrfs * | c.2756del13 | p.Lys919Thrfs * | |||
M | 59 | Frameshift | c.2756del13 | p.Lys919Thrfs * | c.2756del13 | p.Lys919Thrfs * | |||
35 | M | - | Frameshift | c.2756del13 | p.Lys919Thrfs * | c.2756del13 | p.Lys919Thrfs * | ||
36 | Nonsense | c.2950C > T | p.Arg984 * | c.2950C > T | p.Arg984 * | RP—Extensive chorioretinal atrophy, retinal thinning of the foveal region and choroidal hyperreflectivity by window defect, “speckled” AF, granular pattern, optic disc pallor extending beyond the vascular arcades without peripapillary sparing. CRD- primary photophobia and central vision loss associated with predominant central involvement | [44,52] | ||
37 | M | 32 | Nonsense | c.3002G > A | p.Trp1001 * | c.3002G > A | p.Trp1001 * | Macular and mid-peripheral speckled, retinal thinning, forming ORT | [59] |
38 | M | 25 | (1) Missense (2) Frameshift | c.3039dupC | p.Ser1014Leufs*93 | c.1804_ 1805delAG | p.His603Argfs | Early-onset of CRD, well-circumscribed ring-shaped area of choroidal and RPE atrophy surrounding the fovea in the left eye and small white patches of atrophy around the fovea in the right eye | [3,39] |
39 | (1) Frameshift (2) Missense | c.3099_ 3100insCAGG | p.Val1034fs | c.3099T > C | p.Pro1033Pro | RP | [68] | ||
40 | F | 49 | Missense | c.3370T > C | p.Cys1124Arg | c.2600C > T | p.Pro867Leu | - | [28] |
2.7. C2orf71-Related Disease Clinical Features
2.8. Other C2orf71-Related Pathologies
2.9. Animals Used for Studying C2orf71/PCARE Mutation
2.10. In Vitro Models for C2orf71/PCARE Studies
2.11. Therapies to Treat IRDs
2.12. Perspectives and Future Directions
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nishimura, D.Y.; Baye, L.M.; Perveen, R.; Searby, C.C.; Avila-Fernandez, A.; Pereiro, I.; Ayuso, C.; Valverde, D.; Bishop, P.N.; Manson, F.D.C.; et al. Discovery and Functional Analysis of a Retinitis Pigmentosa Gene, C2ORF71. Am. J. Hum. Genet. 2010, 86, 686–695. [Google Scholar] [CrossRef] [Green Version]
- Collin, R.W.J.; Safieh, C.; Littink, K.W.; Shalev, S.A.; Garzozi, H.J.; Rizel, L.; Abbasi, A.H.; Cremers, F.P.M.; den Hollander, A.I.; Klevering, B.J.; et al. Mutations in C2ORF71 Cause Autosomal-Recessive Retinitis Pigmentosa. Am. J. Hum. Genet. 2010, 86, 783–788. [Google Scholar] [CrossRef] [Green Version]
- Serra, R.; Floris, M.; Pinna, A.; Boscia, F.; Cucca, F.; Angius, A. Novel mutations in c2orf71 causing an early onset form of cone-rod dystrophy: A molecular diagnosis after 20 years of clinical follow-up. Mol. Vis. 2019, 25, 814. [Google Scholar]
- Kevany, B.M.; Zhang, N.; Jastrzebska, B.; Palczewski, K. Animals deficient in C2Orf71, an autosomal recessive retinitis pigmentosa-associated locus, develop severe early-onset retinal degeneration. Hum. Mol. Genet. 2015, 24, 2627–2640. [Google Scholar] [CrossRef] [Green Version]
- Mahabadi, N.; Khalili, Y. Al Neuroanatomy, Retina; StatPearls: Tampa, FL, USA, 2022. [Google Scholar]
- Kolb, H.; Fernandez, E.; Nelson, R. “Retinal circuits”. Webvision 1995. Moran Eye Center, Web. (April 2023). Available online: https://webvision.med.utah.edu/book/part-iii-retinal-circuits/ (accessed on 1 May 2023).
