FTO Gene Polymorphisms and Their Roles in Acromegaly
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. The Role of FTO and Their Polymorphisms
3.2. Acromegaly and Polymorphisms of Different Genes
3.3. FTO Polymorphisms and Their Influence on Lipids Metabolism
3.4. FTO Polymorphisms and Their Connection with IGF-1
3.5. FTO Polymorphisms and Their Influence on Glucose Metabolism and Obesity
3.6. Limitations
4. Material and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chanson, P.; Salenave, S.; Kamenicky, P.; Cazabat, L.; Young, J. Pituitary tumours: Acromegaly. Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 555–574. [Google Scholar] [CrossRef] [PubMed]
- Rolla, M.; Jawiarczyk-Przybyłowska, A.; Halupczok-Żyła, J.; Kałużny, M.; Konopka, B.M.; Błoniecka, I.; Zieliński, G.; Bolanowski, M. Complications and Comorbidities of Acromegaly—Retrospective Study in Polish Center. Front. Endocrinol. 2021, 12, 642131. [Google Scholar] [CrossRef] [PubMed]
- Lavrentaki, A.; Paluzzi, A.; Wass, J.A.H.; Karavitaki, N. Epidemiology of acromegaly: Review of population studies. Pituitary 2017, 20, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolanowski, M.; Ruchała, M.; Zgliczyński, W.; Kos-Kudła, B.; Hubalewska-Dydejczyk, A.; Lewiński, A. Diagnostics and treatment of acromegaly—Updated recommendations of the Polish Society of Endocrinology. Endokrynol. Pol. 2019, 70, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Moustaki, M.; Paschou, S.A.; Xekouki, P.; Kotsa, K.; Peppa, M.; Psaltopoulou, T.; Kalantaridou, S.; Vryonidou, A. Secondary diabetes mellitus in acromegaly. Endocrine 2023, 81, 1–15. [Google Scholar] [CrossRef]
- Gadelha, M.R.; Kasuki, L.; Lim, D.S.T.; Fleseriu, M. Systemic Complications of Acromegaly and the Impact of the Current Treatment Landscape: An Update. Endocr. Rev. 2019, 40, 268–332. [Google Scholar] [CrossRef] [Green Version]
- Kasuki, L.; Rocha, P.D.S.; Lamback, E.B.; Gadelha, M.R. Determinants of morbidities and mortality in acromegaly. Arch. Endocrinol. Metabol. 2019, 63, 630–637. [Google Scholar] [CrossRef] [Green Version]
- Bolfi, F.; Neves, A.F.; Boguszewski, C.L.; Nunes-Nogueira, V.S. Mortality in acromegaly decreased in the last decade: A systematic review and meta-analysis. Eur. J. Endocrinol. 2018, 179, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Mercado, M.; Gonzalez, B.; Vargas-Ortega, G.; Ramirez-Renteria, C.; Monteros, A.L.E.D.L.; Sosa, E.; Jervis, P.; Roldan, P.; Mendoza, V.; López-Félix, B.; et al. Successful Mortality Reduction and Control of Comorbidities in Patients with Acromegaly Followed at a Highly Specialized Multidisciplinary Clinic. J. Clin. Endocrinol. Metab. 2014, 99, 4438–4446. [Google Scholar] [CrossRef] [Green Version]
- Dina, C.; Meyre, D.; Gallina, S.; Durand, E.; Körner, A.; Jacobson, P.; Carlsson, L.M.S.; Kiess, W.; Vatin, V.; Lecoeur, C.; et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 2007, 39, 724–726. [Google Scholar] [CrossRef]
- Scuteri, A.; Sanna, S.; Chen, W.-M.; Uda, M.; Albai, G.; Strait, J.; Najjar, S.; Nagaraja, R.; Orrú, M.; Usala, G.; et al. Genome-Wide Association Scan Shows Genetic Variants in the FTO Gene Are Associated with Obesity-Related Traits. PLoS Genet. 2007, 3, e115. [Google Scholar] [CrossRef] [PubMed]
- Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.B.; Elliott, K.S.; Lango, H.; Rayner, N.W.; et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science 2007, 316, 889–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Mou, S.; Pan, C. The FTO Gene rs9939609 Polymorphism Predicts Risk of Cardiovascular Disease: A Systematic Review and Meta-Analysis. PLoS ONE 2013, 8, e71901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doaei, S.; Jarrahi, S.A.M.; Moghadam, A.S.; Akbari, M.E.; Kooshesh, S.J.; Badeli, M.; Tabesh, G.A.; Torki, S.A.; Gholamalizadeh, M.; Zhu, Z.H.; et al. The effect of rs9930506 FTO gene polymorphism on obesity risk: A meta-analysis. Biomol. Concepts 2020, 10, 237–242. [Google Scholar] [CrossRef]
- Peng, S.; Zhu, Y.; Xu, F.; Ren, X.; Li, X.; Lai, M. FTO gene polymorphisms and obesity risk: A meta-analysis. BMC Med. 2011, 9, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doaei, S.; Gholamalizadeh, M. MON-PO576: RS9930506 FTO Gene Polymorphism and Obesity Risk: A Meta-analysis. Clin. Nutr. 2019, 38, S272. [Google Scholar] [CrossRef]
- Fawcett, K.A.; Barroso, I. The genetics of obesity: FTO leads the way. Trends Genet. 2010, 26, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Yang, Y.; Sun, B.-F.; Zhao, Y.-L.; Yang, Y.-G. FTO and Obesity: Mechanisms of Association. Curr. Diabetes Rep. 2014, 14, 486. [Google Scholar] [CrossRef]
- Rosskopf, D.; Schwahn, C.; Neumann, F.; Bornhorst, A.; Rimmbach, C.; Mischke, M.; Wolf, S.; Geissler, I.; Kocher, T.; Grabe, H.-J.; et al. The growth hormone—IGF-I axis as a mediator for the association between FTO variants and body mass index: Results of the Study of Health in Pomerania. Int. J. Obes. 2011, 35, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Franczak, A.; Kolačkov, K.; Jawiarczyk-Przybyłowska, A.; Bolanowski, M. Association between FTO gene polymorphisms and HDL cholesterol concentration may cause higher risk of cardiovascular disease in patients with acromegaly. Pituitary 2018, 21, 10–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathiyalagan, P.; Adamiak, M.; Mayourian, J.; Sassi, Y.; Liang, Y.; Agarwal, N.; Jha, D.; Zhang, S.; Kohlbrenner, E.; Chepurko, E.; et al. FTO-Dependent N6-Methyladenosine Regulates Cardiac Function During Remodeling and Repair. Circulation 2019, 139, 518–532. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, H.; Dong, Z.; Sun, A.; Ge, J. The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes Dis. 2021, 8, 746–758. [Google Scholar] [CrossRef]
- Krüger, N.; Biwer, L.A.; Good, M.E.; Ruddiman, C.A.; Wolpe, A.G.; DeLalio, L.; Murphy, S.; Jr, E.H.M.; Ragolia, L.; Serbulea, V.; et al. Loss of Endothelial FTO Antagonizes Obesity-Induced Metabolic and Vascular Dysfunction. Circ. Res. 2020, 126, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Freathy, R.M.; Timpson, N.J.; Lawlor, D.A.; Pouta, A.; Ben-Shlomo, Y.; Ruokonen, A.; Ebrahim, S.; Shields, B.; Zeggini, E.; Weedon, M.N.; et al. Common Variation in the FTO Gene Alters Diabetes-Related Metabolic Traits to the Extent Expected Given Its Effect on BMI. Diabetes 2008, 57, 1419–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobsson, J.A.; Schiöth, H.B.; Fredriksson, R. The impact of intronic single nucleotide polymorphisms and ethnic diversity for studies on the obesity gene FTO. Obes. Rev. 2012, 13, 1096–1109. [Google Scholar] [CrossRef]
- Ali, A.H.A.; Shkurat, T.P.; Abbas, A.H. Association analysis of FTO gene polymorphisms rs9939609 and obesity risk among the adults: A systematic review and meta-analysis. Meta Gene 2021, 27, 100832. [Google Scholar] [CrossRef]
