Recent Advances in THz Detection of Water
Abstract
:1. Introduction
2. Related Technical Theories
2.1. Terahertz Spectroscopy and Imaging
2.2. Debye Relaxation Model
2.3. Effective Medium Theory Model
2.4. Machine Learning Theory
3. Research Progress of Moisture Detection Based on THz Wave
3.1. Relationship between Water Molecular Network Dynamics and THz Spectra
3.2. Terahertz Detection of Moisture Content
3.2.1. Terahertz Technique to Detect Free Water
3.2.2. Terahertz Technology to Detect Combined Water
3.2.3. Terahertz Technology Combined with Machine Learning Method to Detect Moisture Content
3.3. Moisture Distribution Visualization Study
4. Challenges and Outlook
4.1. Challenges
4.1.1. Strong Absorption of Terahertz Waves by Water
4.1.2. Water Migration Process
4.1.3. Prediction of Moisture Content and Moisture Distribution
4.2. Outlook
4.2.1. THz Combined with Dielectric Mixture Theory to Improve the Detection of Water Molecules
4.2.2. Combining AI to Improve the Real-Time Monitoring of the Water Migration Process via THz
4.2.3. Combining THz + Deep Learning
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qu, F.F.; Nie, P.C.; Lin, L.; Cai, C.Y.; He, Y. Review of theoretical methods and research aspects for detecting leaf water content using terahertz spectroscopy and imaging. Int. J. Agric. Biol. Eng. 2018, 11, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wu, W.; Dou, J.; Liu, Z.; Chen, K.; Xu, Y. Design and analysis of a radio-frequency moisture sensor for grain based on the difference method. Micromachines 2021, 12, 708. [Google Scholar] [CrossRef] [PubMed]
- Soltani, M.; Alimardani, F. Moisture content prediction of Iranian wheat using dielectric technique. J. Food Sci. Technol. 2014, 51, 3500–3504. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.-G.; Zhang, Z.-N.; Tian, S.-Q. Nondestructive testing for wheat quality with sensor technology based on Big Data. J. Anal. Methods Chem. 2020, 2020, 8851509. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, J.X.; Li, D.L. Applications of Raman spectroscopy in detection of water quality. Appl. Spectrosc. Rev. 2016, 51, 313–337. [Google Scholar] [CrossRef]
- Ho, I.C.; Guo, X.Y.; Zhang, X.C. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. Opt. Express 2010, 18, 2872–2883. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, Y.; Wang, X.; Li, L. Advances in Terahertz Detection and Imaging. Front. Phys. 2022, 65. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Mujumdar, A.S. Terahertz spectroscopy: A powerful technique for food drying research. Food Rev. Int. 2021, 39, 1733–1750. [Google Scholar] [CrossRef]
- Wu, J.Z.; Li, X.Q.; Sun, L.J.; Liu, C.L.; Sun, X.R.; Yu, L. Advances in the Application of Terahertz Time-Domain Spectroscopy and Imaging Technology in Crop Quality Detection. Spectrosc. Spectr. Anal. 2022, 42, 358–367. [Google Scholar]
- Ge, H.Y.; Lv, M.; Lu, X.J.; Jiang, Y.Y.; Wu, G.F.; Li, G.M.; Li, L.; Li, Z.; Zhang, Y. Applications of THz Spectral Imaging in the Detection of Agricultural Products. Photonics 2021, 8, 518. [Google Scholar] [CrossRef]
- Li, J.; Yao, Y.; Jiang, L.; Li, S.; Yi, Z.; Chen, X.; Tian, Z.; Zhang, W. Time-domain terahertz optoacoustics: Manipulable water sensing and dampening. Adv. Photonics 2021, 3, 026003. [Google Scholar] [CrossRef]
- Novelli, F.; Ma, C.Y.; Adhlakha, N.; Adams, E.M.; Ockelmann, T.; Das Mahanta, D.; Di Pietro, P.; Perucchi, A.; Havenith, M. Nonlinear terahertz transmission by liquid water at 1 THz. Appl. Sci. 2020, 10, 5290. [Google Scholar] [CrossRef]
- Sy, S.; Huang, S.; Wang, Y.X.J.; Yu, J.; Ahuja, A.T.; Zhang, Y.T.; Pickwell-MacPherson, E. Terahertz spectroscopy of liver cirrhosis: Investigating the origin of contrast. Phys. Med. Biol. 2010, 55, 7587–7596. [Google Scholar] [CrossRef] [PubMed]
