Ameliorative Potential of (-) Pseudosemiglabrin in Mice with Pilocarpine-Induced Epilepsy: Antioxidant, Anti-Inflammatory, Anti-Apoptotic, and Neurotransmission Modulation
Abstract
:1. Introduction
2. Results
2.1. Compound Identification
2.2. (-) Pseudosemiglabrin Mitigated Pilocarpine-Induced Convulsions and Mortality
2.3. (-) Pseudosemiglabrin Enhanced the Suppressed Mice’s Locomotor Activities Induced by Pilocarpine Injection
2.4. (-) Pseudosemiglabrin Modulated Mice’s Brain GABAergic and Glutamatergic Transmission
2.5. (-) Pseudosemiglabrin Enhanced Mice’s Brain Antioxidant System Activities
2.6. (-) Pseudosemiglabrin-Inhibited Neuronal Apoptosis Induced by Pilocarpine Injection
2.7. (-) Pseudosemiglabrin Suppressed Brain Tissues’ Neuro-Inflammatory Signals Induced by Pilocarpine Injection
2.8. (-) Pseudosemiglabrin Demotes the Brain Tissue’s Histopathologic Changes, Pathological Score, and Enhanced Neuronal Survival of the Hippocampal CA1 and CA3 Cells in Pilocarpine-Induced Convulsion
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Materials, Extraction, and Isolation
4.3. Animals
4.4. Establishment of the Epilepsy Model in Mice
4.5. Experimental Protocol
4.6. Assessment of Mice Locomotor Activities
4.7. Assessment of Total Protein Content
4.8. Assessment of Brain GABA and Glutamate Levels
4.9. Assessment of the GABA Transaminase and Glutamate Decarboxylase Activities
4.10. Assessment of Brain GRIN1, GABARα1, SLC6A1 and SLC1A2
4.11. Assessment of Brain Tissue Oxidative Stress Indicators
4.12. Assessment of Apoptosis Markers
4.13. Assessment of Inflammatory Signals
4.14. Evaluation of mRNA Expressions
4.15. Histopathological Evaluation
4.16. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alshabi, A.M.; Shaikh, I.A.; Asdaq, S.M.B. The antiepileptic potential of Vateria indica Linn in experimental animal models: Effect on brain GABA levels and molecular mechanisms. Saudi J. Biol. Sci. 2022, 29, 3600–3609. [Google Scholar] [CrossRef]
- WHO. New WHO Brief Sets out Actions Needed to Improve Lives of People with Epilepsy. Available online: https://www.who.int/news/item/12-12-2022-new-who-brief-sets-out-actions-needed-to-improve-lives-of-people-with-epilepsy (accessed on 5 January 2023).
- Simonato, M.; Löscher, W.; Cole, A.J.; Dudek, F.E.; Engel, J., Jr.; Kaminski, R.M.; Loeb, J.A.; Scharfman, H.; Staley, K.J.; Velíšek, L. Finding a better drug for epilepsy: Preclinical screening strategies and experimental trial design. Epilepsia 2012, 53, 1860–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halassa, M.M.; Haydon, P.G. Integrated brain circuits: Astrocytic networks modulate neuronal activity and behavior. Annu. Rev. Physiol. 2010, 72, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedner, P.; Dupper, A.; Hüttmann, K.; Müller, J.; Herde, M.K.; Dublin, P.; Deshpande, T.; Schramm, J.; Häussler, U.; Haas, C.A. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 2015, 138, 1208–1222. [Google Scholar] [CrossRef] [Green Version]
- Paudel, Y.N.; Angelopoulou, E.; Akyuz, E.; Piperi, C.; Othman, I.; Shaikh, M.F. Role of Innate Immune Receptor TLR4 and its endogenous ligands in epileptogenesis. Pharmacol. Res. 2020, 160, 105172. [Google Scholar] [CrossRef]