- Lappalainen, T.; Kolehmainen, M.; Schwab, U.; Tolppanen, A.; Stančáková, A.; Lindström, J.; Eriksson, J.; Keinänen-Kiukaanniemi, S.; Aunola, S.; Ilanne-Parikka, P.; et al. Association of the FTO gene variant (rs9939609) with cardiovascular disease in men with abnormal glucose metabolism–The Finnish Diabetes Prevention Study. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Doney, A.S.; Dannfald, J.; Kimber, C.H.; Donnelly, L.A.; Pearson, E.; Morris, A.D.; Palmer, C.N.A. The FTO Gene is Associated with an Atherogenic Lipid Profile and Myocardial Infarction in Patients with Type 2 Diabetes. Circ. Cardiovasc. Genet. 2009, 2, 255–259. [Google Scholar] [CrossRef] [Green Version]
- Turgut, S.; Topsakal, S.; Ata, M.T.; Herek, D.; Akın, F.; Özkan, Ş.; Turgut, G. Leptin Receptor Gene Polymorphism may Affect Subclinical Atherosclerosis in Patients with Acromegaly. Avicenna J. Med. Biotechnol. 2016, 8, 145–150. [Google Scholar]
- Turgut, S.; Akın, F.; Ayada, C.; Topsakal, Ş.; Yerlikaya, E.; Turgut, G. The growth hormone receptor polymorphism in patients with acromegaly: Relationship to BMI and glucose metabolism. Pituitary 2012, 15, 374–379. [Google Scholar] [CrossRef]
- Ilhan, M.; Toptas-Hekimoglu, B.; Yaylim, I.; Turgut, S.; Turan, S.; Karaman, O.; Tasan, E. Investigation of the Vitamin D Receptor Polymorphisms in Acromegaly Patients. BioMed Res. Int. 2015, 2015, 625981. [Google Scholar] [CrossRef] [Green Version]
- Montefusco, L.; Filopanti, M.; Ronchi, C.L.; Olgiati, L.; La-Porta, C.; Losa, M.; Epaminonda, P.; Coletti, F.; Beck-Peccoz, P.; Spada, A.; et al. d3-Growth hormone receptor polymorphism in acromegaly: Effects on metabolic phenotype. Clin. Endocrinol. 2010, 72, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Jawiarczyk-Przybyłowska, A.; Halupczok-Żyła, J.; Kolačkov, K.; Gojny, Ł.; Zembska, A.; Bolanowski, M. Association of Vitamin D Receptor Polymorphisms with Activity of Acromegaly, Vitamin D Status and Risk of Osteoporotic Fractures in Acromegaly Patients. Front. Endocrinol. 2019, 10, 643. [Google Scholar] [CrossRef]
- Oguz, E.; Tabur, S.; Akbas, H.; Duzen, I.V.; Karabag, H.; Akkafa, F.; Ozkaya, M.; Alasehirli, B. The association of ICAM E469K with cardiovascular characteristics of acromegaly. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1673–1679. [Google Scholar]
- Franck, S.E.; Broer, L.; Van Der Lely, A.J.; Kamenicky, P.; Bernabéu, I.; Malchiodi, E.; Delhanty, P.J.; Rivadeneira, F.; Neggers, S.J. The Effect of the Exon-3-Deleted Growth Hormone Receptor on Pegvisomant-Treated Acromegaly: A Systematic Review and Meta-Analysis. Neuroendocrinology 2017, 105, 131–140. [Google Scholar] [CrossRef]
- Mehrdad, M.; Doaei, S.; Gholamalizadeh, M.; Fardaei, M.; Fararouei, M.; Eftekhari, M.H. Association of FTO rs9939609 polymorphism with serum leptin, insulin, adiponectin, and lipid profile in overweight adults. Adipocyte 2020, 9, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Vidal, C.M.; Mojahed, H.; Shen, W.; Jin, Z.; Arias-Mendoza, F.; Fernandez, J.C.; Gallagher, D.; Bruce, J.N.; Post, K.D.; Freda, P.U. Adipose Tissue Redistribution and Ectopic Lipid Deposition in Active Acromegaly and Effects of Surgical Treatment. J. Clin. Endocrinol. Metab. 2015, 100, 2946–2955. [Google Scholar] [CrossRef] [Green Version]
- Freda, P.U. The acromegaly lipodystrophy. Front. Endocrinol. 2022, 13, 933039. [Google Scholar] [CrossRef] [PubMed]
