The Impact of Essential Trace Elements on Ovarian Response and Reproductive Outcomes following Single Euploid Embryo Transfer
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. Essential Trace Elements Distribution among Biofluids
2.3. Association of Essential Trace Elements Concentrations with Ovarian Response and Preimplantation Outcomes
2.4. Association of Essential Trace Elements Concentrations with Clinical IVF Outcomes
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Collection of Follicular Fluid, Plasma, and Urine Samples
4.3. Quantification of Essential Trace Elements Using ICP-MS
4.4. Clinical Management and Outcome Assessment
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farquhar, C.M.; Bhattacharya, S.; Repping, S.; Mastenbroek, S.; Kamath, M.S.; Marjoribanks, J.; Boivin, J. Female subfertility. Nat. Rev. Dis. Prim. 2019, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Carson, S.A.; Kallen, A.N. Diagnosis and Management of Infertility: A Review. JAMA J. Am. Med. Assoc. 2021, 326, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Biedenharn, K.R.; Fedor, J.M.; Agarwal, A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod. Biol. Endocrinol. 2013, 11, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, D.C.; Coelho, L.M.M.; Acevedo, M.S.M.S.F.; Coelho, N.M.M. The oligoelements. In Handbook of Mineral Elements in Food; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 109–122. [Google Scholar] [CrossRef]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Roth, Z. Symposium review: Reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function. J. Dairy Sci. 2018, 101, 3642–3654. [Google Scholar] [CrossRef]
- Skalnaya, M.G.; Tinkov, A.A.; Lobanova, Y.N.; Chang, J.S.; Skalny, A.V. Serum levels of copper, iron, and manganese in women with pregnancy, miscarriage, and primary infertility. J. Trace Elem. Med. Biol. 2019, 56, 124–130. [Google Scholar] [CrossRef]
- Skalny, A.V.; Tinkov, A.A.; Voronina, I.; Terekhina, O.; Skalnaya, M.G.; Kovas, Y. Hair Trace Element and Electrolyte Content in Women with Natural and In Vitro Fertilization-Induced Pregnancy. Biol. Trace Elem. Res. 2018, 181, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Özkaya, M.O.; Nazıroğlu, M.; Barak, C.; Berkkanoglu, M. Effects of Multivitamin/Mineral Supplementation on Trace Element Levels in Serum and Follicular Fluid of Women Undergoing in Vitro Fertilization (IVF). Biol. Trace Elem. Res. 2011, 139, 1–9. [Google Scholar] [CrossRef]
- Grieger, J.A.; Grzeskowiak, L.E.; Wilson, R.L.; Bianco-Miotto, T.; Leemaqz, S.Y.; Jankovic-Karasoulos, T.; Perkins, A.V.; Norman, R.J.; Dekker, G.A.; Roberts, C.T. Maternal Selenium, Copper and Zinc Concentrations in Early Pregnancy, and the Association with Fertility. Nutrients 2019, 11, 1609. [Google Scholar] [CrossRef] [Green Version]
- Ingle, M.E.; Bloom, M.S.; Parsons, P.J.; Steuerwald, A.J.; Kruger, P.; Fujimoto, V.Y. Associations between IVF outcomes and essential trace elements measured in follicular fluid and urine: A pilot study. J. Assist. Reprod. Genet. 2017, 34, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Wdowiak, A.; Wdowiak, E.; Bojar, I. Evaluation of trace metals in follicular fluid in ICSI-treated patients. Ann. Agric. Environ. Med. 2018, 25, 213–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Liang, R.; Zhang, G.; Ren, M.; Long, M.; Na, J.; Li, Z.; Wang, B.; Zhuang, L.; Lu, Q. Serum zinc concentration and risk of adverse outcomes to in vitro fertilization and embryo transfer: A prospective cohort study in northern China. Sci. Total Environ. 2021, 792, 148405. [Google Scholar] [CrossRef] [PubMed]
- Ingle, M.E.; Mínguez-Alarcón, L.; Carignan, C.C.; Stapleton, H.M.; Williams, P.L.; Ford, J.B.; Moravek, M.B.; Hauser, R.; Meeker, J.D. Exploring reproductive associations of serum polybrominated diphenyl ether and hydroxylated brominated diphenyl ether concentrations among women undergoing in vitro fertilization. Hum. Reprod. 2020, 35, 1199–1210. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, M.; Deng, Y.; Qiu, J.; Zhang, X.; Tan, J. Associations of toxic and essential trace elements in serum, follicular fluid, and seminal plasma with In vitro fertilization outcomes. Ecotoxicol. Environ. Saf. 2020, 204, 110965. [Google Scholar] [CrossRef]
- Zhou, L.; Liang, K.; Li, M.; Rong, C.; Zheng, J.; Li, J. Metal elements associate with in vitro fertilization (IVF) outcomes in 195 couples. J. Trace Elem. Med. Biol. 2021, 68, 126810. [Google Scholar] [CrossRef]
