Molecular Defensive Mechanism of Echinacea purpurea (L.) Moench against PAH Contaminations
Abstract
:1. Introduction
2. Results
2.1. Growth and PAH Accumulation
2.2. Overview of RNA Sequencing, Functional Annotation, and Identification of DEGs
2.3. Overview of Metabolomic Data and Identification of DAMs
2.4. GO Classification
2.5. KEGG Pathway Analysis
2.6. Phenolic DAMs
2.7. Association Analysis of Metabolome and Transcriptome
3. Discussion
3.1. Responses of Growth and Chlorophyll Metabolism in E. purpurea Leaves to PAH Exposure
3.2. Effects on Circadian Rhythm and Hormone Signal Transduction in E. purpurea Leaves
3.3. Effects on Sugar Metabolism and Secondary Metabolism in E. purpurea Leaves
4. Materials and Methods
4.1. Soil Preparation, Experimental Design, and Plant Cultivation
4.2. Growth Measurement
4.3. PAH Extraction and Analysis
4.4. Transcriptomic Sequencing and qRT-PCR
4.5. Metabolomic Analysis
4.6. Data and statistical analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Couling, N.R.; Towell, M.G.; Semple, K.T. Biodegradation of PAHs in soil: Influence of chemical structure, concentration and multiple amendment. Environ. Pollut. 2010, 158, 3411–3420. [Google Scholar] [CrossRef]
- Gabriele, I.; Race, M.; Papirio, S.; Papetti, P.; Esposito, G. Phytoremediation of a pyrene-contaminated soil by Cannabis sativa L. at different initial pyrene concentrations. Chemosphere 2022, 300, 134578. [Google Scholar] [CrossRef]
- de Lima, R.F.; Dionello, R.G.; do Peralba, M.; Barrionuevo, S.; Radunz, L.L.; Júnior, F.W.R. PAHs in corn grains submitted to drying with firewood. Food Chem. 2017, 215, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Meagher, R.B. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 2000, 3, 153–162. [Google Scholar] [CrossRef]
- Rai, P.K.; Kim, K.H.; Lee, S.S.; Lee, J.H. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Sci. Total. Environ. 2020, 705, 135858. [Google Scholar] [CrossRef]
- Spinedi, N.; Storb, R.; Aranda, E.; Romani, F.; Svriz, M.; Varela, S.A.; Moreno, J.E.; Fracchia, S.; Cabrera, J.; Batista-García, R.A.; et al. Ros-scavenging enzymes as an antioxidant response to high concentration of anthracene in the liverwort Marchantia Polymorpha L. Plants 2021, 10, 1478. [Google Scholar] [CrossRef]
- Sivaram, A.K.; Logeshwaran, P.; Subashchandrabose, S.R.; Lockington, R.; Naidu, R.; Megharaj, M. Comparison of plants with C3 and C4 carbon fixation pathways for remediation of polycyclic aromatic hydrocarbon contaminated soils. Sci. Rep. 2018, 8, 2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeura, H.; Kawasaki, Y.; Kaimi, E.; Nishiwaki, J.; Noborio, K.; Tamaki, M. Screening of plants for phytoremediation of oil-contaminated soil. Int. J. Phytoremediation 2016, 18, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Houshani, M.; Salehi-Lisar, S.Y.; Motafakkerazad, R.; Movafeghi, A. Uptake and distribution of phenanthrene and pyrene in roots and shoots of maize (Zea mays L.). Environ. Sci. Pollut. Res. 2019, 26, 9938–9944. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, A.; Salehi-Lisar, S.Y.; Motafakkerazad, R.; Movafeghi, A. Uptake and distribution of phenanthrene and pyrene in roots and shoots of wheat (Triticum aestivum L.). Polycycl. Aromat. Comp. 2020, 42, 543–550. [Google Scholar] [CrossRef]
- Heidari, S.; Fotouhi-Ghazvini, R.; Zavareh, M.; Kafi, M. Physiological responses and phytoremediation ability of eastern coneflower (Echinacea purpurea) for crude oil contaminated soil. Caspian J. Environ. Sci. 2018, 16, 149–164. [Google Scholar]
- Pretorius, T.R.; Charest, C.; Kimpe, L.E.; Blais, J.M. The accumulation of metals, PAHs and alkyl PAHs in the roots of Echinacea purpurea. PLoS ONE 2018, 13, e0208325. [Google Scholar] [CrossRef]
- Liu, K.; Liu, R.; Xiao, Y.; Song, M.; Deng, X.; Dai, T.; Wang, Y.; Wu, X. Response of rhizosphere microbial community in high-PAH-contaminated soil using Echinacea purpurea (L.) Moench. Appl. Sci. 2022, 12, 2973. [Google Scholar] [CrossRef]