- Stenkamp, D.L. Development of the Vertebrate Eye and Retina. Prog. Mol. Biol. Transl. Sci. 2015, 134, 397–414. [Google Scholar] [CrossRef] [Green Version]
- Strauss, O. The retinal pigment epithelium in visual function. Physiol. Rev. 2005, 85, 845–881. [Google Scholar] [CrossRef] [Green Version]
- Young, R.W. The renewal of photoreceptor cell outer segments. J. Cell Biol. 1967, 33, 61–72. [Google Scholar] [CrossRef]
- Yildiz, O.; Khanna, H. Ciliary signaling cascades in photoreceptors. Vis. Res. 2012, 75, 112–116. [Google Scholar] [CrossRef] [Green Version]
- Wensel, T.G.; Potter, V.L.; Moye, A.; Zhang, Z.; Robichaux, M.A. Structure and dynamics of photoreceptor sensory cilia. Pflug. Arch. Eur. J. Physiol. 2021, 473, 1517–1537. [Google Scholar] [CrossRef]
- Corral-Serrano, J.C.; Lamers, I.J.C.; Van Reeuwijk, J.; Duijkers, L.; Hoogendoorn, A.D.M.; Yildirim, A.; Argyrou, N.; Ruigrok, R.A.A.; Letteboer, S.J.F.; Butcher, R.; et al. PCARE and WASF3 regulate ciliary F-actin assembly that is required for the initiation of photoreceptor outer segment disk formation. Proc. Natl. Acad. Sci. USA 2020, 117, 9922–9931. [Google Scholar] [CrossRef] [Green Version]
- Pazour, G.J.; Witman, G.B. The vertebrate primary cilium is a sensory organelle. Curr. Opin. Cell Biol. 2003, 15, 105–110. [Google Scholar] [CrossRef]
- Smith, C.E.L.; Lake, A.V.R.; Johnson, C.A. Primary Cilia, Ciliogenesis and the Actin Cytoskeleton: A Little Less Resorption, A Little More Actin Please. Front. Cell Dev. Biol. 2020, 8, 1586. [Google Scholar] [CrossRef]
- Chen, H.Y.; Kelley, R.A.; Li, T.; Swaroop, A. Primary cilia biogenesis and associated retinal ciliopathies. Semin. Cell Dev. Biol. 2021, 110, 70–88. [Google Scholar] [CrossRef]
- Baehr, W.; Hanke-Gogokhia, C.; Sharif, A.; Reed, M.; Dahl, T.; Frederick, J.M.; Ying, G. Insights into Photoreceptor Ciliogenesis Revealed by Animal Models. Prog. Retin. Eye Res. 2019, 71, 26. [Google Scholar] [CrossRef]
- Sánchez-Bellver, L.; Toulis, V.; Marfany, G. On the Wrong Track: Alterations of Ciliary Transport in Inherited Retinal Dystrophies. Front. Cell Dev. Biol. 2021, 9, 401. [Google Scholar] [CrossRef]
- Rachel, R.A.; Yamamoto, E.A.; Dewanjee, M.K.; May-Simera, H.L.; Sergeev, Y.V.; Hackett, A.N.; Pohida, K.; Munasinghe, J.; Gotoh, N.; Wickstead, B.; et al. CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies. Hum. Mol. Genet. 2015, 24, 3775–3791. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Gonzalo, F.R.; Reiter, J.F. Open Sesame: How Transition Fibers and the Transition Zone Control Ciliary Composition. Cold Spring Harb. Perspect. Biol. 2017, 9, a028134. [Google Scholar] [CrossRef] [Green Version]
- Rachel, R.A.; Li, T.; Swaroop, A. Photoreceptor sensory cilia and ciliopathies: Focus on CEP290, RPGR and their interacting proteins. Cilia 2012, 1, 22. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.H.; Bessette, A.J.; Weinberger, A.H.; Sheffer, C.E.; Mckee, S.A. Photoreceptor Renewal: A Role for Peripherin/rds Kathleen. Physiol. Behav. 2016, 92, 135–140. [Google Scholar]
- Chaitin, M.H.; Schneider, B.G.; Hall, M.O.; Papermaster, D.S. Actin in the photoreceptor connecting cilium: Immunocytochemical localization to the site of outer segment disk formation. J. Cell Biol. 1984, 99, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Wensel, T.G.; Zhang, Z.; Anastassov, I.A.; Gilliam, J.C.; He, F.; Schmid, M.F.; Robichaux, M.A. Structural and Molecular Bases of Rod Photoreceptor Morphogenesis and Disease. Prog. Retin. Eye Res. 2016, 55, 32. [Google Scholar] [CrossRef] [Green Version]
- Insinna, C.; Besharse, J.C. Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Dev. Dyn. 2008, 237, 1982–1992. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Cuzcano, A.; Roepman, R.; Cremers, F.P.M.; Hollander, A.I.D.; Mans, D.A. Non-syndromic retinal ciliopathies: Translating gene discovery into therapy. Hum. Mol. Genet. 2012, 21, R111–R124. [Google Scholar] [CrossRef] [Green Version]