- Tolunay, H.E.; Şükür, Y.E.; Ozkavukcu, S.; Seval, M.M.; Ateş, C.; Türksoy, V.A.; Ecemiş, T.; Atabekoğlu, C.S.; Özmen, B.; Berker, B.; et al. Heavy metal and trace element concentrations in blood and follicular fluid affect ART outcome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 198, 73–77. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, Y.; Niu, M.; Kang, Y.; Du, S.; Zheng, B. Follicular fluid concentrations of zinc and copper are positively associated with in vitro fertilization outcomes. Int. J. Clin. Exp. Med. 2017, 10, 3547–3553. [Google Scholar]
- Abbood, M.; Burhan, S.; Ani, N. Measurement of zinc concentration in serum and follicular fluid to assess its relation with oocyte and embryo quality in women undergoing intra cytolasmic sperm injection. Int. J. Adv. Res. 2017, 5, 1333–1337. [Google Scholar] [CrossRef] [Green Version]
- Michaluk, A.; Kochman, K. Involvement of copper in female reproduction. Reprod. Biol. 2007, 7, 193–205. [Google Scholar]
- Peacey, L.; Elphick, M.R.; Jones, C.E. Roles of copper in neurokinin B and gonadotropin-releasing hormone structure and function and the endocrinology of reproduction. Gen. Comp. Endocrinol. 2020, 287, 113342. [Google Scholar] [CrossRef]
- Khan, H.M.; Bhakat, M.; Mohanty, T.K.; Pathbanda, T.K. Influence of vitamin E, macro and micro minerals on reproductive performance of cattle and buffalo-A review. Agric. Rev. 2014, 35, 113. [Google Scholar] [CrossRef]
- Choi, H.; Lee, J.; Yoon, J.D.; Hwang, S.U.; Cai, L.; Kim, M.; Kim, G.; Oh, D.; Kim, E.; Hyun, S.H. The effect of copper supplementation on in vitro maturation of porcine cumulus-oocyte complexes and subsequent developmental competence after parthenogenetic activation. Theriogenology 2021, 164, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Yi, J.; Zhang, M.; Xiong, J.; Geng, L.; Mu, C.; Yang, L. Effects of iron and copper in culture medium on bovine oocyte maturation, preimplantation embryo development, and apoptosis of blastocysts in vitro. J. Reprod. Dev. 2007, 53, 777–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thaker, R.; Oza, H.; Shaikh, I.; Kumar, S. Correlation copper and zinc in spontaneous abortions? Int. J. Fertil. Steril. 2019, 13, 97–101. [Google Scholar] [CrossRef]
- Osredkar, J. Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. J. Clin. Toxicol. 2011, s3, 495. [Google Scholar] [CrossRef] [Green Version]
- ATSDR (Agency for Toxic Substances and Disease). Toxicological Profile for Molybdenum; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2020.
- Lyubimov, A.V.; Smith, J.A.; Rousselle, S.D.; Mercieca, M.D.; Tomaszewski, J.E.; Smith, A.C.; Levine, B.S. The effects of tetrathiomolybdate (TTM, NSC-714598) and copper supplementation on fertility and early embryonic development in rats. Reprod. Toxicol. 2004, 19, 223–233. [Google Scholar] [CrossRef]
- Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, lead, and other metals in relation to semen quality: Human evidence for molybdenum as a male reproductive toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [Green Version]
- Fungwe, T.V.; Buddingh, F.; Demick, D.S.; Lox, C.D.; Yang, M.T.; Yang, S.P. The role of dietary molybdenum on estrous activity, fertility, reproduction and molybdenum and copper enzyme activities of female rats. Nutr. Res. 1990, 10, 515–524. [Google Scholar] [CrossRef]
- Vyskočil, A.; Viau, C. Assessment of molybdenum toxicity in humans. J. Appl. Toxicol. 1999, 19, 185–192. [Google Scholar] [CrossRef]
- Studer, J.M.; Schweer, W.P.; Gabler, N.K.; Ross, J.W. Functions of manganese in reproduction. Anim. Reprod. Sci. 2022, 238, 106924. [Google Scholar] [CrossRef]
- Kim, K.; Wactawski-Wende, J.; Michels, K.A.; Schliep, K.C.; Plowden, T.C.; Chaljub, E.N.; Mumford, S.L. Dietary minerals, reproductive hormone levels and sporadic anovulation: Associations in healthy women with regular menstrual cycles. Br. J. Nutr. 2018, 120, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Szklarska, D.; Rzymski, P. Is Lithium a Micronutrient? From Biological Activity and Epidemiological Observation to Food Fortification. Biol. Trace Elem. Res. 2019, 189, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Enderle, J.; Klink, U.; di Giuseppe, R.; Koch, M.; Seidel, U.; Weber, K.; Birringer, M.; Ratjen, I.; Rimbach, G.; Lieb, W. Plasma Lithium Levels in the General Population: A Cross-Sectional Analysis of Metabolic and Dietary Correlates. Nutrients 2020, 12, 2489. [Google Scholar] [CrossRef] [PubMed]