- Borovkova, M.; Khodzitsky, M.; Demchenko, P.; Cherkasova, O.; Popov, A.; Meglinski, I. Terahertz time-domain spectroscopy for non-invasive assessment of water content in biological samples. Biomed. Opt. Express 2018, 9, 2266–2276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.H.; Wang, Z.Y.; Loh, J.; Thomson, M.J. High-Temperature H2O Vapor Measurement Using Terahertz Spectroscopy for Industrial Furnace Applications. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 26–31. [Google Scholar] [CrossRef]
- Fan, S.T.; Jeong, K.; Wallace, V.P.; Aman, Z. Use of Terahertz Waves To Monitor Moisture Content in High-Pressure Natural Gas Pipelines. Energy Fuels 2019, 33, 8026–8031. [Google Scholar] [CrossRef]
- Nagatsuma, T. Terahertz technologies: Present and future. IEICE Electron. Express 2011, 8, 1127–1142. [Google Scholar] [CrossRef] [Green Version]
- Arteaga, H.; León-Roque, N.; Oblitas, J. The frequency range in THz spectroscopy and its relationship to the water content in food: A first approach. Sci. Agropecu. 2021, 12, 625–634. [Google Scholar] [CrossRef]
- Li, K.; Chen, X.; Zhang, R. Classification for glucose and lactose terahertz spectrums based on SVM and DNN methods. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 617–623. [Google Scholar] [CrossRef]
- Wang, C.; Qin, J.; Xu, W.; Chen, M.; Xie, L.; Ying, Y. Terahertz imaging applications in agriculture and food engineering: A review. Trans. ASABE 2018, 61, 411–424. [Google Scholar] [CrossRef]
- Fu, X.; Liu, Y.; Chen, Q.; Fu, Y.; Cui, T. Applications of terahertz spectroscopy in the detection and recognition of substances. Front. Phys. 2022, 10, 427. [Google Scholar] [CrossRef]
- Kumar, S.; Chan, C.W.I.; Hu, Q.; Reno, J.L. A 1.8-THz quantum cascade laser operating significantly above the temperature of (h)over-bar omega/k(B). Nat. Phys. 2011, 7, 166–171. [Google Scholar] [CrossRef]
- Tan, P.; Huang, J.; Liu, K.F.; Xiong, Y.Q.; Fan, M.W. Terahertz radiation sources based on free electron lasers and their applications. Sci. China Inf. Sci. 2012, 55, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Zhao, H. Intense terahertz radiation: Generation and application. Front. Optoelectron. 2021, 14, 4–36. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Valiyaveedu, S.K.; Shi, J.; Zhang, X. Terahertz radiation: Materials and applications. Front. Phys. 2021, 9, 671647. [Google Scholar] [CrossRef]
- Lewis, R. A review of terahertz detectors. J. Phys. D Appl. Phys. 2019, 52, 433001. [Google Scholar] [CrossRef]
- Nayak, D.; Vijayan, N.; Kumari, M.; Vashishtha, P.; Yadav, S.; Jewariya, M.; Chowdhury, D.R.; Gupta, G.; Pant, R.P. Elemental, Optical, and Time-Domain Terahertz Spectroscopy Studies on Methyl p-Hydroxybenzoate Single Crystal for THz Applications. J. Electron. Mater. 2021, 50, 6121–6127. [Google Scholar] [CrossRef]
- Lee, W.J.; Lee, G.; Cho, D.H.; Chul, K.; Myoung, N.; Kee, C.S.; Chung, Y.D. Ultrafast Photoexcited-Carrier Behavior Induced by Hydrogen Ion Irradiation of a Cu(In,Ga)Se-2 Thin Film in the Terahertz Region. IEEE Trans. Terahertz Sci. Technol. 2021, 11, 175–182. [Google Scholar] [CrossRef]
- Jiang, Y.; Ge, H.; Zhang, Y. Quantitative determination of maltose concentration in wheat by using terahertz imaging. Spectrosc. Spectr. Anal. 2018, 38, 3017–3022. [Google Scholar]
- Kashima, M.; Tsuchikawa, S.; Inagaki, T. Simultaneous detection of density, moisture content and fiber direction of wood by THz time-domain spectroscopy. J. Wood Sci. 2020, 66, 27. [Google Scholar] [CrossRef] [Green Version]