- Ran, J.; Zhou, J. Targeting the photoreceptor cilium for the treatment of retinal diseases. Acta Pharmacol. Sin. 2020, 41, 1410. [Google Scholar] [CrossRef]
- Megaw, R.; Hurd, T.W. Photoreceptor actin dysregulation in syndromic and non-syndromic retinitis pigmentosa. Biochem. Soc. Trans. 2018, 46, 1463–1473. [Google Scholar] [CrossRef]
- Takahashi, V.K.L.; Xu, C.L.; Takiuti, J.T.; Apatoff, M.B.L.; Duong, J.K.; Mahajan, V.B.; Tsang, S.H. Comparison of structural progression between ciliopathy and non-ciliopathy associated with autosomal recessive retinitis pigmentosa. Orphanet J. Rare Dis. 2019, 14, 187. [Google Scholar] [CrossRef] [Green Version]
- Bujakowska, K.M.; Liu, Q.; Pierce, E.A. Photoreceptor cilia and retinal ciliopathies. Cold Spring Harb. Perspect. Biol. 2017, 9, a028274. [Google Scholar] [CrossRef]
- Sergouniotis, P.I.; Li, Z.; Mackay, D.S.; Wright, G.A.; Borman, A.D.; Devery, S.R.; Moore, A.T.; Webster, A.R. A survey of DNA variation of C2oRF71 in probands with progressive autosomal recessive retinal degeneration and controls. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1880–1886. [Google Scholar] [CrossRef] [Green Version]
- Corral-Serrano, J.C.; Messchaert, M.; Dona, M.; Peters, T.A.; Kamminga, L.M.; Van Wijk, E.; Collin, R.W.J. C2orf71a/pcare1 is important for photoreceptor outer segment morphogenesis and visual function in zebrafish. Sci. Rep. 2018, 8, 9675. [Google Scholar] [CrossRef] [Green Version]
- Afanasyeva, T.A.V.; Schnellbach, Y.T.; Gibson, T.J.; Roepman, R.; Collin, R.W.J. PCARE requires coiled coil, RP62 kinase-binding and EVH1 domain-binding motifs for ciliary expansion. Hum. Mol. Genet. 2022, 31, 2560–2570. [Google Scholar] [CrossRef]
- Omori, Y.; Chaya, T.; Katoh, K.; Kajimura, N.; Sato, S.; Muraoka, K.; Ueno, S.; Koyasu, T.; Kondo, M.; Furukawa, T. Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival. Proc. Natl. Acad. Sci. USA 2010, 107, 22671–22676. [Google Scholar] [CrossRef] [Green Version]
- Ball, L.J.; Jarchau, T.; Oschkinat, H.; Walter, U. EVH1 domains: Structure, function and interactions. FEBS Lett. 2002, 513, 45–52. [Google Scholar] [CrossRef]
- Alekhina, O.; Burstein, E.; Billadeau, D.D. Cellular functions of WASP family proteins at a glance. J. Cell Sci. 2017, 130, 2235. [Google Scholar] [CrossRef] [Green Version]
- Pollitt, A.Y.; Insall, R.H. WASP and SCAR/WAVE proteins: The drivers of actin assembly. J. Cell Sci. 2009, 122, 2575–2578. [Google Scholar] [CrossRef] [Green Version]
- Nager, A.R.; Goldstein, J.S.; Herranz-Pérez, V.; Portran, D.; Ye, F.; Manuel Garcia-Verdugo, J.; Nachury, M.V. An actin network dispatches ciliary GPCRs into extracellular vesicles to modulate signaling. Cell 2017, 168, 252–263. [Google Scholar] [CrossRef] [Green Version]
- Sahel, J.A.; Marazova, K.; Audo, I. Clinical characteristics and current therapies for inherited retinal degenerations. Cold Spring Harb. Perspect. Med. 2014, 5, a017111. [Google Scholar] [CrossRef]
- Karali, M.; Testa, F.; Di Iorio, V.; Torella, A.; Zeuli, R.; Scarpato, M.; Romano, F.; Onore, M.E.; Pizzo, M.; Melillo, P.; et al. Genetic epidemiology of inherited retinal diseases in a large patient cohort followed at a single center in Italy. Sci. Rep. 2022, 12, 20815. [Google Scholar] [CrossRef]
- Reiter, J.F.; Leroux, M.R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 2017, 18, 533. [Google Scholar] [CrossRef]
- Focşa, I.O.; Budişteanu, M.; Bǎlgrǎdean, M. Clinical and genetic heterogeneity of primary ciliopathies (Review). Int. J. Mol. Med. 2021, 48, 176. [Google Scholar] [CrossRef]
- Verbakel, S.K.; van Huet, R.A.C.; Boon, C.J.F.; den Hollander, A.I.; Collin, R.W.J.; Klaver, C.C.W.; Hoyng, C.B.; Roepman, R.; Klevering, B.J. Non-syndromic retinitis pigmentosa. Prog. Retin. Eye Res. 2018, 66, 157–186. [Google Scholar] [CrossRef]