- Schrauzer, G.N. Lithium: Occurrence, dietary intakes, nutritional essentiality. J. Am. Coll. Nutr. 2002, 21, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Chang, H.M.; Cheng, J.C.; Chu, G.; Leung, P.C.K.; Yang, G. Lithium chloride inhibits StAR and progesterone production through GSK-3β and ERK1/2 signaling pathways in human granulosa-lutein cells. Mol. Cell. Endocrinol. 2018, 461, 89–99. [Google Scholar] [CrossRef]
- Mirakhori, F.; Zeynali, B.; Tafreshi, A.P.; Shirmohammadian, A. Lithium induces follicular atresia in rat ovary through a GSK-3β/β-catenin dependent mechanism. Mol. Reprod. Dev. 2013, 80, 286–296. [Google Scholar] [CrossRef]
- Uzbekova, S.; Salhab, M.; Perreau, C.; Mermillod, P.; Dupont, J. Glycogen synthase kinase 3B in bovine oocytes and granulosa cells: Possible involvement in meiosis during in vitro maturation. Reproduction 2009, 138, 235–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Ji, S.Y.; Yang, J.L.; Li, X.X.; Zhang, J.; Zhang, Y.; Hu, Z.Y.; Liu, Y.X. Wnt/β-catenin signaling regulates follicular development by modulating the expression of Foxo3a signaling components. Mol. Cell Endocrinol. 2014, 382, 915–925. [Google Scholar] [CrossRef]
- Acevedo, N.; Wang, X.; Dunn, R.L.; Smith, G.D. Glycogen synthase kinase-3 regulation of chromatin segregation and cytokinesis in mouse preimplantation embryos. Mol. Reprod. Dev. 2007, 74, 178–188. [Google Scholar] [CrossRef] [Green Version]
- Harari, F.; Langeén, M.; Casimiro, E.; Bottai, M.; Palm, B.; Nordqvist, H.; Vahter, M. Environmental exposure to lithium during pregnancy and fetal size: A longitudinal study in the Argentinean Andes. Environ. Int. 2015, 77, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Poels, E.M.P.; Kamperman, A.M.; Vreeker, A.; Gilden, J.; Boks, M.P.; Kahn, R.S.; Ophoff, R.A.; Bergink, V. Lithium Use during Pregnancy and the Risk of Miscarriage. J. Clin. Med. 2020, 9, 1819. [Google Scholar] [CrossRef] [PubMed]
- Neri, C.; De Luca, C.; D’oria, L.; Licameli, A.; Nucci, M.; Pellegrino, M.; Caruso, A.; De Santis, M. Managing fertile women under lithium treatment: The challenge of a Teratology Information Service. Minerva Ginecol. 2018, 70, 261–267. [Google Scholar] [CrossRef]
- Peng, Y.; Hu, J.; Li, Y.; Zhang, B.; Liu, W.; Li, H.; Zhang, H.; Hu, C.; Chen, X.; Xia, W.; et al. Exposure to chromium during pregnancy and longitudinally assessed fetal growth: Findings from a prospective cohort. Environ. Int. 2018, 121, 375–382. [Google Scholar] [CrossRef]
- Pan, X.; Hu, J.; Xia, W.; Zhang, B.; Liu, W.; Zhang, C.; Yang, J.; Hu, C.; Zhou, A.; Chen, Z.; et al. Prenatal chromium exposure and risk of preterm birth: A cohort study in Hubei, China. Sci. Rep. 2017, 7, 3048. [Google Scholar] [CrossRef]
- Li, D.; Liang, C.; Cao, Y.; Zhu, D.; Shen, L.; Zhang, Z.; Jiang, T.; Zhang, Z.; Zong, K.; Liu, Y.; et al. The associations of serum metals concentrations with the intermediate and pregnancy outcomes in women undergoing in vitro fertilization (IVF). Ecotoxicol. Environ. Saf. 2022, 233, 113309. [Google Scholar] [CrossRef]
- Dickerson, E.H.; Sathyapalan, T.; Knight, R.; Maguiness, S.M.; Killick, S.R.; Robinson, J.; Atkin, S.L. Endocrine disruptor & nutritional effects of heavy metals in ovarian hyperstimulation. J. Assist. Reprod. Genet. 2011, 28, 1223–1228. [Google Scholar] [CrossRef] [Green Version]
- Finke, H.; Winkelbeiner, N.; Lossow, K.; Hertel, B.; Wandt, V.K.; Schwarz, M.; Pohl, G.; Kopp, J.F.; Ebert, F.; Kipp, A.P.; et al. Effects of a Cumulative, Suboptimal Supply of Multiple Trace Elements in Mice: Trace Element Status, Genomic Stability, Inflammation, and Epigenetics. Mol. Nutr. Food Res. 2020, 64, 2000325. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.T.Y.; Tan, H.W.; Xu, Y.M. Epigenetic Effects of Dietary Trace Elements. Curr. Pharmacol. Reports 2017, 3, 232–241. [Google Scholar] [CrossRef]
- Hanson, B.M.; Kim, J.G.; Osman, E.K.; Tiegs, A.W.; Lathi, R.B.; Cheng, P.J.; Scott, R.T.; Franasiak, J.M. Impact of paternal age on embryology and pregnancy outcomes in the setting of a euploid single-embryo transfer with ejaculated sperm: Retrospective cohort study. F S Rep. 2020, 1, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Bartel, A. Tableone: Create “Table 1” to Describe Baseline Characteristics With or Without Propensity Score Weights. Available online: https://cran.r-project.org/package=tableone (accessed on 15 January 2022).