- Møller, U.; Folkenberg, J.R.; Jepsen, P.U. Dielectric properties of water in butter and water–AOT–heptane systems measured using terahertz time-domain spectroscopy. Appl. Spectrosc. 2010, 64, 1028–1036. [Google Scholar] [CrossRef]
- Liang, W.; Zhipeng, Q.; Ze, L.; Li, G. THz optical parameters of FR3 natural ester insulating oil after thermal aging. Optik 2021, 239, 166873. [Google Scholar] [CrossRef]
- Kaatze, U.; Huebner, C. Electromagnetic techniques for moisture content determination of materials. Meas. Sci. Technol. 2010, 21, 082001. [Google Scholar] [CrossRef]
- Wu, L.-M.; Xu, D.-G.; Wang, Y.Y.; Ge, M.-L.; Li, H.-B.; Wang, Z.-L.; Yao, J.-Q. Common path continuous terahertz reflection and attenuated total reflection imaging. Acta Phys. Sin. 2021, 70, 118701. [Google Scholar] [CrossRef]
- Lu, X.; Venkatesh, S.; Saeidi, H. A review on applications of integrated terahertz systems. China Commun. 2021, 18, 175–201. [Google Scholar] [CrossRef]
- Jiang, Y.; Ge, H.; Zhang, Y. Detection of foreign bodies in grain with terahertz reflection imaging. Optik 2019, 181, 1130–1138. [Google Scholar] [CrossRef]
- Kawase, K.; Shibuya, T.; Hayashi, S.I.; Suizu, K. THz imaging techniques for nondestructive inspections. C. R. Phys. 2010, 11, 510–518. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, L.; Ying, Y. Overview of imaging methods based on terahertz time-domain spectroscopy. Appl. Spectrosc. Rev. 2022, 57, 249–264. [Google Scholar] [CrossRef]
- Shen, Y.; Qiao, X.; Song, Z.; Zhong, S.; Wei, D. Terahertz spectroscopy of citrate Salts: Effects of crystalline state and crystallization water. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 277, 121288. [Google Scholar] [CrossRef]
- Liebermeister, L.; Nellen, S.; Kohlhaas, R.; Breuer, S.; Schell, M.; Globisch, B. Ultra-fast, high-bandwidth coherent cw THz spectrometer for non-destructive testing. J. Infrared Millim. Terahertz Waves 2019, 40, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Y.; Xu, D.; Wu, L.; Wang, G.; Jiang, B.; Yu, T.; Chang, C.; Chen, T.; Yao, J. Interference elimination based on the inversion method for continuous-wave terahertz reflection imaging. Opt. Express 2020, 28, 21926–21939. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.B.; Machado, M.A.; Bonfait, G.J.; Vieira, P.; Santos, T.G. Continuous wave terahertz imaging for NDT: Fundamentals and experimental validation. Measurement 2021, 172, 108904. [Google Scholar] [CrossRef]
- Probst, T.; Rehn, A.; Koch, M. Compact and low-cost THz QTDS system. Opt. Express 2015, 23, 21972–21982. [Google Scholar] [CrossRef]
- Rehn, A.; Kohlhaas, R.; Globisch, B. Increasing the THz-QTDS bandwidth from 1.7 to 2.5 THz through optical feedback. J. Infrared Millim. Terahertz Waves 2019, 40, 1103–1113. [Google Scholar] [CrossRef]
- Nakanishi, A.; Kawada, Y.; Yasuda, T.; Akiyama, K.; Takahashi, H. Terahertz time domain attenuated total reflection spectroscopy with an integrated prism system. Rev. Sci. Instrum. 2012, 83, 033103. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Singh, R.; Xie, L.; Ying, Y. Attenuated total reflection for terahertz modulation, sensing, spectroscopy and imaging applications: A review. Appl. Sci. 2020, 10, 4688. [Google Scholar] [CrossRef]
- Ahlers, J.; Adams, E.M.; Bader, V.; Pezzotti, S.; Winklhofer, K.F.; Tatzelt, J.; Havenith, M. The key role of solvent in condensation: Mapping water in liquid-liquid phase-separated FUS. Biophys. J. 2021, 120, 1266–1275. [Google Scholar] [CrossRef] [PubMed]
- Vilagosh, Z.; Lajevardipour, A.; Appadoo, D.; Juodkazis, S. Using Attenuated Total Reflection (ATR) Apparatus to Investigate the Temperature Dependent Dielectric Properties of Water, Ice, and Tissue-Representative Fats. Appl. Sci. 2021, 11, 2544. [Google Scholar] [CrossRef]