- Szczepanek-Parulska, E.; Sokolowski, J.; Dmowska, D.; Klimek, J.; Stasikowski, T.; Zdebski, P.; Olejarz, M.; Gac, A.; Bartecki, M.; Ruchała, M. Lipid profile abnormalities associated with endocrine disorders. Endokrynol. Pol. 2022, 73, 863–871. [Google Scholar] [CrossRef]
- Cozzolino, A.; Feola, T.; Simonelli, I.; Puliani, G.; Hasenmajer, V.; Minnetti, M.; Giannetta, E.; Gianfrilli, D.; Pasqualetti, P.; Lenzi, A.; et al. Metabolic complications in acromegaly after neurosurgery: A meta-analysis. Eur. J. Endocrinol. 2020, 183, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Parolin, M.; Dassie, F.; Martini, C.; Mioni, R.; Russo, L.; Fallo, F.; Rossato, M.; Vettor, R.; Maffei, P.; Pagano, C. Preclinical markers of atherosclerosis in acromegaly: A systematic review and meta-analysis. Pituitary 2018, 21, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Shin, Y.-H.; Li, M.; Wang, F.; Tong, Q.; Zhang, P. The Fat Mass and Obesity Associated Gene FTO Functions in the Brain to Regulate Postnatal Growth in Mice. PLoS ONE 2010, 5, e14005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreasen, C.H.; Stender-Petersen, K.L.; Mogensen, M.S.; Torekov, S.S.; Wegner, L.; Andersen, G.; Nielsen, A.L.; Albrechtsen, A.; Borch-Johnsen, K.; Rasmussen, S.S.; et al. Low Physical Activity Accentuates the Effect of the FTO rs9939609 Polymorphism on Body Fat Accumulation. Diabetes 2008, 57, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; You, N.-C.; Hsu, Y.-H.; Howard, B.V.; Langer, R.D.; Manson, J.E.; Nathan, L.; Niu, T.; Tinker, L.F.; Liu, S. FTO Polymorphisms are Associated with Obesity but Not Diabetes Risk in Postmenopausal Women. Obesity 2008, 16, 2472–2480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legry, V.; Cottel, D.; Ferrières, J.; Arveiler, D.; Andrieux, N.; Bingham, A.; Wagner, A.; Ruidavets, J.-B.; Ducimetière, P.; Amouyel, P.; et al. Effect of an FTO polymorphism on fat mass, obesity, and type 2 diabetes mellitus in the French MONICA Study. Metab. Clin. Exp. 2009, 58, 971–975. [Google Scholar] [CrossRef] [PubMed]
- Hertel, J.K.; Johansson, S.; Sonestedt, E.; Jonsson, A.; Lie, R.T.; Platou, C.G.; Nilsson, P.M.; Rukh, G.; Midthjell, K.; Hveem, K.; et al. FTO, Type 2 Diabetes, and Weight Gain throughout Adult Life. Diabetes 2011, 60, 1637–1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Kilpeläinen, T.O.; Liu, C.; Zhu, J.; Liu, Y.; Hu, C.; Yang, Z.; Zhang, W.; Bao, W.; Cha, S.; et al. Association of genetic variation in FTO with risk of obesity and type 2 diabetes with data from 96,551 East and South Asians. Diabetologia 2011, 55, 981–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, M.C.; Park, K.S.; Oh, B.; Tam, C.H.; Cho, Y.M.; Shin, H.D.; Lam, V.K.; Ma, R.C.; So, W.Y.; Cho, Y.S.; et al. Implication of Genetic Variants Near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in Type 2 Diabetes and Obesity in 6,719 Asians. Diabetes 2008, 57, 2226–2233. [Google Scholar] [CrossRef] [Green Version]
- Kalnina, I.; Zaharenko, L.; Vaivade, I.; Rovite, V.; Nikitina-Zake, L.; Peculis, R.; Fridmanis, D.; Geldnere, K.; Jacobsson, J.A.; Almen, M.S.; et al. Polymorphisms in FTO and near TMEM18 associate with type 2 diabetes and predispose to younger age at diagnosis of diabetes. Gene 2013, 527, 462–468. [Google Scholar] [CrossRef]
- R Core Team. R Core Team. R core team. In R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: http://www.R-project.org.