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix. Available online: https://github.com/taiyun/corrplot (accessed on 15 January 2022).
- Barnier, J.; Briatte, F.; Larmarange, J. questionr: Functions to Make Surveys Processing Easier. Available online: https://cran.r-project.org/package=questionr (accessed on 15 January 2022).
- Kim, K.; Steuerwald, A.J.; Parsons, P.J.; Fujimoto, V.Y.; Browne, R.W.; Bloom, M.S. Biomonitoring for exposure to multiple trace elements via analysis of urine from participants in the Study of Metals and Assisted Reproductive Technologies (SMART). J. Environ. Monit. 2011, 13, 2413–2419. [Google Scholar] [CrossRef]
Demographic Characteristics | |
Age (y), median (IQR) | 33.40 [31.37, 36.50] |
Body mass index (kg/m2), median (IQR) | 23.87 [21.57, 26.30] |
Race/ethnic group, n (%) | |
White/Caucasian | 43 (71.70%) |
Afro-American | 2 (3.30%) |
Asian | 6 (10.00%) |
Hispanic | 6 (10.00%) |
Other | 3 (5.00%) |
Education, n (%) | |
>High school | 55 (94.80%) |
Smoking, n (%) | |
Never Smoker | 49 (81.70%) |
Ex-smoker | 10 (16.70%) |
Passive smoker | 1 (1.70%) |
Reproductive Characteristics | |
Anti-Müllerian hormone (ng/mL), median (IQR) | 3.60 [2.49, 5.17] |
Initial treatment protocol, n (%) | |
GnRH Antagonist | 60 (100.0%) |
Total FSH dose during stimulation (IU), median (IQR) | 2100.00 [1800.00, 2700.00] |
Total LH dose during stimulation (IU), median (IQR) | 1125.00 [675.00, 1443.75] |
Estradiol trigger levels (pg/mL), median (IQR) | 3750.65 [2622.20, 5204.62] |
Number of retrieved oocytes, median (IQR) | 17.00 [11.00, 24.25] |
Mature (MII) oocyte rate, % mean ± SD | 77.47 ± 14.30% |
Fertilization rate, % mean ± SD | 81.44 ± 16.29% |
Blastulation rate, % mean ± SD | 55.62 ± 21.47% |
Euploid rate, % mean ± SD | 60.17 ± 23.72% |
Transfer rate, n (%) | 55 (91.70%) |
Implantation (positive hCG) rate, n (%) | 44 (80.00%) |
Clinical pregnancy rate, n (%) | 38 (69.10%) |
Live birth rate, n (%) | 35 (63.60%) |
Goal rate, n (%) | 35 (58.30%) |
LOD | Samples below the LOD (%) | GM (SD) | Minimum | 25% | 50% | 75% | Maximum | |
---|---|---|---|---|---|---|---|---|
Follicular Fluid | ||||||||
Copper (Cu) (ng/mL) | NA | 0% | 974.36 (277.77) | 535.00 | 825.00 | 966.50 | 1210.00 | 1970.00 |
Zinc (Zn) (ng/mL) | NA | 0% | 383.49 (109.61) | 81.71 | 340.98 | 392.43 | 454.23 | 690.00 |
Copper/Zinc Ratio (Cu/Zn) | 2.54 (1.39) | 1.17 | 2.14 | 2.54 | 2.94 | 11.60 | ||
Molybdenum (Mo) (ng/mL) | 1 | 32% | 1.06 (0.60) | 0.50 | 0.50 | 1.22 | 1.71 | 2.50 |
Copper/Molybdenum Ratio (Cu/Mo) | 935.95 (745.88) | 377.50 | 564.70 | 898.84 | 1525.00 | 3940.00 | ||
Lithium (Li) (ng/mL) | 1 | 18% | 1.34 (1.98) | 0.50 | 1.10 | 1.35 | 1.78 | 13.00 |