- Sheshbahreh, M.J.; Dehnavi, M.M.; Salehi, A.; Bahreininejad, B. Physiological and yield responses of purple coneflower (Echinacea purpurea (L.) Moench) to nitrogen sources at different levels of irrigation. Physiol. Mol. Biol. Plants 2018, 25, 177–187. [Google Scholar] [CrossRef]
- Deng, X.; Liu, R.; Hou, L. Promotion effect of graphene on phytoremediation of Cd-contaminated soil. Environ. Sci. Pollut. Res. Int. 2022, 29, 74319–74334. [Google Scholar] [CrossRef]
- Hernández-Vega, J.C.; Cady, B.; Kayanja, G.; Mauriello, A.; Cervantes, N.; Gillespie, A.; Lavia, L.; Trujillo, J.; Alkio, M.; Colón-Carmona, A. Detoxification of polycyclic aromatic hydrocarbons (PAHs) in Arabidopsis thaliana involves a putative flavonol synthase. J. Hazard. Mater. 2017, 321, 268–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavé-Radet, A.; Rabhi, M.; Gouttefangeas, F.; El Amrani, A. Do specialized cells play a major role in organic xenobiotic detoxification in higher plants? Front. Plant Sci. 2020, 11, 1037. [Google Scholar] [CrossRef]
- Weisman, D.; Alkio, M.; Colón-Carmona, A. Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways. BMC Plant Biol. 2010, 10, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumas, A.S.; Taconnat, L.; Barbas, E.; Rigaill, G.; Catrice, O.; Bernard, D.; Benamar, A.; Macherel, D.; El Amrani, A.; Berthomé, R. Unraveling the early molecular and physiological mechanisms involved in response to phenanthrene exposure. BMC Genom. 2016, 17, 818. [Google Scholar] [CrossRef] [Green Version]
- González, A.; Vidal, C.; Espinoza, D.; Moenne, A. Anthracene induces oxidative stress and activation of antioxidant and detoxification enzymes in Ulva lactuca (Chlorophyta). Sci. Rep. 2021, 11, 7748. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, X.; Cheng, Y.; Liu, J.; Zou, J.; Zhai, F.; Sun, Z. Transcriptomic and metabolomic insights into the adaptive response of Salix viminalis to phenanthrene. Chemosphere 2021, 262, 127573. [Google Scholar]
- Jiang, S.; Xie, F.; Lu, H.; Liu, J.; Yan, C. Response of low-molecular-weight organic acids in mangrove root exudates to exposure of polycyclic aromatic hydrocarbons. Environ. Sci. Pollut. Res. Int. 2017, 24, 12484–12493. [Google Scholar] [CrossRef]
- Hennessee, C.T.; Li, Q.X. Effects of polycyclic aromatic hydrocarbon mixtures on degradation, gene expression, and metabolite production in four mycobacterium species. Appl. Environ. Microbiol. 2016, 82, 3357–3369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Hu, X.; Zhou, Z.; Zhang, W.; Wang, Y.; Sun, B. Phytoavailability and mechanism of bound PAH residues in filed contaminated soils. Environ. Pollut. 2017, 222, 465–476. [Google Scholar] [CrossRef]
- Sivaram, A.K.; Subashchandrabose, S.R.; Logeshwaran, P.; Lockington, R.; Naidu, R.; Megharaj, M. Metabolomics reveals defensive mechanisms adapted by maize on exposure to high molecular weight polycyclic aromatic hydrocarbons. Chemosphere 2019, 214, 771–780. [Google Scholar] [CrossRef]
- Subashchandrabose, S.R.; Venkateswarlu, K.; Naidu, R.; Megharaj, M. Biodegradation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9: Overexpression of amidohydrolase induced by pyrene and BAP. Sci. Total Environ. 2019, 651, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Wang, L. Cross regulatory network between circadian clock and leaf senescence is emerging in higher plants. Front. Plant Sci. 2018, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bo, C.; Wang, L. Novel crosstalks between circadian clock and jasmonic acid pathway finely coordinate the tradeoff among plant growth, senescence and defense. Int. J. Mol. Sci. 2019, 20, 5254. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Liu, B.; Liu, L.; Song, S. Jasmonate action in plant growth and development. J. Exp. Bot. 2017, 68, 1349–1359. [Google Scholar] [CrossRef] [Green Version]