Acromegaly Group N = 104 | Control Group N = 64 | p Value | |
---|---|---|---|
Sex | 64/104 (61.54% F) | 40/64 (62.5% F) | 0.99 |
Age (y.) | 58.21 | 57.47 11.92 | 0.58 |
BMI (kg/m2) | 29.24 | 26.47 | 0.001 * |
Weight (kg) | 83.52 | 74.54 | <0.001 * |
Lean body mass (kg) | 56.07 | 48.8 | <0.001 * |
GH (ng/mL) | 3.28 10.11 | 0.77 1.03 | <0.001 * |
IGF-1 (ng/mL) | 206.45 | 111.22 | <0.001 * |
Glucose (mg/dl) | 100.3 | 90.55 12.95 | <0.001 * |
HbA1c% | 6.37 1.14 | 5.79 | <0.001 * |
Total cholesterol (mg/dl) | 204.28 41.88 | <0.001 * | |
LDL (mg/dl) | 0.26 | ||
HDL (mg/dl) | 56.97 14.39 | 0.075 | |
Trigliceride (mg/dl) | 0.75 | ||
Prediabetes | 42.67% | 12.5% | <0.001 * |
Hypertension | 58.65% | 15.62% | <0.001 * |
Rs1121980_T (TT) | 18.75% | 23.23% | 0.40 |
Rs1421085_C (CC) | 17.19% | 19.19% | 0.45 |
Rs9930506_G (GG) | 20.31% | 21.21% | 0.5 |
Rs9939609_A (AA) | 17.19% | 17.17% | 0.39 |
CG | AAG | WCA | CAG | p | |
---|---|---|---|---|---|
BMI | * | 0.002 | |||
Body mass (kg) | * | 0.002 | |||
Lean body mass (kg) | * | * | 0.002 | ||
Body fat (%) | * | # | 0.015 | ||
IGF-1 (ng/mL) | * | *,# | *,# | <0.001 | |
GH (nadir) | * | *,# | *,# | <0.001 | |
Glucose (mg/dl) | * | * | #,$ | <0.001 | |
Insulin (U/l) | # | # | 0.003 | ||
HbA1C (%) | * | ,# | $ | <0.001 | |
HDL (mg/dl) | * | * | 0.022 | ||
Trigliceride (mg/dl) | # | ||||
API | * | # | 0.019 | ||
Prediabetes | 12.5%, (n = 7) | 58.33% *, (n = 7) | 51.44% *, (n = 18) | 25%, (n = 7) | <0.001 |
Diabetes | 15.62%, (n = 10) | 25%, (n = 4) | 37.5% *, (n = 37.5) | 12.5% $, (n = 4) | 0.016 |
Dyslipidemia | 12.7%, (n = 8) | 25%, (n = 4) | 1.79% *,#, (n = 1) | 21.88% $, (n = 7) | 0.002 |
Rs1121980_T (TT) | 18.75% | 7.69% | 23.21% | 30% | 0.16 |
Rs1421085_C (CC) | 17.19% | 0% | 19.64% | 26.67% | 0.18 |
Rs9930506_G (GG) | 20.31% | 0% | 19.64% | 33.3% | 0.11 |
Rs9939609_A (AA) | 17.19% | 0% | 16.06% | 26.67% # | 0.04 |
Polymorphism | Parameter (Mean) | Genotype | p Value | ||
---|---|---|---|---|---|
Rs1121980 | CC | CT | TT | ||
IGF-1 (ng/mL) | 0.16 | ||||
%ULN IGF-1 | 0.12 | ||||
HbA1c (%) | 0.018 | ||||
Rs1421085 | CC | CT | TT | ||
IGF-1 (ng/mL) | 0.17 | ||||
%ULN IGF-1 | 0.08 | ||||
HbA1c (%) | 0.014 * | ||||
Rs 9939609 | AA | AT | TT | ||
IGF-1 (ng/mL) | 0.059 | ||||
%ULN IGF-1 | 0.041 * | ||||
HbA1c (%) | 0.027 * | ||||
Rs9930506 | AA | AG | GG | ||