Selenium (Se) (ng/mL) | NA | 0% | 66.30 (14.09) | 31.00 | 60.50 | 69.00 | 73.50 | 111.00 |
Iron (Fe) (ng/mL) | NA | 0% | 539.37 (535.84) | 278.00 | 429.46 | 487.60 | 598.32 | 3455.00 |
Chromium (Cr) (ng/mL) | 1 | 50% | 2.65 (11.57) | 0.50 | 0.50 | 0.84 | 12.50 | 62.36 |
Manganese (Mn) (ng/mL) | 1 | 59.60% | 0.76 (0.51) | 0.50 | 0.50 | 0.50 | 1.20 | 2.20 |
Plasma | ||||||||
Copper (Cu) (ng/mL) | NA | 0% | 1241.62 (274.66) | 801.41 | 1107.79 | 1279.68 | 1434.14 | 2030.92 |
Zinc (Zn) (ng/mL) | NA | 0% | 960.58 (150.10) | 714.03 | 847.36 | 962.61 | 1062.44 | 1281.21 |
Copper/Zinc Ratio (Cu/Zn) | 1.29 (0.35) | 0.67 | 1.09 | 1.33 | 1.61 | 2.13 | ||
Molybdenum (Mo) (ng/mL) | 5 | 71.90% | 3.29 (2.20) | 2.50 | 2.50 | 2.50 | 5.26 | 11.64 |
Copper/Molybdenum Ratio (Cu/Mo) | 379.31 (170.55) | 112.45 | 277.92 | 452.52 | 550.59 | 812.37 | ||
Lithium (Li) (ng/mL) | 5 | 8.50% | 5.91 (1.42) | 2.50 | 5.72 | 6.27 | 6.71 | 10.08 |
Selenium (Se) (ng/mL) | 0% | 99.43 (18.20) | 60.90 | 91.53 | 99.08 | 106.56 | 185.52 | |
Chromium (Cr) (ng/mL) | 5 | 47.50% | 5.24 (8.14) | 2.50 | 2.50 | 5.36 | 8.92 | 52.36 |
Manganese (Mn) (ng/mL) | 5 | 45.80% | 4.30 (5.10) | 2.50 | 2.50 | 4.12 | 7.05 | 38.86 |
Urine | ||||||||
Copper (Cu) (ng/mL) | 5 | 5.20% | 5.38 (5.65) | 0.25 | 2.68 | 6.60 | 11.35 | 25.55 |
Creatinine Corrected (ug/g CR) | 6.18 (6.52) | 0.14 | 1.96 | 4.68 | 8.23 | 10.49 | ||
Zinc (Zn) (ng/mL) | 50 | 5.20% | 270.87 (354.78) | 25.00 | 158.63 | 303.77 | 494.93 | 1726.10 |
Creatinine Corrected (ug/g CR) | 310.95 (635.96) | 26.84 | 138.93 | 204.58 | 323.81 | 473.12 | ||
Copper/Zinc Ratio (Cu/Zn) | 0.02 (0.05) | 0.00 | 0.01 | 0.02 | 0.04 | 0.31 | ||
Molybdenum (Mo) (ng/mL) | 5 | 1.70% | 46.25 (51.62) | 2.50 | 34.50 | 53.81 | 81.08 | 311.68 |
Creatinine Corrected (ug/g CR) | 53.09 (43.55) | 12.04 | 24.66 | 38.24 | 54.24 | 74.78 | ||
Copper/Molybdenum Ratio (Cu/Mo) | 0.12 (0.18) | 0.01 | 0.08 | 0.13 | 0.18 | 1.02 | ||
Lithium (Li) (ng/mL) | 5 | 1.70% | 23.32 (28.16) | 2.50 | 13.72 | 23.26 | 36.81 | 173.50 |
Creatinine Corrected (ug/g CR) | 26.77 (26.89) | 8.37 | 12.82 | 17.13 | 25.66 | 35.21 | ||
Selenium (Se) (ng/mL) | NA | 0% | 39.74 (30.55) | 4.32 | 32.35 | 44.49 | 63.95 | 157.56 |
Creatinine Corrected (ug/g CR) | 45.62 (27.53) | 17.300 | 27.040 | 35.890 | 40.920 | 58.080 | ||
Iron (Fe) (ng/mL) | 5 | 6.90% | 19.22 (46.12) | 2.50 | 19.00 | 27.00 | 27.50 | 365.24 |
Creatinine Corrected (ug/g CR) | 22.07 (243.62) | 1.440 | 5.150 | 12.690 | 20.830 | 37.080 | ||
Chromium (Cr) (ng/mL) | 0.5 | 56.90% | 0.41 (0.58) | 0.25 | 0.25 | 0.25 | 0.65 | 3.54 |
Creatinine Corrected (ug/g CR) | 0.47 (0.80) | 0.070 | 0.130 | 0.230 | 0.460 | 0.800 | ||