- Samanta, T.; Matyushov, D.V. Nonlinear dielectric relaxation of polar liquids. J. Mol. Liq. 2022, 364, 119935. [Google Scholar] [CrossRef]
- Ishiyama, T. Ab initio molecular dynamics study on energy relaxation path of hydrogen-bonded OH vibration in bulk water. J. Chem. Phys. 2021, 154, 204502. [Google Scholar] [CrossRef] [PubMed]
- Swenson, J.; Cerveny, S. Dynamics of deeply supercooled interfacial water. J. Phys. Condens. Matter 2014, 27, 033102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.W.; Arbab, M.H. Effective Debye relaxation models for binary solutions of polar liquids at terahertz frequencies. Phys. Chem. Chem. Phys. 2021, 23, 4426–4436. [Google Scholar] [CrossRef] [PubMed]
- Gavdush, A.A.; Chernomyrdin, N.V.; Komandin, G.A.; Dolganova, I.N.; Nikitin, P.V.; Musina, G.R.; Katyba, G.M.; Kucheryavenko, A.S.; Reshetov, I.V.; Potapov, A. Terahertz dielectric spectroscopy of human brain gliomas and intact tissues ex vivo: Double-Debye and double-overdamped-oscillator models of dielectric response. Biomed. Opt. Express 2021, 12, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Manaila-Maximean, D. Effective Permittivity of a Multi-Phase System: Nanoparticle-Doped Polymer-Dispersed Liquid Crystal Films. Molecules 2021, 26, 1441. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, F.; Ding, X.-F. Investigation of the Influence of Water Content in Skin Tissue on Terahertz Spectral Parameters. Spectrosc. Spectr. Anal. 2021, 41, 835–841. [Google Scholar]
- Calvo-de La Rosa, J.; Locquet, A.; Bouscaud, D.; Berveiller, S.; Citrin, D. Optical constants of CuO and ZnO particles in the terahertz frequency range. Ceram. Int. 2020, 46, 24110–24119. [Google Scholar] [CrossRef]
- Anuschek, M.; Bawuah, P.; Zeitler, J.A. Terahertz time-domain spectroscopy for powder compact porosity and pore shape measurements: An error analysis of the anisotropic bruggeman model. Int. J. Pharm. X 2021, 3, 100079. [Google Scholar] [CrossRef]
- Hernandez-Cardoso, G.G.; Singh, A.K.; Castro-Camus, E. Empirical comparison between effective medium theory models for the dielectric response of biological tissue at terahertz frequencies. Appl. Opt. 2020, 59, D6–D11. [Google Scholar] [CrossRef]
- Zang, Z.; Wang, J.; Cui, H.-L.; Yan, S. Terahertz spectral imaging based quantitative determination of spatial distribution of plant leaf constituents. Plant Methods 2019, 15, 106. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.-J.; Kim, S.; Kwon, T.-H. Effect of moisture content and particle size on extinction coefficients of soils using terahertz time-domain spectroscopy. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 529–535. [Google Scholar] [CrossRef]
- Lin, H.; Russell, B.P.; Bawuah, P.; Zeitler, J.A. Sensing water absorption in hygrothermally aged epoxies with terahertz time-domain spectroscopy. Anal. Chem. 2021, 93, 2449–2455. [Google Scholar] [CrossRef] [PubMed]
- Helal, S.; Sarieddeen, H.; Dahrouj, H.; Al-Naffouri, T.Y.; Alouini, M.-S. Signal processing and machine learning techniques for terahertz sensing: An overview. IEEE Signal Process. Mag. 2022, 39, 42–62. [Google Scholar] [CrossRef]
- Afsah-Hejri, L.; Akbari, E.; Toudeshki, A.; Homayouni, T.; Alizadeh, A.; Ehsani, R. Terahertz spectroscopy and imaging: A review on agricultural applications. Comput. Electron. Agric. 2020, 177, 105628. [Google Scholar] [CrossRef]
- Park, H.; Son, J.-H. Machine learning techniques for THz imaging and time-domain spectroscopy. Sensors 2021, 21, 1186. [Google Scholar] [CrossRef]
- Mustafa, S.; Ghaffar, S.; Bibi, M.; Khan, M.G.; Praveen, Q.; Garg, H.; Saminou, M. An Application of Fuzzy Multiple Linear Regression in Biological Paradigm. Complexity 2022, 2022, 1162464. [Google Scholar] [CrossRef]