- Qu, Z.; Jia, L.; Xie, T.; Zhen, J.; Si, P.; Cui, Z.; Xue, Y.; Sun, C.; Wang, W. (−)-Epigallocatechin-3-Gallate protects against lithium-pilocarpine-induced epilepsy by inhibiting the toll-like receptor 4 (TLR4)/Nuclear factor-κb (NF-κB) signaling pathway. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 1749. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, X.; Liu, N.; Zheng, P.; Ma, L.; Guo, F.; Sun, T.; Zhou, R.; Yu, J. The anticonvulsant effects of baldrinal on pilocarpine-induced convulsion in adult male mice. Molecules 2019, 24, 1617. [Google Scholar] [CrossRef] [Green Version]
- Elisabeth, T.; Esther, N.; Stéphanie, N.K.J.; Gisèle, N.N.C.; Vedekoi, J.; Elisabeth, N.B. Anticonvulsant effect of Asparagus africanus Lam. root decoction on pilocarpine-induced temporal lobe epilepsy in white mice (Mus musculus Swiss). World J. Adv. Res. Rev. 2020, 8, 296–306. [Google Scholar] [CrossRef]
- Meller, S.; Brandt, C.; Theilmann, W.; Klein, J.; Löscher, W. Commonalities and differences in extracellular levels of hippocampal acetylcholine and amino acid neurotransmitters during status epilepticus and subsequent epileptogenesis in two rat models of temporal lobe epilepsy. Brain Res. 2019, 1712, 109–123. [Google Scholar] [CrossRef]
- Khatoon, S.; Agarwal, N.B.; Samim, M.; Alam, O. Neuroprotective effect of fisetin through suppression of IL-1R/TLR axis and apoptosis in pentylenetetrazole-induced kindling in mice. Front. Neurol. 2021, 12, 1152. [Google Scholar] [CrossRef]
- Kandeda, A.K.; Moto, F.C.O.; Ayissi, R.E.M.; Omam, J.P.O.; Ojong, L.; Bum, E.N. Pergularia daemia hydro-ethanolic extract protects against pentylenetetrazole kindling-induced seizures, oxidative stress, and neuroinflammation in mice. J. Ethnopharmacol. 2021, 279, 114338. [Google Scholar] [CrossRef]
- Dyomina, A.V.; Kovalenko, A.A.; Zakharova, M.V.; Postnikova, T.Y.; Griflyuk, A.V.; Smolensky, I.V.; Antonova, I.V.; Zaitsev, A.V. MTEP, a Selective mGluR5 Antagonist, Had a Neuroprotective Effect but Did Not Prevent the Development of Spontaneous Recurrent Seizures and Behavioral Comorbidities in the Rat Lithium–Pilocarpine Model of Epilepsy. Int. J. Mol. Sci. 2022, 23, 497. [Google Scholar] [CrossRef] [PubMed]
- Grabenstatter, H.; Del Angel, Y.C.; Carlsen, J.; Wempe, M.; White, A.; Cogswell, M.; Russek, S.; Brooks-Kayal, A. The effect of STAT3 inhibition on status epilepticus and subsequent spontaneous seizures in the pilocarpine model of acquired epilepsy. Neurobiol. Dis. 2014, 62, 73–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Ding, M.; Gong, Q.; Xiao, Z. Downregulation of GABAARα1 Aggravates Comorbidity of Epilepsy and Migraine via the TLR4 Signaling Pathway. Brain Sci. 2022, 12, 1436. [Google Scholar] [CrossRef] [PubMed]
- Komori, R.; Matsuo, T.; Yokota-Nakatsuma, A.; Hashimoto, R.; Kubo, S.; Kozawa, C.; Kono, T.; Ishihara, Y.; Itoh, K. Regulation of Inflammation-Related Genes through Fosl1 Suppression in a Levetiracetam-Treated Pilocarpine-Induced Status Epilepticus Mouse Model. Int. J. Mol. Sci. 2022, 23, 7608. [Google Scholar] [CrossRef] [PubMed]