Manganese (Mn) (ng/mL) | 0.5 | 91.40% | 0.28 (0.16) | 0.25 | 0.25 | 0.25 | 0.25 | 1.11 |
Creatinine Corrected (ug/g CR) | 0.32 (0.65) | 0.070 | 0.130 | 0.180 | 0.250 | 0.470 |
Anti-Müllerian Hormone | Trigger Day Estradiol | Number of Retrieved Oocytes | Relative Proportion of Mature (MII) Oocytes | Relative Proportion of Fertilized Embryos | Relative Proportion of Blastocysts | Relative Proportion of Euploid Embryos | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p20 vs. p80 (95% CI) | p Trend | p20 vs. p80 (95% CI) | p Trend | p20 vs. p80 (95% CI) | p Trend | p20 vs. p80 (95% CI) | p Trend | p20 vs. p80 (95% CI) | p Trend | p20 vs. p80 (95% CI) | p Trend | p20 vs. p80 (95% CI) | p Trend | |
Follicular Fluid | ||||||||||||||
Copper (Cu) | 4.22 (1.34, 13.25) | 0.015 | 1.59 (1.28, 1.97) | <0.001 | 1.64 (1.25, 2.16) | <0.001 | 1.55 (1.16, 2.07) | 0.004 | 1.52 (1.11, 2.07) | 0.009 | 1.35 (0.97, 1.88) | 0.074 | 1.26 (0.92, 1.73) | 0.152 |
Zinc (Zn) | 0.79 (0.34, 1.81) | 0.566 | 1.05 (0.88, 1.25) | 0.569 | 1.06 (0.85, 1.33) | 0.582 | 1.04 (0.84, 1.28) | 0.719 | 1.03 (0.83, 1.28) | 0.759 | 1.08 (0.87, 1.36) | 0.469 | 0.89 (0.71, 1.12) | 0.324 |
Copper/Zinc Ratio (Cu/Zn) | 3.15 (1.36, 7.31) | 0.009 | 1.26 (1.05, 1.50) | 0.012 | 1.24 (1.02, 1.50) | 0.029 | 1.21 (1.00, 1.47) | 0.055 | 1.19 (0.97, 1.46) | 0.093 | 1.08 (0.86, 1.35) | 0.513 | 1.38 (1.09, 1.75) | 0.009 |
Molybdenum (Mo) | 0.78 (0.18, 3.44) | 0.741 | 1.10 (0.78, 1.56) | 0.560 | 1.04 (0.68, 1.58) | 0.868 | 1.02 (0.67, 1.55) | 0.938 | 0.95 (0.61, 1.47) | 0.809 | 1.01 (0.65, 1.58) | 0.952 | 0.84 (0.54, 1.30) | 0.414 |
Copper/Molybdenum Ratio (Cu/Mo) | 3.16 (0.87, 11.47) | 0.079 | 1.17 (0.86, 1.59) | 0.297 | 1.29 (0.90, 1.85) | 0.16 | 1.27 (0.89, 1.83) | 0.183 | 1.33 (0.91, 1.94) | 0.138 | 1.24 (0.84, 1.83) | 0.264 | 1.48 (1.01, 2.16) | 0.045 |
Lithium (Li) | 0.56 (0.27, 1.18) | 0.124 | 1.02 (0.87, 1.20) | 0.808 | 0.82 (0.68, 0.98) | 0.03 | 0.80 (0.67, 0.95) | 0.015 | 0.78 (0.65, 0.94) | 0.011 | 0.89 (0.73, 1.08) | 0.223 | 0.89 (0.73, 1.07) | 0.216 |
Selenium (Se) | 0.93 (0.39, 2.20) | 0.867 | 1.08 (0.90, 1.29) | 0.408 | 1.08 (0.87, 1.35) | 0.488 | 1.02 (0.82, 1.26) | 0.879 | 0.99 (0.79, 1.23) | 0.895 | 0.96 (0.77, 1.19) | 0.698 | 0.88 (0.74, 1.07) | 0.19 |
Iron (Fe) | 0.81 (0.39, 1.67) | 0.564 | 1.01 (0.87, 1.17) | 0.923 | 0.99 (0.83, 1.19) | 0.909 | 0.96 (0.81, 1.14) | 0.626 | 0.96 (0.80, 1.15) | 0.63 | 0.90 (0.75, 1.09) | 0.287 | 0.89 (0.74, 1.07) | 0.218 |
Chromium (Cr) | 0.84 (0.20, 3.54) | 0.813 | 1.08 (0.80, 1.44) | 0.618 | 1.16 (0.81, 1.66) | 0.42 | 1.01 (0.70, 1.46) | 0.946 | 0.92 (0.63, 1.35) | 0.658 | 0.97 (0.66, 1.43) | 0.882 | 0.89 (0.62, 1.30) | 0.549 |