- Beattie, J.R.; Esmonde-White, F.W. Exploration of principal component analysis: Deriving principal component analysis visually using spectra. Appl. Spectrosc. 2021, 75, 361–375. [Google Scholar] [CrossRef]
- Beyaztas, U.; Shang, H.L. A robust functional partial least squares for scalar-on-multiple-function regression. J. Chemom. 2022, 36, e3394. [Google Scholar] [CrossRef]
- Ahmadi, M.; Khashei, M. Generalized support vector machines (GSVMs) model for real-world time series forecasting. Soft Comput. 2021, 25, 14139–14154. [Google Scholar] [CrossRef]
- Zhao, H.; Tan, Y.; Zhang, R.; Zhao, Y.; Zhang, C.; Zhang, X.-C.; Zhang, L. Molecular dynamic investigation of ethanol-water mixture by terahertz-induced Kerr effect. Opt. Express 2021, 29, 36379–36388. [Google Scholar] [CrossRef]
- Balos, V.; Kaliannan, N.K.; Elgabarty, H.; Wolf, M.; Kühne, T.D.; Sajadi, M. Time-resolved terahertz–Raman spectroscopy reveals that cations and anions distinctly modify intermolecular interactions of water. Nat. Chem. 2022, 14, 1031–1037. [Google Scholar] [CrossRef]
- Penkov, N.; Fesenko, E. Development of terahertz time-domain spectroscopy for properties analysis of highly diluted antibodies. Appl. Sci. 2020, 10, 7736. [Google Scholar] [CrossRef]
- Jin, Q.; E., Y.; Gao, S.; Zhang, X.-C. Preference of subpicosecond laser pulses for terahertz wave generation from liquids. Adv. Photonics 2020, 2, 015001. [Google Scholar] [CrossRef] [Green Version]
- Elgabarty, H.; Kampfrath, T.; Bonthuis, D.J.; Balos, V.; Kaliannan, N.K.; Loche, P.; Netz, R.R.; Wolf, M.; Kühne, T.D.; Sajadi, M. Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation. Sci. Adv. 2020, 6, eaay7074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Tan, Y.; Zhang, L.; Zhang, R.; Shalaby, M.; Zhang, C.; Zhao, Y.; Zhang, X.-C. Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence. Light Sci. Appl. 2020, 9, 136. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wang, J.-H.; Bai, Z.-C.; Su, B.; Wu, R.; Cui, H.-L.; Zhang, C.-L. Terahertz transmission characteristics of water induced by electric field. Spectrosc. Spectr. Anal. 2021, 41, 1683–1687. [Google Scholar]
- Duan, T.-C.; Yan, S.-J.; Zhao, Y.; Sun, T.-Y.; Li, Y.-M.; Zhu, Z. Relationship between hydrogen bond network dynamics of water and its terahertz spectrum. Acta Phys. Sin. 2021, 70, 248702. [Google Scholar] [CrossRef]
- Rasekh, P.; Safari, A.; Yildirim, M.; Bhardwaj, R.; Menard, J.-M.; Dolgaleva, K.; Boyd, R.W. Terahertz nonlinear spectroscopy of water vapor. ACS Photonics 2021, 8, 1683–1688. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, L.; Cheng, Z.; Yin, J.; Yang, L.; Liao, R. Characterization of water-participant hydrogen bonds in oil-paper insulation investigated with terahertz dielectric spectroscopy. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 640–648. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, J.; Li, X.; Coy, S.L.; Field, R.W.; Nelson, K.A. Nonlinear rotational spectroscopy reveals many-body interactions in water molecules. Proc. Natl. Acad. Sci. USA 2021, 118, e2020941118. [Google Scholar] [CrossRef]
- Shiraga, K.; Fujii, Y.; Koreeda, A.; Tanaka, K.; Arikawa, T.; Ogawa, Y. Dynamical Collectivity and Nuclear Quantum Effects on the Intermolecular Stretching Mode of Liquid Water. J. Phys. Chem. B 2021, 125, 1632–1639. [Google Scholar] [CrossRef]
- Yada, H.; Nagai, M.; Tanaka, K. Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy. Chem. Phys. Lett. 2008, 464, 166–170. [Google Scholar] [CrossRef]