- Ortinski, P.; Meador, K.J. Cognitive side effects of antiepileptic drugs. Epilep. Behav. 2004, 5, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Walia, K.S.; Khan, E.A.; Ko, D.H.; Raza, S.S.; Khan, Y.N. Side effects of antiepileptics—A review. Pain Pract. 2004, 4, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Makkar, R.; Behl, T.; Bungau, S.; Zengin, G.; Mehta, V.; Kumar, A.; Uddin, M.S.; Ashraf, G.M.; Abdel-Daim, M.M.; Arora, S. Nutraceuticals in neurological disorders. Int. J. Mol. Sci. 2020, 21, 4424. [Google Scholar] [CrossRef]
- Gerometta, E.; Grondin, I.; Smadja, J.; Frederich, M.; Gauvin-Bialecki, A. A review of traditional uses, phytochemistry and pharmacology of the genus Indigofera. J. Ethnopharmacol. 2020, 253, 112608. [Google Scholar] [CrossRef]
- Lodhi, S.; Pawar, R.S.; Jain, A.P.; Singhai, A. Wound healing potential of Tephrosia purpurea (Linn.) Pers. in rats. J. Ethnopharmacol. 2006, 108, 204–210. [Google Scholar] [CrossRef]
- Sallam, A.; Mira, A.; Sabry, M.A.; Abdel-Halim, O.B.; Gedara, S.R.; Galala, A.A. New prenylated flavonoid and neuroprotective compounds from Tephrosia purpurea subsp. dunensis. Nat. Prod. Res. 2021, 35, 5612–5620. [Google Scholar] [CrossRef]
- Rao, A.; Yadav, S.; Singh, P.; Nandal, A.; Singh, N.; Ganaie, S.; Yadav, N.; Kumar, R.; Bhandoria, M.; Bansal, P. A comprehensive review on ethnomedicine, phytochemistry, pharmacology, and toxicity of Tephrosia purpurea (L.) Pers. Phytother. Res. 2020, 34, 1902–1925. [Google Scholar] [CrossRef]
- Hassan, L.E.A.; Seeni, A.; Majid, A.M.A. Pseudosemiglabrin inhibits tumor angiogenesis and tumor growth of human colon cancer in xenograft mouse models by downregulating endothelial functions, Notch and VEGF pathways. Cancer Res. 2019, 79, 203. [Google Scholar] [CrossRef]
- Hassan, L.E.A.; Dahham, S.S.; Fadul, S.M.; Umar, M.I.; Majid, A.S.A.; Khaw, K.Y.; Majid, A.M.S.A. Evaluation of in vitro and in vivo anti-inflammatory effects of (−)-pseudosemiglabrin, a major phytoconstituent isolated from Tephrosia apollinea (Delile) DC. J. Ethnopharmacol. 2016, 193, 312–320. [Google Scholar] [CrossRef]
- Asuntha, G.; Prasannaraju, Y.; Sujatha, D.; Prasad, K. Assessment of effect of ethanolic extract of Tephrosia purpurea (L.) Pers., Fabaceae, activity on lithium-pilocarpine induced Status epilepticus and oxidative stress in Wistar rats. Rev. Bras. Farmacogn. 2010, 20, 767–772. [Google Scholar] [CrossRef] [Green Version]
- Krishna, N.M.; Chowdary, K.A. Evaluation of anticonvulsant activity of stem bark extract of Tephrosia purpurea. Indian J. Res. Pharm. Biotechnol. 2017, 5, 173–176. [Google Scholar]
- Mohamed, H.; Abou El-Hamd, H.M.; Ahmed, A.A. Prenylated flavonoids from Tephrosia apollinea. Heterocycles Int. J. Rev. Commun. Heterocycl. Chem. 2007, 71, 2477–2490. [Google Scholar]
- Hu, M.; Liu, Y.; He, L.; Yuan, X.; Peng, W.; Wu, C. Antiepileptic effects of protein-rich extract from Bombyx batryticatus on mice and its protective effects against H2O2-induced oxidative damage in PC12 cells via regulating PI3K/Akt signaling pathways. Oxidative Med. Cell. Longev. 2019, 2019, 7897584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, M.W.; Lopes, S.C.; Costa, A.P.; Gonçalves, F.M.; Rieger, D.K.; Peres, T.V.; Eyng, H.; Prediger, R.D.; Diaz, A.P.; Nunes, J.C. Region-specific alterations of AMPA receptor phosphorylation and signaling pathways in the pilocarpine model of epilepsy. Neurochem. Int. 2015, 87, 22–33. [Google Scholar] [CrossRef]