Plasma | ||||||||||||||
Copper (Cu) | 4.04 (1.31, 12.50) | 0.016 | 1.22 (0.96, 1.56) | 0.108 | 1.42 (1.08, 1.86) | 0.012 | 1.34 (1.03, 1.75) | 0.03 | 1.32 (1.00, 1.75) | 0.053 | 1.34 (0.99, 1.81) | 0.056 | 1.50 (1.12, 2.01) | 0.007 |
Zinc (Zn) | 1.68 (0.55, 5.13) | 0.354 | 0.92 (0.73, 1.16) | 0.473 | 0.95 (0.71, 1.26) | 0.711 | 0.96 (0.72, 1.27) | 0.759 | 1.03 (0.76, 1.39) | 0.861 | 1.12 (0.82, 1.54) | 0.465 | 0.99 (0.71, 1.37) | 0.936 |
Copper/Zinc Ratio (Cu/Zn) | 2.20 (0.70, 6.93) | 0.174 | 1.23 (0.97, 1.56) | 0.086 | 1.37 (1.04, 1.80) | 0.027 | 1.29 (0.99, 1.68) | 0.059 | 1.23 (0.93, 1.63) | 0.151 | 1.18 (0.88, 1.59) | 0.271 | 1.38 (1.03, 1.85) | 0.031 |
Lithium (Li) | 1.51 (1.00, 2.29) | 0.052 | 1.01 (0.92, 1.11) | 0.834 | 0.97 (0.88, 1.08) | 0.584 | 0.97 (0.88, 1.06) | 0.469 | 0.99 (0.89, 1.10) | 0.86 | 1.04 (0.93, 1.17) | 0.5 | 1.10 (0.97, 1.25) | 0.131 |
Selenium (Se) | 1.12 (0.55, 2.27) | 0.756 | 0.86 (0.74, 0.99) | 0.038 | 0.96 (0.81, 1.15) | 0.652 | 0.96 (0.81, 1.15) | 0.669 | 0.97 (0.81, 1.17) | 0.769 | 1.01 (0.84, 1.23) | 0.882 | 1.05 (0.87, 1.26) | 0.602 |
Iron (Fe) | 1.82 (0.68, 4.85) | 0.224 | 0.98 (0.79, 1.20) | 0.825 | 1.04 (0.81, 1.34) | 0.746 | 1.13 (0.89, 1.44) | 0.299 | 1.17 (0.91, 1.51) | 0.214 | 1.13 (0.87, 1.48) | 0.352 | 1.06 (0.82, 1.38) | 0.639 |
Chromium (Cr) | 2.19 (0.70, 6.88) | 0.174 | 1.13 (0.89, 1.44) | 0.314 | 1.24 (0.93, 1.65) | 0.148 | 1.24 (0.94, 1.63) | 0.118 | 1.26 (0.94, 1.68) | 0.12 | 1.09 (0.79, 1.49) | 0.595 | 1.10 (0.81, 1.51) | 0.535 |
Manganese (Mn) | 5.37 (1.86, 15.53) | 0.003 | 1.16 (0.91, 1.47) | 0.227 | 1.28 (0.98, 1.66) | 0.066 | 1.31 (1.04, 1.65) | 0.023 | 1.33 (1.04, 1.70) | 0.022 | 1.27 (0.97, 1.65) | 0.082 | 1.40 (1.10, 1.79) | 0.007 |
Urine | ||||||||||||||
Copper (Cu) | 0.87 (0.42, 1.79) | 0.695 | 0.94 (0.81, 1.09) | 0.397 | 0.90 (0.77, 1.06) | 0.213 | 0.91 (0.78, 1.06) | 0.225 | 0.90 (0.77, 1.06) | 0.204 | 0.91 (0.78, 1.08) | 0.272 | 0.92 (0.78, 1.08) | 0.305 |
Zinc (Zn) | 1.16 (0.49, 2.75) | 0.729 | 1.03 (0.86, 1.23) | 0.729 | 1.11 (0.90, 1.38) | 0.32 | 1.12 (0.92, 1.38) | 0.255 | 1.14 (0.92, 1.41) | 0.223 | 1.15 (0.93, 1.43) | 0.189 | 1.06 (0.84, 1.34) | 0.595 |
Copper/Zinc Ratio (Cu/Zn) | 0.75 (0.29, 1.92) | 0.539 | 0.91 (0.75, 1.10) | 0.312 | 0.81 (0.65, 1.01) | 0.057 | 0.81 (0.65, 0.99) | 0.045 | 0.78 (0.63, 0.98) | 0.032 | 0.79 (0.63, 0.99) | 0.039 | 0.84 (0.66, 1.08) | 0.171 |
Molybdenum (Mo) | 1.97 (0.74, 5.27) | 0.172 | 1.13 (0.92, 1.39) | 0.223 | 1.16 (0.93, 1.44) | 0.195 | 1.20 (0.97, 1.48) | 0.093 | 1.15 (0.92, 1.44) | 0.221 | 1.22 (0.97, 1.52) | 0.083 | 1.11 (0.88, 1.41) | 0.371 |