- Penkov, N.V.; Penkova, N. Key differences of the hydrate shell structures of ATP and Mg· ATP Revealed by terahertz time-domain spectroscopy and dynamic light scattering. J. Phys. Chem. B 2021, 125, 4375–4382. [Google Scholar] [CrossRef] [PubMed]
- Bozorova, D.; Gofurov, S.P.; Kokhkharov, A.; Ismailova, O. Terahertz spectroscopy of aqueous solutions of acetic acid. J. Appl. Spectrosc. 2021, 88, 719–722. [Google Scholar] [CrossRef]
- Zang, Z.; Li, Z.; Wang, J.; Lu, X.; Lyu, Q.; Tang, M.; Cui, H.-L.; Yan, S. Terahertz spectroscopic monitoring and analysis of citrus leaf water status under low temperature stress. Plant Physiol. Biochem. 2023, 194, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Chua, H.S.; Obradovic, J.; Haigh, A.D.; Upadhya, P.C.; Hirsch, O.; Crawley, D.; Gibson, A.A.; Gladden, L.F.; Linfield, E.H. Terahertz time-domain spectroscopy of crushed wheat grain. IEEE MTT-S Int. Microw. Symp. Dig. 2005, 2005, 2103–2106. [Google Scholar]
- Pin, M.; Yuping, Y. Determination of moisture content of Gastrodia elata BI by terahertz spectroscopy. J. Terahertz Sci. Electron. Inform. Technol. 2017, 15, 26–28. [Google Scholar]
- Gente, R.; Koch, M. Monitoring leaf water content with THz and sub-THz waves. Plant Methods 2015, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Gente, R.; Rehn, A.; Probst, T.; Stübling, E.-M.; Camus, E.C.; Covarrubias, A.A.; Balzer, J.C.; Koch, M. Outdoor measurements of leaf water content using THz quasi time-domain spectroscopy. J. Infrared Millim. Terahertz Waves 2018, 39, 943–948. [Google Scholar] [CrossRef]
- Horita, K.; Akiyama, K.; Sakamoto, T.; Takahashi, K.; Satozono, H. Terahertz Time-Domain Attenuated Total Reflection Spectroscopy by a Flow-Through Method for the Continuous Analysis of Hydrous Ethanol. J. Infrared Millim. Terahertz Waves 2021, 42, 1094–1104. [Google Scholar] [CrossRef]
- Zahid, A.; Abbas, H.T.; Imran, M.A.; Qaraqe, K.A.; Alomainy, A.; Cumming, D.R.; Abbasi, Q.H. Characterization and water content estimation method of living plant leaves using terahertz waves. Appl. Sci. 2019, 9, 2781. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zhang, X.; Wang, R.; Mei, Y.; Ma, J. Leaf water status monitoring by scattering effects at terahertz frequencies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 245, 118932. [Google Scholar] [CrossRef]
- Li, R.; Lu, Y.; Peters, J.M.; Choat, B.; Lee, A. Non-invasive measurement of leaf water content and pressure–volume curves using terahertz radiation. Sci. Rep. 2020, 10, 21028. [Google Scholar] [CrossRef]
- Kumar, R.; Paturzo, M.; Sardo, A.; Orefice, I.; Yu, Q.; Rubano, A.; Paparo, D. Toxic effect of metal doping on diatoms as probed by Broadband Terahertz Time-Domain Spectroscopy. Molecules 2022, 27, 5897. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Palacios, I.; Miranda, C.; Iriarte, J.C.; Royo, J.B.; Gonzalo, R. Terahertz time domain spectroscopy allows contactless monitoring of grapevine water status. Front. Plant Sci. 2015, 6, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez-Serrano, A.; Corzo-Garcia, S.; Garcia-Sanchez, E.; Alfaro, M.; Castro-Camus, E. Quality control of leather by terahertz time-domain spectroscopy. Appl. Opt. 2014, 53, 7872–7876. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Liu, Y.; Cao, Y.; Wu, J.; Zhang, S.; Zhang, X.; Cheng, L. Terahertz-based method for accurate characterization of early water absorption properties of epoxy resins and rapid detection of water absorption. Polymers 2021, 13, 4250. [Google Scholar] [CrossRef]
- Hoshina, H.; Kanemura, T.; Ruggiero, M.T. Exploring the dynamics of bound water in nylon polymers with terahertz spectroscopy. J. Phys. Chem. B 2019, 124, 422–429. [Google Scholar] [CrossRef]