IGF-1 (ng/mL) | 0.050 * | ||||
%ULN IGF-1 | 0.048 * | ||||
HbA1c (%) | 0.026 * |
Group | Polymorphism | Parameter | Genotype | p Value | ||
---|---|---|---|---|---|---|
Acromegaly group | Rs1121980 | CC | CT | TT | ||
TCH (mg/dl) | 0.85 | |||||
HDL (mg/dl) | 0.64 | |||||
LDL (mg/dl) | 0.64 | |||||
TG (mg/dl) | 0.27 | |||||
BMI (kg/m2) | 0.51 | |||||
Body mass (kg) | 0.61 | |||||
Rs1421085 | CC | CT | TT | |||
TCH (mg/dl) | 0.6 | |||||
HDL (mg/dl) | 0.65 | |||||
LDL (mg/dl) | 0.50 | |||||
TG (mg/dl) | 0.22 | |||||
BMI (kg/m2) | 0.64 | |||||
Body mass (kg) | 0.76 | |||||
Rs9939609 | AA | AT | TT | |||
TCH (mg/dl) | 0.84 | |||||
HDL (mg/dl) | 0.88 | |||||
LDL (mg/dl) | 0.68 | |||||
TG (mg/dl) | 0.28 | |||||
BMI (kg/m2) | 0.86 | |||||
Body mass (kg) | 0.57 | |||||
Rs9930506 | AA | AG | GG | |||
TCH (mg/dl) | 0.93 | |||||
HDL (mg/dl) | 0.93 | |||||
LDL (mg/dl) | 0.75 | |||||
TG (mg/dl) | 0.13 | |||||
BMI (kg/m2) | 0.67 | |||||
Body mass (kg) | 0.4 | |||||
AA | Rs1121980 | CC | CT | TT | ||
TCH (mg/dl) | 179.67 32.53 | 206.83 67.76 | 184 | 0.68 | ||
HDL (mg/dl) | 0.39 | |||||
LDL (mg/dl) | 0.73 | |||||
TG (mg/dl) | 104 | 0.56 | ||||
AA | Rs1421085 | CT | TT | |||
TCH (mg/dl) | 207.50 | 0.43 | ||||
HDL (mg/dl) | 0.83 | |||||
LDL (mg/dl) | 0.45 | |||||
TG (mg/dl) | 0.73 | |||||
AA | Rs9939609 | AT | TT | |||
TCH (mg/dl) | 0.7 | |||||
HDL (mg/dl) | 0.54 | |||||
LDL (mg/dl) | 0.60 | |||||
TG (mg/dl) | 0.83 | |||||
AA | Rs9930506 | AA | AG | |||
TCH (mg/dl) | 211.4 | 0.71 | ||||
HDL (mg/dl) | 0.30 | |||||
LDL (mg/dl) | 0.72 | |||||
TG (mg/dl) | 0.99 | |||||
WCA | Rs1121980 | CC | CT | TT | ||
TCH (mg/dl) | 205.95 | 0.075 | ||||
HDL (mg/dl) | 0.037* | |||||
LDL (mg/dl) | 0.16 | |||||
TG (mg/dl) | 115.42 | 0.65 | ||||
WCA | Rs 1421085 | CC | CT | TT | ||
TCH (mg/dl) | 0.035 * | |||||
HDL (mg/dl) | 0.011 * | |||||
LDL (mg/dl) | 96.73 45.94 | 0.06 | ||||
TG (mg/dl) | 40.05 | 0.49 | ||||
WCA | Rs 9939609 | AA | AT | TT | ||
TCH (mg/dl) | 0.12 | |||||
HDL (mg/dl) | 47.89 | 0.09 | ||||
LDL (mg/dl) | 0.20 | |||||
TG (mg/dl) | 0.64 | |||||
WCA | Rs99305506 | AA | AG | GG | ||
TCH (mg/dl) | 205.94 52.8 | 42.65 | 57.88 | 0.22 | ||
HDL (mg/dl) | 0.14 | |||||
LDL (mg/dl) | 0.42 | |||||
TG (mg/dl) | 34.32 | 0.39 | ||||
CAG | Rs1121980 | |||||
TCH (mg/dl) | 161.83 49.24 | 0.091 | ||||
HDL (mg/dl) | 0.31 | |||||
LDL (mg/dl) | 0.16 | |||||