Copper/Molybdenum Ratio (Cu/Mo) | 0.63 (0.28, 1.38) | 0.238 | 0.88 (0.75, 1.04) | 0.125 | 0.83 (0.70, 0.99) | 0.041 | 0.83 (0.70, 0.98) | 0.027 | 0.84 (0.70, 1.00) | 0.047 | 0.83 (0.69, 0.99) | 0.035 | 0.86 (0.71, 1.04) | 0.119 |
Lithium (Li) | 1.37 (0.48, 3.93) | 0.553 | 1.10 (0.89, 1.37) | 0.376 | 0.92 (0.72, 1.19) | 0.53 | 0.96 (0.76, 1.21) | 0.717 | 0.94 (0.73, 1.20) | 0.597 | 1.09 (0.85, 1.38) | 0.487 | 1.16 (0.91, 1.47) | 0.225 |
Selenium (Se) | 1.45 (0.57, 3.69) | 0.423 | 1.01 (0.83, 1.22) | 0.946 | 1.00 (0.80, 1.24) | 0.975 | 1.03 (0.83, 1.27) | 0.772 | 1.00 (0.80, 1.24) | 0.969 | 0.99 (0.79, 1.24) | 0.934 | 1.05 (0.83, 1.32) | 0.69 |
Iron (Fe) | 0.65 (0.26, 1.61) | 0.346 | 0.82 (0.68, 0.98) | 0.028 | 0.81 (0.64, 1.02) | 0.074 | 0.84 (0.67, 1.06) | 0.137 | 0.83 (0.65, 1.07) | 0.147 | 0.84 (0.65, 1.09) | 0.181 | 0.90 (0.68, 1.18) | 0.423 |
Chromium (Cr) | 0.57 (0.16, 2.10) | 0.395 | 0.93 (0.71, 1.21) | 0.579 | 0.83 (0.61, 1.14) | 0.254 | 0.89 (0.65, 1.21) | 0.45 | 0.88 (0.63, 1.21) | 0.419 | 0.86 (0.62, 1.19) | 0.351 | 0.98 (0.70, 1.37) | 0.895 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Martin, R.; Palomar, A.; Quiñonero, A.; Pellicer, N.; Fernandez-Saavedra, R.; Conde-Vilda, E.; Quejido, A.J.; Whitehead, C.; Scott, R.T., Jr.; Dominguez, F. The Impact of Essential Trace Elements on Ovarian Response and Reproductive Outcomes following Single Euploid Embryo Transfer. Int. J. Mol. Sci. 2023, 24, 10968. https://doi.org/10.3390/ijms241310968
Gonzalez-Martin R, Palomar A, Quiñonero A, Pellicer N, Fernandez-Saavedra R, Conde-Vilda E, Quejido AJ, Whitehead C, Scott RT Jr., Dominguez F. The Impact of Essential Trace Elements on Ovarian Response and Reproductive Outcomes following Single Euploid Embryo Transfer. International Journal of Molecular Sciences. 2023; 24(13):10968. https://doi.org/10.3390/ijms241310968
Chicago/Turabian StyleGonzalez-Martin, Roberto, Andrea Palomar, Alicia Quiñonero, Nuria Pellicer, Rocio Fernandez-Saavedra, Estefania Conde-Vilda, Alberto J. Quejido, Christine Whitehead, Richard T. Scott, Jr., and Francisco Dominguez. 2023. "The Impact of Essential Trace Elements on Ovarian Response and Reproductive Outcomes following Single Euploid Embryo Transfer" International Journal of Molecular Sciences 24, no. 13: 10968. https://doi.org/10.3390/ijms241310968
APA StyleGonzalez-Martin, R., Palomar, A., Quiñonero, A., Pellicer, N., Fernandez-Saavedra, R., Conde-Vilda, E., Quejido, A. J., Whitehead, C., Scott, R. T., Jr., & Dominguez, F. (2023). The Impact of Essential Trace Elements on Ovarian Response and Reproductive Outcomes following Single Euploid Embryo Transfer. International Journal of Molecular Sciences, 24(13), 10968. https://doi.org/10.3390/ijms241310968