- Kandeda, A.K.; Taiwe, G.S.; Ayissi, R.E.M.; Moutchida, C. An aqueous extract of Canarium schweinfurthii attenuates seizures and potentiates sleep in mice: Evidence for involvement of GABA Pathway. Biomed. Pharmacother. 2021, 142, 111973. [Google Scholar] [CrossRef]
- Curia, G.; Longo, D.; Biagini, G.; Jones, R.S.; Avoli, M. The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods 2008, 172, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Turski, L.; Ikonomidou, C.; Turski, W.A.; Bortolotto, Z.A.; Cavalheiro, E.A. Cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: A novel experimental model of intractable epilepsy. Synapse 1989, 3, 154–171. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, P.P.; Adak, V.S.; Shete, R.V. The Screening models for antiepileptic drugs: A Review. J. Drug Deliv. Ther. 2021, 11, 175–178. [Google Scholar] [CrossRef]
- Kandeda, A.K.; Mabou, S.T.; Moutchida, C. An aqueous extract of Lantana camara attenuates seizures, memory impairment, and anxiety in kainate-treated mice: Evidence of GABA level, oxidative stress, immune and neuronal loss modulation. Epilep. Behav. 2022, 129, 108611. [Google Scholar] [CrossRef]
- McMullan, J.; Sasson, C.; Pancioli, A.; Silbergleit, R. Midazolam versus diazepam for the treatment of status epilepticus in children and young adults: A meta-analysis. Acad. Emerg. Med. 2010, 17, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Aseervatham, G.S.B.; Suryakala, U.; Sundaram, S.; Bose, P.C.; Sivasudha, T. Expression pattern of NMDA receptors reveals antiepileptic potential of apigenin 8-C-glucoside and chlorogenic acid in pilocarpine induced epileptic mice. Biomed. Pharmacother. 2016, 82, 54–64. [Google Scholar] [CrossRef]
- Zhang, H.; Lian, Y.; Xie, N.; Cheng, X.; Chen, C.; Xu, H.; Zheng, Y. Antagomirs targeting miR-142–5p attenuate pilocarpine-induced status epilepticus in mice. Exp. Cell Res. 2020, 393, 112089. [Google Scholar] [CrossRef]
- Tse, K.; Beamer, E.; Simpson, D.; Beynon, R.J.; Sills, G.J.; Thippeswamy, T. The impacts of surgery and intracerebral electrodes in C57BL/6J mouse kainate model of epileptogenesis: Seizure threshold, proteomics, and cytokine profiles. Front. Neurol. 2021, 12, 625017. [Google Scholar] [CrossRef]
- Parsons, J.T.; Churn, S.B.; Kochan, L.D.; DeLorenzo, R.J. Pilocarpine-induced status epilepticus causes N-methyl-d-aspartate receptor-dependent inhibition of microsomal Mg2+/Ca2+ ATPase-mediated Ca2+ uptake. J. Neurochem. 2000, 75, 1209–1218. [Google Scholar] [CrossRef]
- Saleh, E.M.; Hamdy, G.M.; Hassan, R.E. Neuroprotective effect of sodium alginate against chromium-induced brain damage in rats. PLoS ONE 2022, 17, e0266898. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Shi, Y.; Yan, M.; Rengarajan, T.; Feng, X. Amomum tsaoko fruit extract exerts anticonvulsant effects through suppression of oxidative stress and neuroinflammation in a pentylenetetrazol kindling model of epilepsy in mice. Saudi J. Biol. Sci. 2021, 28, 4247–4254. [Google Scholar] [CrossRef]
- Smilin Bell Aseervatham, G.; Abbirami, E.; Sivasudha, T.; Ruckmani, K. Passiflora caerulea L. fruit extract and its metabolites ameliorate epileptic seizure, cognitive deficit and oxidative stress in pilocarpine-induced epileptic mice. Metab. Brain Dis. 2020, 35, 159–173. [Google Scholar] [CrossRef]