- Cherkasova, O.; Nazarov, M.; Konnikova, M.; Shkurinov, A. THz spectroscopy of bound water in glucose: Direct measurements from crystalline to dissolved state. J. Infrared Millim. Terahertz Waves 2020, 41, 1057–1068. [Google Scholar] [CrossRef]
- Hoshina, H.; Iwasaki, Y.; Katahira, E.; Okamoto, M.; Otani, C. Structure and dynamics of bound water in poly (ethylene-vinylalcohol) copolymers studied by terahertz spectroscopy. Polymer 2018, 148, 49–60. [Google Scholar] [CrossRef]
- Devi, N.; Ray, S.; Shukla, A.; Bhat, S.D.; Pesala, B. Non-invasive macroscopic and molecular quantification of water in Nafion® and SPEEK Proton Exchange Membranes using terahertz spectroscopy. J. Membr. Sci. 2019, 588, 117183. [Google Scholar] [CrossRef]
- Penkova, N.A.; Sharapov, M.G.; Penkov, N.V. Hydration Shells of DNA from the point of view of terahertz time-domain spectroscopy. Int. J. Mol. Sci. 2021, 22, 11089. [Google Scholar] [CrossRef]
- Charkhesht, A.; Lou, D.; Sindle, B.; Wen, C.; Cheng, S.; Vinh, N.Q. Insights into hydration dynamics and cooperative interactions in glycerol–water mixtures by terahertz dielectric spectroscopy. J. Phys. Chem. B 2019, 123, 8791–8799. [Google Scholar] [CrossRef] [PubMed]
- Zang, Z.; Li, Z.; Lu, X.; Liang, J.; Wang, J.; Cui, H.-L.; Yan, S. Terahertz spectroscopy for quantification of free water and bound water in leaf. Comput. Electron. Agric. 2021, 191, 106515. [Google Scholar] [CrossRef]
- Zhao, X.-T.; Zhang, S.-J.; Li, B.; Li, Y.-K. Study on moisture content of soybean canopy leaves under drought stress using terahertz technology. Spectrosc. Spectr. Anal. 2018, 38, 2350–2354. [Google Scholar]
- Long, Y.; Zhao, C.-J.; Li, B. The preliminary research on isolated leaf moisture detection using terahertz technology. Spectrosc. Spectr. Anal. 2017, 37, 3027–3031. [Google Scholar]
- Ren, A.; Zahid, A.; Zoha, A.; Shah, S.A.; Imran, M.A.; Alomainy, A.; Abbasi, Q.H. Machine learning driven approach towards the quality assessment of fresh fruits using non-invasive sensing. IEEE Sens. J. 2019, 20, 2075–2083. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Zhao, C.; Li, B.; Li, G.; Yin, Y.; Pang, B. Determination of wheat moisture using terahertz spectroscopy combined with the tabu search algorithm. Anal. Methods 2021, 13, 4120–4130. [Google Scholar] [CrossRef]
- Cao, Q.-H.; Lin, H.-M.; Zhou, W.; Li, Z.-X.; Zhang, T.-J.; Huang, H.-Q.; Li, X.-M.; Li, D.-H. Water Quality Analysis Based on Terahertz Attenuated Total Reflection Technology. Spectrosc. Spectr. Anal. 2022, 42, 31–37. [Google Scholar]
- Chen, M.-Q.; He, M.-X.; Li, M.; Qu, Q.-H. Application of Interval Selection Methods in Quantitative Analysis of Water Content in Engine Oil by Terahertz Spectroscopy. Spectrosc. Spectr. Anal. 2021, 41, 1393–1397. [Google Scholar]
- Wu, J.-Z.; Li, X.-Q.; Sun, L.-J.; Liu, C.-L.; Sun, X.-R.; Sun, M.; Yu, L. Study on the Optimization Method of Maize Seed Moisture Quantification Model Based on THz-ATR Spectroscopy. Spectrosc. Spectr. Anal. 2021, 41, 2005–2011. [Google Scholar]
- Li, B.; Zhao, X.; Zhang, Y.; Zhang, S.; Luo, B. Prediction and monitoring of leaf water content in soybean plants using terahertz time-domain spectroscopy. Comput. Electron. Agric. 2020, 170, 105239. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, Z.; Mao, H.; Gao, H.; Zuo, Z. A lettuce moisture detection method based on terahertz time-domain spectroscopy. Ciênc. Rural 2021, 52, e20210002. [Google Scholar] [CrossRef]
- Huang, J.; Luo, B.; Cao, Y.; Li, B.; Qian, M.; Jia, N.; Zhao, W. Fusion of THz-TDS and NIRS based detection of moisture content for cattle feed. Front. Phys. 2022, 442. [Google Scholar] [CrossRef]