- Menghini, M.; Cehajic-Kapetanovic, J.; MacLaren, R.E. Monitoring progression of retinitis pigmentosa: Current recommendations and recent advances. Expert Opin. Orphan Drugs 2020, 8, 67–78. [Google Scholar] [CrossRef]
- Audo, I.; Lancelot, M.; Mohand-Saïd, S.; Antonio, A.; Germain, A.; Sahel, J.; Bhattacharya, S.S.; Zeitz, C. Novel C2orf71 mutations account for ∼1% of cases in a large French arRP cohort. Hum. Mutat. 2011, 32, E2091–E2103. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.P.; Bosch, D.G.M.; Siemiatkowska, A.M.; Rendtorff, N.D.; Boonstra, F.N.; Möller, C.; Tranebjærg, L.; Katsanis, N.; Cremers, F.P.M. Putative digenic inheritance of heterozygous RP1L1 and C2orf71 null mutations in syndromic retinal dystrophy. Ophthalmic Genet. 2017, 38, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Flannery, J.G. Transgenic Animal Models for the Study of Inherited Retinal Dystrophies. ILAR J. 1999, 40, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Winkler, P.A.; Occelli, L.M.; Petersen-Jones, S.M. Large Animal Models of Inherited Retinal Degenerations: A Review. Cells 2020, 9, 882. [Google Scholar] [CrossRef] [Green Version]
- Gill, J.S.; Georgiou, M.; Kalitzeos, A.; Moore, A.T.; Michaelides, M. Progressive cone and cone-rod dystrophies: Clinical features, molecular genetics and prospects for therapy. Br. J. Ophthalmol. 2019, 103, 711. [Google Scholar] [CrossRef] [Green Version]
- Boulanger-Scemama, E.; Mohand-Saïd, S.; El Shamieh, S.; Démontant, V.; Condroyer, C.; Antonio, A.; Michiels, C.; Boyard, F.; Saraiva, J.P.; Letexier, M.; et al. Phenotype Analysis of Retinal Dystrophies in Light of the Underlying Genetic Defects: Application to Cone and Cone-Rod Dystrophies. Int. J. Mol. Sci. 2019, 20, 4854. [Google Scholar] [CrossRef] [Green Version]
- Hamel, C.P. Cone rod dystrophies. Orphanet J. Rare Dis. 2007, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Yokochi, M.; Li, D.; Horiguchi, M.; Kishi, S. Inverse pattern of photoreceptor abnormalities in retinitis pigmentosa and cone-rod dystrophy. Doc. Ophthalmol. 2012, 125, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Boulanger-Scemama, E.; El Shamieh, S.; Démontant, V.; Condroyer, C.; Antonio, A.; Michiels, C.; Boyard, F.; Saraiva, J.-P.; Letexier, M.; Souied, E.; et al. Next-generation sequencing applied to a large French cone and cone-rod dystrophy cohort: Mutation spectrum and new genotype-phenotype correlation. Orphanet J. Rare Dis. 2015, 10, 85. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.; Bahr, A.; Bähr, L.; Fleischhauer, J.; Zinkernagel, M.S.; Winkler, N.; Barthelmes, D.; Berger, L.; Gerth-Kahlert, C.; Neidhardt, J.; et al. Next generation sequencing based identification of disease-associated mutations in Swiss patients with retinal dystrophies. Sci. Rep. 2016, 6, 28755. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Guan, L.; Shen, T.; Zhang, J.; Xiao, X.; Jiang, H.; Li, S.; Yang, J.; Jia, X.; Yin, Y.; et al. Mutations of 60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. Hum. Genet. 2014, 133, 1255–1271. [Google Scholar] [CrossRef]
- Haer-Wigman, L.; Van Zelst-Stams, W.A.G.; Pfundt, R.; Van Den Born, L.I.; Klaver, C.C.W.; Verheij, J.B.G.M.; Hoyng, C.B.; Breuning, M.H.; Boon, C.J.F.; Kievit, A.J.; et al. Diagnostic exome sequencing in 266 Dutch patients with visual impairment. Eur. J. Hum. Genet. 2017, 25, 591. [Google Scholar] [CrossRef]
- Liu, W.; Liu, S.; Li, P.; Yao, K. Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. Int. J. Mol. Sci. 2022, 23, 4883. [Google Scholar] [CrossRef]
- Katagiri, S.; Akahori, M.; Sergeev, Y.; Yoshitake, K.; Ikeo, K.; Furuno, M.; Hayashi, T.; Kondo, M.; Ueno, S.; Tsunoda, K.; et al. Whole exorne analysis identifies frequent CNGA 1 mutations in japanese population with autosomal recessive retinitis pigmentosa. PLoS ONE 2014, 9, e108721. [Google Scholar] [CrossRef]