- Delgado, C.; Mora-Poblete, F.; Ahmar, S.; Chen, J.T.; Figueroa, C.R. Jasmonates and plant salt stress: Molecular players, physiological effects, and improving tolerance by using genome-associated tools. Int. J. Mol. Sci. 2021, 22, 3082. [Google Scholar] [CrossRef]
- Gabriele, I.; Race, M.; Papirio, S.; Esposito, G. Phytoremediation of pyrene-contaminated soils: A critical review of the key factors affecting the fate of pyrene. J. Environ. Manag. 2021, 293, 112805. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.C.; Chen, Y.T.; Chen, S.H.; Chang Chien, S.W.; Sunkara, S.V. Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere 2012, 87, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Jajoo, A.; Mekala, N.R.; Tomar, R.S.; Grieco, M.; Tikkanen, M.; Aro, E.M. Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity. J. Photoch. Photobio. B 2014, 137, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Richter, A.S.; Kleeberg, J.R.W.; Geimer, S.; Grimm, B. Post-translational coordination of chlorophyll biosynthesis and breakdown by BCMs maintains chlorophyll homeostasis during leaf development. Nat. Commun. 2020, 11, 1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nohales, M.A. Spatial organization and coordination of the plant circadian system. Genes 2021, 12, 442. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Yu, Y.; Liu, M.; Song, Y.; Li, H.; Sun, J.; Wang, Q.; Xie, Q.; Wang, L.; Xu, X. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes. Plant Cell 2021, 33, 2602–2617. [Google Scholar] [CrossRef] [PubMed]
- Nakamichi, N. The transcriptional network in the Arabidopsis circadian clock system. Genes 2020, 11, 1284. [Google Scholar] [CrossRef] [PubMed]
- Augustijn, D.; de Groot, H.J.M.; Alia, A. A robust circadian rhythm of metabolites in Arabidopsis thaliana mutants with enhanced growth characteristics. PLoS ONE 2019, 14, e0218219. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhou, A.; Li, J.; Yang, M.; Bu, F.; Ge, L.; Chen, L.; Huang, W. Circadian rhythms driving a fast-paced root clock implicate species-specific regulation in Medicago truncatula. J. Integr. Plant. Biol. 2021, 63, 1537–1554. [Google Scholar] [CrossRef]
- Lee, J.; Kang, M.H.; Kim, J.Y.; Lim, P.O. The role of light and circadian clock in regulation of leaf senescence. Front. Plant Sci. 2021, 12, 669170. [Google Scholar] [CrossRef]
- Ali, M.S.; Baek, K.H. Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int. J. Mol. Sci. 2020, 21, 621. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Charagh, S.; Zahid, Z.; Mubarik, M.S.; Javed, R.; Siddiqui, M.H.; Hasanuzzaman, M. Jasmonic acid: A key frontier in conferring abiotic stress tolerance in plants. Plant Cell Rep. 2021, 40, 1513–1541. [Google Scholar] [CrossRef]
- Wasternack, C.; Strnad, M. Jasmonates are signals in the biosynthesis of secondary metabolites-pathways, transcription factors and applied aspects: A brief review. N. Biotechnol. 2019, 48, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bertini, L.; Palazzi, L.; Proietti, S.; Pollastri, S.; Arrigoni, G.; Polverino de Laureto, P.; Caruso, C. Proteomic analysis of MeJa-induced defense responses in rice against wounding. Int. J. Mol. Sci. 2019, 20, 2525. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Arif, Y.; Miszczuk, E.; Bajguz, A.; Hayat, S. Specific roles of lipoxygenases in development and responses to stress in plants. Plants 2022, 11, 979. [Google Scholar] [CrossRef] [PubMed]