- Deng, X.; Wang, M.; Hu, S.; Feng, Y.; Shao, Y.; Xie, Y.; Wu, M.; Chen, Y.; Shi, X. The neuroprotective effect of astaxanthin on pilocarpine-induced status epilepticus in rats. Front. Cell. Neurosci. 2019, 13, 123. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, R.-L.; Tao, T.; Sun, J.-Y.; Liu, J.; Zhang, T.; Peng, W.; Wu, C.-J. Antiepileptic effects of cicadae periostracum on mice and its antiapoptotic effects in H2O2-stimulated PC12 cells via regulation of PI3K/Akt/Nrf2 signaling pathways. Oxidative Med. Cell. Longev. 2021, 2021, 5598818. [Google Scholar] [CrossRef]
- Dai, H.; Wang, P.; Mao, H.; Mao, X.; Tan, S.; Chen, Z. Dynorphin activation of kappa opioid receptor protects against epilepsy and seizure-induced brain injury via PI3K/Akt/Nrf2/HO-1 pathway. Cell Cycle 2019, 18, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.-H.; Chu, M.; Wang, Y.-P. Up-regulation of Trem2 inhibits hippocampal neuronal apoptosis and alleviates oxidative stress in epilepsy via the PI3K/Akt pathway in mice. Neurosci. Bull. 2019, 35, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Vezzani, A.; Aronica, E.; Mazarati, A.; Pittman, Q.J. Epilepsy and brain inflammation. Exp. Neurol. 2013, 244, 11–21. [Google Scholar] [CrossRef]
- Li, H.; Liu, S.; Han, J.; Li, S.; Gao, X.; Wang, M.; Zhu, J.; Jin, T. Role of toll-like receptors in neuroimmune diseases: Therapeutic targets and problems. Front. Immunol. 2021, 12, 777606. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Jiang, E.; Weng, H.-R. Activation of toll like receptor 4 attenuates GABA synthesis and postsynaptic GABA receptor activities in the spinal dorsal horn via releasing interleukin-1 beta. J. Neuroinflamm. 2015, 12, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakitin, A.; Kõks, S.; Haldre, S. Valproate modulates glucose metabolism in patients with epilepsy after first exposure. Epilepsia 2015, 56, e172–e175. [Google Scholar] [CrossRef] [PubMed]
- Rakitin, A.; Kõks, S.; Haldre, S. Metabolic syndrome and anticonvulsants: A comparative study of valproic acid and carbamazepine. Seizure 2016, 38, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Narender, T.; Khaliq, T.; Puri, A. Antidyslipidemic activity of furano-flavonoids isolated from Indigofera tinctoria. Bioorg. Med. Chem. Lett. 2006, 16, 3411–3414. [Google Scholar] [CrossRef] [PubMed]
- Dalwadi, P.P.; Patel, J.L.; Patani, P.V. Tephrosia purpurea Linn (Sharpunkha, Wild Indigo): A review on phytochemistry and pharmacological studies. Indian J. Pharm. Biol. Res. 2014, 2, 108. [Google Scholar] [CrossRef]
- Abdel-Kader, M.S.; Alqarni, M.H.; Foudah, A.I. New Flavonoids from Saudi collection of Tephrosia purpurea L. (Pers.). Rec. Nat. Prod. 2021, 15, 293–300. [Google Scholar] [CrossRef]
- Suvarna, K.S.; Layton, C.; Bancroft, J.D. Bancroft’s Theory and Practice of Histological Techniques E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018. [Google Scholar]
Group | Latency to First Convulsion (s) | Convulsion (%) | SE (%) | Seizures Severity Score | Survival (%) |
---|---|---|---|---|---|
CON | - | 0% | 0% | - | 100% |