- Lam, B.L.; Leroy, B.P.; Black, G.; Ong, T.; Yoon, D.; Trzupek, K. Genetic testing and diagnosis of inherited retinal diseases. Orphanet J. Rare Dis. 2021, 16, 514. [Google Scholar] [CrossRef]
- Gerth-Kahlert, C.; Tiwari, A.; Hanson, J.V.M.; Batmanabane, V.; Traboulsi, E.; Pennesi, M.E.; Al-Qahtani, A.A.; Lam, B.L.; Heckenlively, J.; Zweifel, S.A.; et al. C2orf71 mutations as a frequent cause of autosomal-recessive retinitis pigmentosa: Clinical analysis and presentation of 8 novel mutations. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3840–3850. [Google Scholar] [CrossRef] [Green Version]
- Bocquet, B.; Marzouka, N.A.D.; Hebrard, M.; Manes, G.; Sénéchal, A.; Meunier, I.; Hamel, C.P. Homozygosity mapping in autosomal recessive retinitis pigmentosa families detects novel mutations. Mol. Vis. 2013, 19, 2487–2500. [Google Scholar]
- Sánchez-Alcudia, R.; Cortón, M.; Ávila-Fernández, A.; Zurita, O.; Tatu, S.D.; Pérez-Carro, R.; Fernandez-San Jose, P.; Lopez-Martinez, M.Á.; del Castillo, F.J.; Millan, J.M.; et al. Contribution of Mutation Load to the Intrafamilial Genetic Heterogeneity in a Large Cohort of Spanish Retinal Dystrophies Families. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7562–7571. [Google Scholar] [CrossRef] [Green Version]
- Beheshtian, M.; Rad, S.S.; Babanejad, M.; Mohseni, M.; Hashemi, H.; Eshghabadi, A.; Hajizadeh, F.; Akbari, M.R.; Kahrizi, K.; Esfahani, M.R.; et al. Impact of whole exome sequencing among iranian patients with autosomal recessive retinitis pigmentosa. Arch. Iran. Med. 2015, 18, 776–785. [Google Scholar]
- Fu, Q.; Wang, F.; Wang, H.; Xu, F.; Zaneveld, J.E.; Ren, H.; Keser, V.; Lopez, I.; Tuan, H.F.; Salvo, J.S.; et al. Next-Generation Sequencing–Based Molecular Diagnosis of a Chinese Patient Cohort With Autosomal Recessive Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4158. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Cui, H.; Yin, X.; Dou, H.; Zhao, L.; Chen, N.; Zhang, J.; Zhang, H.; Li, G.; Ma, Z. Dependable and Efficient Clinical Molecular Diagnosis of Chinese RP Patient with Targeted Exon Sequencing. PLoS ONE 2015, 10, e0140684. [Google Scholar] [CrossRef]
- Coppieters, F.; Van Schil, K.; Bauwens, M.; Verdin, H.; De Jaegher, A.; Syx, D.; Sante, T.; Lefever, S.; Abdelmoula, N.B.; Depasse, F.; et al. Identity-by-descent-guided mutation analysis and exome sequencing in consanguineous families reveals unusual clinical and molecular findings in retinal dystrophy. Genet. Med. 2014, 16, 671–680. [Google Scholar] [CrossRef] [Green Version]
- Del Pozo, M.G.; Méndez-Vidal, C.; Bravo-Gil, N.; Vela-Boza, A.; Dopazo, J.; Borrego, S.; Antiñolo, G. Exome Sequencing Reveals Novel and Recurrent Mutations with Clinical Significance in Inherited Retinal Dystrophies. PLoS ONE 2014, 9, e116176. [Google Scholar] [CrossRef]
- Mendonca, L.S.; Avila, M.P.; Silva, I.M.B.M.; Lavigne, L.C.; Oliveira, T.; Chiang, J.; Jordao, A.; Thome Rassi, A.; Chaves, L.F.; Chaves, L.A.R. Novel nonsense mutation in C2orf71 gene in a brazilian patient with autosomal recessive cone-rod dystrophy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3275. [Google Scholar]
- Bravo-Gil, N.; González-Del Pozo, M.; Martín-Sánchez, M.; Méndez-Vidal, C.; Rodríguez-De La Rúa, E.; Borrego, S.; Antiñolo, G. Unravelling the genetic basis of simplex Retinitis Pigmentosa cases. Sci. Rep. 2017, 7, 41937. [Google Scholar] [CrossRef] [Green Version]
- Sharon, D.; Wimberg, H.; Kinarty, Y.; Koch, K.W. Genotype-functional-phenotype correlations in photoreceptor guanylate cyclase (GC-E) encoded by GUCY2D. Prog. Retin. Eye Res. 2018, 63, 69–91. [Google Scholar] [CrossRef]
- Corral Serrano, J.C. Molecular Insights into PCARE-Associated Retinal Disease; Radboud University: Nijmegen, The Netherlands, 2018; ISBN 9789463800310. [Google Scholar]
- Berger, W.; Kloeckener-Gruissem, B.; Neidhardt, J. The molecular basis of human retinal and vitreoretinal diseases. Prog. Retin. Eye Res. 2010, 29, 335–375. [Google Scholar] [CrossRef] [Green Version]