- Moschen, S.; Di Rienzo, J.A.; Higgins, J.; Tohge, T.; Watanabe, M.; González, S.; Rivarola, M.; García-García, F.; Dopazo, J.; Hopp, H.E.; et al. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.). Plant Mol. Biol. 2017, 94, 549–564. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Le, X.C.; Zhu, L. Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2,2’,4,4’-tetrabromodiphenyl ether. Environ. Int. 2019, 133, 105154. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.Y.; Li, C.X.; He, Y.; Hou, X.Y.; Ma, X.R. The regulation of adaptation to cold and drought stresses in Poa crymophila Keng revealed by integrative transcriptomics and metabolomics analysis. Front. Plant Sci. 2021, 12, 631117. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, Z.; Sun, Y.; Li, Y.; Zheng, H. Profiling of widely targeted metabolomics for the identification of secondary metabolites in heartwood and sapwood of the red-heart chinese fir (Cunninghamia lanceolata). Forests 2016, 11, 897. [Google Scholar] [CrossRef]
- Yadav, V.; Wang, Z.; Wei, C.; Amo, A.; Ahmed, B.; Yang, X.; Zhang, X. Phenylpropanoid pathway engineering: An emerging approach towards plant defense. Pathogens 2020, 9, 312. [Google Scholar] [CrossRef] [Green Version]
- Pech, R.; Volná, A.; Hunt, L.; Bartas, M.; Červeň, J.; Pečinka, P.; Špunda, V.; Nezval, J. Regulation of phenolic compound production by light varying in spectral quality and total irradiance. Int. J. Mol. Sci. 2022, 23, 6533. [Google Scholar] [CrossRef]
- Favreau, B.; Yeni, O.; Ollivier, S.; Boustie, J.; Dévéhat, F.L.; Guégan, J.P.; Fanuel, M.; Rogniaux, H.; Brédy, R.; Compagnon, I.; et al. Synthesis of an exhaustive library of naturally occurring Galf-manp and Galp-manp disaccharides. Toward fingerprinting according to ring size by advanced mass spectrometry-based IM-MS and IRMPD. J. Org. Chem. 2021, 86, 6390–6405. [Google Scholar] [CrossRef]
- Băbău, A.M.C.; Micle, V.; Damian, G.E.; Sur, I.M. Sustainable ecological restoration of sterile dumps using Robinia pseudoacacia. Sustainability 2021, 13, 14021. [Google Scholar] [CrossRef]
- Li, M.; Yin, H.; Zhu, M.; Yu, Y.; Lu, G.; Dang, Z. Co-metabolic and biochar-promoted biodegradation of mixed PAHs by highly efficient microbial consortium QY1. J. Environ. Sci. 2021, 107, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Liu, R.; Zhou, Y.; Li, N.; Hou, L.; Ma, Q.; Gao, B. Fire phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities. Environ. Int. 2020, 136, 105421. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.X.; Li, C.C.; Zhang, C.Y.; Hao, L.Y.; Song, M.; Liu, W.; Zhang, Y.L. Reflectance and biochemical responses of maize plants to drought and re-watering cycles. Ann. Appl. Biol. 2018, 172, 332–345. [Google Scholar] [CrossRef]
- Chen, J.; Xia, X.; Wang, H.; Zhai, Y.; Xi, N.; Lin, H.; Wen, W. Uptake pathway and accumulation of polycyclic aromatic hydrocarbons in spinach affected by warming in enclosed soil/water-air-plant microcosms. J. Hazard. Mater. 2019, 379, 120831. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sun, C.; Cui, M.; Shen, X.; Zhang, Y.; Xiao, J.; Xie, H. An integrated analysis of transcriptome and metabolome provides insights into the responses of maize (Zea mays L.) roots to different straw and fertilizer conditions. Environ. Exp. Bot. 2022, 194, 104732. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Shen, X.; Zhang, Y.; Song, T.; Xu, L.; Xiao, J. Molecular Defensive Mechanism of Echinacea purpurea (L.) Moench against PAH Contaminations. Int. J. Mol. Sci. 2023, 24, 11020. https://doi.org/10.3390/ijms241311020
Sun C, Shen X, Zhang Y, Song T, Xu L, Xiao J. Molecular Defensive Mechanism of Echinacea purpurea (L.) Moench against PAH Contaminations. International Journal of Molecular Sciences. 2023; 24(13):11020. https://doi.org/10.3390/ijms241311020
Chicago/Turabian StyleSun, Caixia, Xiangbo Shen, Yulan Zhang, Tianshu Song, Lingjing Xu, and Junyao Xiao. 2023. "Molecular Defensive Mechanism of Echinacea purpurea (L.) Moench against PAH Contaminations" International Journal of Molecular Sciences 24, no. 13: 11020. https://doi.org/10.3390/ijms241311020
APA StyleSun, C., Shen, X., Zhang, Y., Song, T., Xu, L., & Xiao, J. (2023). Molecular Defensive Mechanism of Echinacea purpurea (L.) Moench against PAH Contaminations. International Journal of Molecular Sciences, 24(13), 11020. https://doi.org/10.3390/ijms241311020