PIL | 370.7 ± 46.8 | 100% | 100% | 4.70 ± 0.47 | 30% |
DIZ | - | 0% | 0% | - | 95% |
SSL | 484.3 ± 65.2 | 70% | 50% | 3.85 ± 0.67 * | 50% |
SSM | 1180.5 ± 319.4 *** | 30% | 10% | 1.85 ± 1.60 *** | 80% |
SSH | - | 0% | 0% | - | 100% |
Group | Number of Crossings | Number of Rearings | Number of Groomings | Number of Immobility | Latency to Initiate Locomotion (s) |
---|---|---|---|---|---|
CON | 44.6 ± 4.88 *** | 18.1 ± 2.08 *** | 25.8 ± 1.69 *** | 3.1 ± 0.57 *** | 1.95 ± 0.21 *** |
PIL | 26.9 ± 5.19 | 10.45 ± 1.77 | 12.15 ± 3.39 | 14.2 ± 2.09 | 11.24 ± 2.19 |
DIZ | 9.45 ± 1.85 ***+++ | 7.1 ± 1.37 ***+++ | 6.05 ± 1.28 ***+++ | 18.9 ± 4.52 ***+++ | 15.7 ± 3.23 ***+++ |
SSL | 27.25 ± 4.52 +++ | 11.15 ± 2.46 +++ | 14.9 ± 2.53 *+++ | 10.7 ± 2.01 ***+++ | 8.86 ± 2.29 **+++ |
SSM | 31.55 ± 5.22 *+++ | 12.2 ± 3.01 +++ | 17.5 ± 2.57 ***+++ | 7.1 ± 1.25 *** | 4.66 ± 1.06 *** |
SSH | 40.65 ± 5.7 *** | 15.6 ± 2.44 *** | 22 ± 2.88 *** | 5.15 ± 0.99 *** | 2.96 ± 0.60 *** |
mRNA | Forward | Reverse |
---|---|---|
GRIN1 | CGATGACCACGAGGGCCGGG | GGCATTCCCAGAGATCTCGCG |
GABARα1 | TGAGCACACTGTCGGGAAGA | CAGCAGTCGGTCCAAAATTCT |
SLC6A1 | GGTGTTGGTTGGACTGGAAAGGTG | AAGCGTCACTCCACGGAAGAAC |
SLC1A2 | GGTCATCTTGGATGGAGGTC | ATACTGGCTGCACCAATGC |
HO-1 | GATAGAGCGCAACAAGCAGAA | CAGTGAGGCCCATACC AGAAG |
Nrf2 | TCTTGGAGTAAGTCGAGAAGTGT | GTTGAAACTGAGCGAAAAAGGC |
TLR-4 | ATGGCATGGCTTACACCACC | GAGGCCAATTTTGTCTCCACA |
NF-κB | ACGACATTGAGGTTCGGTTC | ATCTTGTGATAGGGCGGTGT |
IL-1β, | CACTACAGGCTCCGAGATGA | TTTGTCGTTGCTTGGTTCTC |
TNF-α | GGCAGGTCTACTTTGGAGTCATTGC | ACATTCGAGGCTCCAGTGAATTCGG |
AKT | CATGAGGATCAGCTCGAACAGC | ACGGGCACATCAAGATAACGG |
PI3K | TTCCCTCGCAATAGGTTCTCC | GACCAATACTTGATGTGGCTGAC |
β-actin | ACCGTGAAAAGATGACCCAGA | ATGGGCACAGTGTGGGTGA |
GADPH | GGAGCGAGATCCCTCCAAAAT | GGCTGTTGTCATACTTCTCATGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balaha, M.F.; Alamer, A.A.; Abdel-Kader, M.S.; Alharthy, K.M. Ameliorative Potential of (-) Pseudosemiglabrin in Mice with Pilocarpine-Induced Epilepsy: Antioxidant, Anti-Inflammatory, Anti-Apoptotic, and Neurotransmission Modulation. Int. J. Mol. Sci. 2023, 24, 10773. https://doi.org/10.3390/ijms241310773
Balaha MF, Alamer AA, Abdel-Kader MS, Alharthy KM. Ameliorative Potential of (-) Pseudosemiglabrin in Mice with Pilocarpine-Induced Epilepsy: Antioxidant, Anti-Inflammatory, Anti-Apoptotic, and Neurotransmission Modulation. International Journal of Molecular Sciences. 2023; 24(13):10773. https://doi.org/10.3390/ijms241310773
Chicago/Turabian StyleBalaha, Mohamed F., Ahmed A. Alamer, Maged S. Abdel-Kader, and Khalid M. Alharthy. 2023. "Ameliorative Potential of (-) Pseudosemiglabrin in Mice with Pilocarpine-Induced Epilepsy: Antioxidant, Anti-Inflammatory, Anti-Apoptotic, and Neurotransmission Modulation" International Journal of Molecular Sciences 24, no. 13: 10773. https://doi.org/10.3390/ijms241310773
APA StyleBalaha, M. F., Alamer, A. A., Abdel-Kader, M. S., & Alharthy, K. M. (2023). Ameliorative Potential of (-) Pseudosemiglabrin in Mice with Pilocarpine-Induced Epilepsy: Antioxidant, Anti-Inflammatory, Anti-Apoptotic, and Neurotransmission Modulation. International Journal of Molecular Sciences, 24(13), 10773. https://doi.org/10.3390/ijms241310773