- Schorderet, D.F.; Iouranova, A.; Favez, T.; Tiab, L.; Escher, P. IROme, a New High-Throughput Molecular Tool for the Diagnosis of Inherited Retinal Dystrophies. Biomed Res. Int. 2013, 2013, 198089. [Google Scholar] [CrossRef] [Green Version]
- Khateb, S.; Zelinger, L.; Mizrahi-Meissonnier, L.; Ayuso, C.; Koenekoop, R.K.; Laxer, U.; Gross, M.; Banin, E.; Sharon, D. A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome. J. Med. Genet. 2014, 51, 460–469. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; He, Y.; Li, R.; Zhao, X. Association of chromosome 2 open reading frame 71 in colorectal cancer susceptibility. Int. J. Clin. Oncol. 2022, 28, 240–254. [Google Scholar] [CrossRef]
- Slijkerman, R.W.N.; Song, F.; Astuti, G.D.N.; Huynen, M.A.; van Wijk, E.; Stieger, K.; Collin, R.W.J. The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Prog. Retin. Eye Res. 2015, 48, 137–159. [Google Scholar] [CrossRef]
- Chang, B. Mouse models for studies of retinal degeneration and diseases. In Retinal Degeneration: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2023; pp. 27–39. [Google Scholar] [CrossRef] [Green Version]
- Lewis, T.W.; Mellersh, C.S. Changes in mutation frequency of eight Mendelian inherited disorders in eight pedigree dog populations following introduction of a commercial DNA test. PLoS ONE 2019, 14, e0209864. [Google Scholar] [CrossRef]
- Downs, L.M.; Bell, J.S.; Freeman, J.; Hartley, C.; Hayward, L.J.; Mellersh, C.S. Late-onset progressive retinal atrophy in the Gordon and Irish Setter breeds is associated with a frameshift mutation in C2orf71. Anim. Genet. 2013, 44, 169–177. [Google Scholar] [CrossRef]
- Downs, L.M.; Hitti, R.; Pregnolato, S.; Mellersh, C.S. Genetic screening for PRA-associated mutations in multiple dog breeds shows that PRA is heterogeneous within and between breeds. Vet. Ophthalmol. 2014, 17, 126–130. [Google Scholar] [CrossRef]
- Good, K.L.; Komáaromy, A.M.; Kass, P.H.; Ofri, R. Novel retinopathy in related Gordon setters: A clinical, behavioral, electrophysiological, and genetic investigation. Vet. Ophthalmol. 2016, 19, 398–408. [Google Scholar] [CrossRef]
- Svensson, M.; Olsén, L.; Winkler, P.A.; Petersen-Jones, S.M.; Bergström, T.; Garncarz, Y.; Narfström, K. Progressive retinal atrophy in the Polski Owczarek Nizinny dog: A clinical and genetic study. Vet. Ophthalmol. 2016, 19, 195–205. [Google Scholar] [CrossRef]
- Karlskov-Mortensen, P.; Proschowsky, H.F.; Gao, F.; Fredholm, M. Identification of the mutation causing progressive retinal atrophy in Old Danish Pointing Dog. Anim. Genet. 2018, 49, 237–241. [Google Scholar] [CrossRef]
- Pollara, L.; Sottile, V.; Valente, E.M. Patient-derived cellular models of primary ciliopathies. J. Med. Genet. 2022, 59, 517–527. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Isla-Magrané, H.; Zufiaurre-Seijo, M.; García-Arumí, J.; Duarri, A. All-trans retinoic acid modulates pigmentation, neuroretinal maturation, and corneal transparency in human multiocular organoids. Stem Cell Res. Ther. 2022, 13, 376. [Google Scholar] [CrossRef]
- Isla-Magrané, H.; Veiga, A.; García-Arumí, J.; Duarri, A. Multiocular organoids from human induced pluripotent stem cells displayed retinal, corneal, and retinal pigment epithelium lineages. Stem Cell Res. Ther. 2021, 12, 581. [Google Scholar] [CrossRef]
- Komuta, Y.; Ishii, T.; Kaneda, M.; Ueda, Y.; Miyamoto, K.; Toyoda, M.; Umezawa, A.; Seko, Y. In vitro transdifferentiation of human peripheral blood mononuclear cells to photoreceptor-like cells. Biol. Open 2016, 5, 709–719. [Google Scholar] [CrossRef] [Green Version]
- May-Simera, H.L.; Wan, Q.; Jha, B.S.; Hartford, J.; Khristov, V.; Dejene, R.; Chang, J.; Patnaik, S.; Lu, Q.; Banerjee, P.; et al. Primary Cilium-Mediated Retinal Pigment Epithelium Maturation Is Disrupted in Ciliopathy Patient Cells. Cell Rep. 2018, 22, 189. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Zhou, J.; Meng, X. Primary cilia in retinal pigment epithelium development and diseases. J. Cell. Mol. Med. 2021, 25, 9084. [Google Scholar] [CrossRef]