- Song, Z.; Yan, S.; Zang, Z.; Fu, Y.; Wei, D.; Cui, H.-L.; Lai, P. Temporal and spatial variability of water status in plant leaves by terahertz imaging. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 520–527. [Google Scholar] [CrossRef]
- Lei, T.; Li, Q.; Sun, D.-W. A dual AE-GAN guided THz spectral dehulling model for mapping energy and moisture distribution on sunflower seed kernels. Food Chem. 2022, 380, 131971. [Google Scholar] [CrossRef]
- Gong, Z.; Deng, D.; Sun, X.; Liu, J.; Ouyang, Y. Non-destructive detection of moisture content for Ginkgo biloba fruit with terahertz spectrum and image: A preliminary study. Infrared Phys. Technol. 2022, 120, 103997. [Google Scholar] [CrossRef]
- Shchepetilnikov, A.V.; Zarezin, A.M.; Muravev, V.M.; Gusikhin, P.A.; Kukushkin, I.V. Quantitative analysis of water content and distribution in plants using terahertz imaging. Opt. Eng. 2020, 59, 061617. [Google Scholar] [CrossRef]
- Bensalem, M.; Sommier, A.; Mindeguia, J.; Batsale, J.; Pradere, C. Terahertz measurement of the water content distribution in wood materials. J. Infrared Millim. Terahertz Waves 2018, 39, 195–209. [Google Scholar] [CrossRef]
- Bu, Z.; Li, Z.; Song, F.; Li, B.; Li, J. Determination of moisture content in soybean leaves based on terahertz imaging. Acta Agric. Zhejiangensis 2018, 30, 1420–1426. [Google Scholar]
- Singh, A.K.; Pérez-López, A.V.; Simpson, J.; Castro-Camus, E. Three-dimensional water mapping of succulent Agave victoriae-reginae leaves by terahertz imaging. Sci. Rep. 2020, 10, 1404. [Google Scholar] [CrossRef] [Green Version]
Target | Passive Imaging | Active Radar Imaging | Time-Domain Spectral Imaging | Near-Field Super-Resolution Imaging |
---|---|---|---|---|
Cost | low | high | high | high |
Signal-to-noise ratio | low | high | high | medium |
Radiation source | no | yes | yes | yes |
Resolution ratio | lower | higher | high | very high |
Real-time imaging | easier to achieve | difficult to achieve | difficult to achieve | difficult to achieve |
3D imaging | no | yes | yes | yes |
Imaging algorithm | relatively simple | relatively complex | relatively simple | relatively simple |
Disturbed by the environment | easily | not easily | easily | not easily |
Technology maturity | high | medium | high | low |
System Name | Abbreviation | Characteristic |
---|---|---|
Terahertz time-domain spectroscopy [38,39] | THz-TDS | High signal-to-noise ratio, good stability, wide bandwidth, and high sensitivity |
Continuous-wave terahertz spectroscopy [40,41,42] | CW-THz | Low cost, single frequency, and suitable for spectral single frequency point acquisition |
THz quasi time-domain spectroscopy [43,44] | THz-QTDS | Compact and low cost but limited signal bandwidth |
Terahertz Attenuated Total Reflection [45,46,47,48] | THz-ATR | Suitable for samples with a high water content and strong absorption of terahertz waves |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, H.; Sun, Z.; Jiang, Y.; Wu, X.; Jia, Z.; Cui, G.; Zhang, Y. Recent Advances in THz Detection of Water. Int. J. Mol. Sci. 2023, 24, 10936. https://doi.org/10.3390/ijms241310936
Ge H, Sun Z, Jiang Y, Wu X, Jia Z, Cui G, Zhang Y. Recent Advances in THz Detection of Water. International Journal of Molecular Sciences. 2023; 24(13):10936. https://doi.org/10.3390/ijms241310936
Chicago/Turabian StyleGe, Hongyi, Zhenyu Sun, Yuying Jiang, Xuyang Wu, Zhiyuan Jia, Guangyuan Cui, and Yuan Zhang. 2023. "Recent Advances in THz Detection of Water" International Journal of Molecular Sciences 24, no. 13: 10936. https://doi.org/10.3390/ijms241310936
APA StyleGe, H., Sun, Z., Jiang, Y., Wu, X., Jia, Z., Cui, G., & Zhang, Y. (2023). Recent Advances in THz Detection of Water. International Journal of Molecular Sciences, 24(13), 10936. https://doi.org/10.3390/ijms241310936