TG (mg/dl) | 0.77 | |||||
CAG | Rs1421085 | |||||
TCH (mg/dl) | 204.88 | 0.15 | ||||
HDL (mg/dl) | 0.41 | |||||
LDL (mg/dl) | 0.22 | |||||
TG (mg/dl) | 54 | 0.76 | ||||
CAG | Rs9939609 | |||||
TCH (mg/dl) | 204.88 19.63 | 0.11 | ||||
HDL (mg/dl) | 0.46 | |||||
LDL (mg/dl) | 0.13 | |||||
TG (mg/dl) | 0.88 | |||||
CAG | Rs9930506 | AA | AG | GG | ||
TCH (mg/dl) | 0.065 | |||||
HDL (mg/dl) | 50.43 12.97 | 0.43 | ||||
LDL (mg/dl) | 0.076 | |||||
TG (mg/dl) | 110.14 68.23 | 0.69 |
FTO SNP | Forward Primer 5′-3′ | Reverse Primer 5′-3′ |
---|---|---|
rs1421085 | CTTCCAGGCAAAAGCAGGAG | CAGTGGAGGTCAGCACAGAG |
rs1121980 | AACAAGGAGACAGCAATGGA | CTCAGTAGATGTGTTAATGA |
rs9930506 | TGGAGAATGATGAGAATGTA | GCAATTTAAGTAATGCCTAT |
rs9939609 | CACTAACATCAGTTATGCAT | CCATTTCTGACTGTTACCTA |
FTO SNP | Primer 5′-3′ |
---|---|
rs1421085 | GTAGCAGTTCAGGTCCTAAGGCATGA |
rs1121980 | CAGGTGGATCTGAAATCTCA |
rs9930506 | ATCCAATATTAGGGACACAAAAAGGGACATACTAC |
rs9939609 | TGTCTGAATTATTATTCTAGGTTCCTTGCGACTGCTGTGAATTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jawiarczyk-Przybyłowska, A.; Kuliczkowska-Płaksej, J.; Kolačkov, K.; Zembska, A.; Halupczok-Żyła, J.; Rolla, M.; Miner, M.; Kałużny, M.; Bolanowski, M. FTO Gene Polymorphisms and Their Roles in Acromegaly. Int. J. Mol. Sci. 2023, 24, 10974. https://doi.org/10.3390/ijms241310974
Jawiarczyk-Przybyłowska A, Kuliczkowska-Płaksej J, Kolačkov K, Zembska A, Halupczok-Żyła J, Rolla M, Miner M, Kałużny M, Bolanowski M. FTO Gene Polymorphisms and Their Roles in Acromegaly. International Journal of Molecular Sciences. 2023; 24(13):10974. https://doi.org/10.3390/ijms241310974
Chicago/Turabian StyleJawiarczyk-Przybyłowska, Aleksandra, Justyna Kuliczkowska-Płaksej, Katarzyna Kolačkov, Agnieszka Zembska, Jowita Halupczok-Żyła, Małgorzata Rolla, Michał Miner, Marcin Kałużny, and Marek Bolanowski. 2023. "FTO Gene Polymorphisms and Their Roles in Acromegaly" International Journal of Molecular Sciences 24, no. 13: 10974. https://doi.org/10.3390/ijms241310974
APA StyleJawiarczyk-Przybyłowska, A., Kuliczkowska-Płaksej, J., Kolačkov, K., Zembska, A., Halupczok-Żyła, J., Rolla, M., Miner, M., Kałużny, M., & Bolanowski, M. (2023). FTO Gene Polymorphisms and Their Roles in Acromegaly. International Journal of Molecular Sciences, 24(13), 10974. https://doi.org/10.3390/ijms241310974