- Nguyen, X.-T.-A.; Moekotte, L.; Plomp, A.S.; Bergen, A.A.; van Genderen, M.M.; Boon, C.J.F. Retinitis Pigmentosa: Current Clinical Management and Emerging Therapies. Int. J. Mol. Sci. 2023, 24, 7481. [Google Scholar] [CrossRef]
- Botto, C.; Rucli, M.; Tekinsoy, M.D.; Pulman, J.; Sahel, J.A.; Dalkara, D. Early and late stage gene therapy interventions for inherited retinal degenerations. Prog. Retin. Eye Res. 2022, 86, 100975. [Google Scholar] [CrossRef]
- Ayton, L.N.; Barnes, N.; Dagnelie, G.; Fujikado, T.; Goetz, G.; Hornig, R.; Jones, B.W.; Muqit, M.M.K.; Rathbun, D.L.; Stingl, K.; et al. An update on retinal prostheses. Clin. Neurophysiol. 2020, 131, 1383–1398. [Google Scholar] [CrossRef]
- Mandai, M. Pluripotent stem cell-derived retinal organoid/cells for retinal regeneration therapies: A review. Regen. Ther. 2023, 22, 59. [Google Scholar] [CrossRef]
- Wu, K.Y.; Kulbay, M.; Toameh, D.; Xu, A.Q.; Kalevar, A.; Arango-Gonzalez, B.; Wu, K.Y.; Kulbay, M.; Toameh, D.; Xu, A.Q.; et al. Retinitis Pigmentosa: Novel Therapeutic Targets and Drug Development. Pharmaceutics 2023, 15, 685. [Google Scholar] [CrossRef]
- Cross, N.; van Steen, C.; Zegaoui, Y.; Satherley, A.; Angelillo, L. Current and Future Treatment of Retinitis Pigmentosa. Clin. Ophthalmol. 2022, 16, 2909–2921. [Google Scholar] [CrossRef]
- Carrella, S.; Indrieri, A.; Franco, B.; Banfi, S. Mutation-Independent Therapies for Retinal Diseases: Focus on Gene-Based Approaches. Front. Neurosci. 2020, 14, 588234. [Google Scholar] [CrossRef]
- Russell, S.; Bennett, J.; Wellman, J.A.; Chung, D.C.; Yu, Z.F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; McCague, S.; et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet 2017, 390, 849. [Google Scholar] [CrossRef]
- Maguire, A.M.; Russell, S.; Chung, D.C.; Yu, Z.F.; Tillman, A.; Drack, A.V.; Simonelli, F.; Leroy, B.P.; Reape, K.Z.; High, K.A.; et al. Durability of Voretigene Neparvovec for Biallelic RPE65-Mediated Inherited Retinal Disease: Phase 3 Results at 3 and 4 Years. Ophthalmology 2021, 128, 1460–1468. [Google Scholar] [CrossRef]
- Awadh Hashem, S.; Georgiou, M.; Ali, R.R.; Michaelides, M. RPGR-Related Retinopathy: Clinical Features, Molecular Genetics, and Gene Replacement Therapy. Cold Spring Harb. Perspect. Med. 2023, 13, a041280. [Google Scholar] [CrossRef]
- Faber, S.; Mercey, O.; Junger, K.; Garanto, A.; May-Simera, H.; Ueffing, M.; Collin, R.W.; Boldt, K.; Guichard, P.; Hamel, V.; et al. Gene augmentation of LCA5-associated Leber congenital amaurosis ameliorates bulge region defects of the photoreceptor ciliary axoneme. JCI Insight 2023, 8, e169162. [Google Scholar] [CrossRef]
- Aguirre, G.D.; Cideciyan, A.V.; Dufour, V.L.; Ripolles-García, A.; Sudharsan, R.; Swider, M.; Nikonov, R.; Iwabe, S.; Boye, S.L.; Hauswirth, W.W.; et al. Gene therapy reforms photoreceptor structure and restores vision in NPHP5-associated Leber congenital amaurosis. Mol. Ther. 2021, 29, 2456–2468. [Google Scholar] [CrossRef]
- Kruczek, K.; Qu, Z.; Welby, E.; Shimada, H.; Hiriyanna, S.; English, M.A.; Zein, W.M.; Brooks, B.P.; Swaroop, A. In vitro modeling and rescue of ciliopathy associated with IQCB1/NPHP5 mutations using patient-derived cells. Stem Cell Rep. 2022, 17, 2172–2186. [Google Scholar] [CrossRef]
- Brydon, E.M.; Bronstein, R.; Buskin, A.; Lako, M.; Pierce, E.A.; Fernandez-Godino, R. AAV-Mediated Gene Augmentation Therapy Restores Critical Functions in Mutant PRPF31+/− iPSC-Derived RPE Cells. Mol. Ther. Methods Clin. Dev. 2019, 15, 392. [Google Scholar] [CrossRef]
- Ruan, G.X.; Barry, E.; Yu, D.; Lukason, M.; Cheng, S.H.; Scaria, A. CRISPR/Cas9-Mediated Genome Editing as a Therapeutic Approach for Leber Congenital Amaurosis 10. Mol. Ther. 2017, 25, 331. [Google Scholar] [CrossRef] [Green Version]
- Garanto, A.; Chung, D.C.; Duijkers, L.; Corral-Serrano, J.C.; Messchaert, M.; Xiao, R.; Bennett, J.; Vandenberghe, L.H.; Collin, R.W.J. In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery. Hum. Mol. Genet. 2016, 25, 2552. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Y.; Swaroop, M.; Papal, S.; Mondal, A.K.; Song, H.B.; Campello, L.; Tawa, G.J.; Regent, F.; Shimada, H.; Nagashima, K.; et al. Reserpine maintains photoreceptor survival in retinal ciliopathy by resolving proteostasis imbalance and ciliogenesis defects. Elife 2023, 12, e83205. [Google Scholar] [CrossRef]
- Faber, S.; Roepman, R. Balancing the Photoreceptor Proteome: Proteostasis Network Therapeutics for Inherited Retinal Disease. Genes 2019, 10, 557. [Google Scholar] [CrossRef] [Green Version]
- Sakai, D.; Tomita, H.; Maeda, A. Optogenetic Therapy for Visual Restoration. Int. J. Mol. Sci. 2022, 23, 15041. [Google Scholar] [CrossRef]
- Tochitsky, I.; Kienzler, M.A.; Isacoff, E.; Kramer, R.H. Restoring Vision to the Blind with Chemical Photoswitches. Chem. Rev. 2018, 118, 10748. [Google Scholar] [CrossRef]
- Pearson, R.A.; Gonzalez-Cordero, A.; West, E.L.; Ribeiro, J.R.; Aghaizu, N.; Goh, D.; Sampson, R.D.; Georgiadis, A.; Waldron, P.V.; Duran, Y.; et al. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat. Commun. 2016, 7, 13029. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.S.; Balmer, J.; Barnard, A.R.; Aslam, S.A.; Moralli, D.; Green, C.M.; Barnea-Cramer, A.; Duncan, I.; MacLaren, R.E. Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nat. Commun. 2016, 7, 13537. [Google Scholar] [CrossRef] [Green Version]
- Santos-Ferreira, T.; Llonch, S.; Borsch, O.; Postel, K.; Haas, J.; Ader, M. Retinal transplantation of photoreceptors results in donor–host cytoplasmic exchange. Nat. Commun. 2016, 7, 13028. [Google Scholar] [CrossRef] [Green Version]
- Van Gelder, R.N. Photochemical approaches to vision restoration. Vision Res. 2015, 111, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, V.W.; Feng, Y.; Tian, X.; Li, F.-Y.; Truong, C.; Wang, G.; Chiang, P.-W.; Lewis, R.A.; Wong, L.-J.C. Dependable and Efficient Clinical Utility of Target Capture-Based Deep Sequencing in Molecular Diagnosis of Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6213–6223. [Google Scholar] [CrossRef]
- Zobor, D.; Zobor, G.; Hipp, S.; Baumann, B.; Weisschuh, N.; Biskup, S.; Sliesoraityte, I.; Zrenner, E.; Kohlet, S. Phenotype Variations Caused by Mutations in the RP1L1 Gene in a Large Mainly German Cohort. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3041–3052. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Welch, C.L.; Wang, J.; Allen, P.M.; Gonzaga-Jauregui, C.; Ma, L.; King, A.K.; Krishnan, U.; Rosenzweig, E.B.; D. Dunbar, I.; et al. Rare variants in SOX17 are associated with pulmonary arterial hypertension with congenital heart disease. Genome Med. 2018, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zufiaurre-Seijo, M.; García-Arumí, J.; Duarri, A. Clinical and Molecular Aspects of C2orf71/PCARE in Retinal Diseases. Int. J. Mol. Sci. 2023, 24, 10670. https://doi.org/10.3390/ijms241310670
Zufiaurre-Seijo M, García-Arumí J, Duarri A. Clinical and Molecular Aspects of C2orf71/PCARE in Retinal Diseases. International Journal of Molecular Sciences. 2023; 24(13):10670. https://doi.org/10.3390/ijms241310670
Chicago/Turabian StyleZufiaurre-Seijo, Maddalen, José García-Arumí, and Anna Duarri. 2023. "Clinical and Molecular Aspects of C2orf71/PCARE in Retinal Diseases" International Journal of Molecular Sciences 24, no. 13: 10670. https://doi.org/10.3390/ijms241310670
APA StyleZufiaurre-Seijo, M., García-Arumí, J., & Duarri, A. (2023). Clinical and Molecular Aspects of C2orf71/PCARE in Retinal Diseases. International Journal of Molecular Sciences, 24(13), 10670. https://doi.org/10.3390/ijms241310670