Genome-Wide Analysis and Expression Profiling of the Glutathione Peroxidase-like Enzyme Gene Family in Solanum tuberosum
Abstract
:1. Introduction
2. Results
2.1. Identification of Members of GPXL Gene Family in Potato
2.2. Phylogenetic Analysis of GPXL Gene Family in Potato
2.3. Chromosomal Location and Tandem Duplication Genes of Potato GPXL Gene Family
2.4. Conserved Motif Identification
2.5. Cis-Acting Elements Analysis
2.6. Potato GPXL Protein Interaction Analysis
2.7. Collinear Analysis of GPXL Gene in Potato and Arabidopsis thaliana
2.8. Gene Ontology Annotation of StGPXL Proteins
2.9. Organ Expression and Stress Treatment Expression Analysis of the Potato GPXL Genes
2.10. Expression Analysis of StGPXL Genes in Different Treatments
3. Discussion
4. Materials and Methods
4.1. Plant Materials Preparation
4.2. Identification of GPXL Gene Family in Potato
4.3. Multiple Sequence Alignment and Phylogenetic Tree Construction
4.4. Chromosomal Location Analysis and Tandem Replicated Genes and Gene Structure
4.5. Conserved Motif Identification and Cis-Acting Elements Analysis
4.6. Analysis of GPXL Protein Interaction in Potato
4.7. Gene Ontology Annotation and Interspecific Collinearity Analysis of GPXL Gene in Potato
4.8. Organ Expression and Stress Treatment Expression Analysis of the Potato GPXL Genes
4.9. RNA Isolation and qRT-PCR Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | Gene Name | Locus ID |
---|---|---|
Arabidopsis thaliana | AtGPXL1 | AT2G25080 |
AtGPXL2 | AT2G31570 | |
AtGPXL3 | AT2G43350 | |
AtGPXL4 | AT2G48150 | |
AtGPXL5 | AT3G63080 | |
AtGPXL6 | AT4G11600 | |
AtGPXL7 | AT4G31870 | |
AtGPXL8 | AT1G63460 | |
Brachypodium distachyon | BdGPXL1 | Bradi5g18000 |
BdGPXL2 | Bradi1g61930 | |
BdGPXL3 | Bradi3g51010 | |
BdGPXL4 | Bradi1g47140 | |
BdGPXL5 | Bradi5g26725 | |
Camellia sinensis | CsGPXL1 | CSA014346.1 |
CsGPXL2 | CSA013702.1 | |
CsGPXL3 | CSA014345.1 | |
Manihot esculenta Crantz | MeGPXL1 | Manes.03G007700 |
MeGPXL2 | Manes.02G022600 | |
MeGPXL3 | Manes.16G130700 | |
MeGPXL4 | Manes.11G117500 | |
MeGPXL5 | Manes.01G062400 | |
MeGPXL6 | Manes.05G073800 | |
Nicotiana attenuata | NaGPXL1 | OIT23790 |
NaGPXL2 | OIT36612 | |
NaGPXL3 | OIT36269 | |
NaGPXL4 | OIT28769 | |
NaGPXL5 | OIT04780 | |
NaGPXL6 | OIT23789 | |
Oryza sativa | OsGPXL1 | Os04g0556300 |
OsGPXL2 | Os03g0358100 | |
OsGPXL3 | Os02g0664000 | |
OsGPXL4 | Os06g0185900 | |
OsGPXL5 | Os11g0284900 | |
OsGPXL6 | Os04g0683850 | |
Sorghum bicolor | SbGPXL1 | SORBI_3006G173900 |
SbGPXL2 | SORBI_3001G365800 | |
SbGPXL3 | SORBI_3004G290100 | |
SbGPXL4 | SORBI_3010G067100 | |
SbGPXL5 | SORBI_3005G110442 | |
SbGPXL6 | SORBI_3006G272900 | |
SbGPXL7 | SORBI_3001G378700 | |
Solanum lycopersicum | SlGPXL1 | Solyc12g056240.2 |
SlGPXL2 | Solyc08g006720.3 | |
SlGPXL3 | Solyc06g073460.3 | |
SlGPXL4 | Solyc08g080940.3 | |
SlGPXL5 | Solyc09g064850.3 | |
SlGPXL6 | Solyc08g068800.3 | |
Solanum tuberosum | StGPXL1 | Soltu.DM.06G028790.1 |
StGPXL2 | Soltu.DM.06G034810.1 | |
StGPXL3 | Soltu.DM.08G001820.1 | |
StGPXL4 | Soltu.DM.08G001830.1 | |
StGPXL5 | Soltu.DM.08G018060.1 | |
StGPXL6 | Soltu.DM.08G027650.1 | |
StGPXL7 | Soltu.DM.12G008100.1 | |
StGPXL8 | Soltu.DM.12G008110.1 | |
Zea mays L. | ZmGPXL1 | GRMZM2G011025_P01 |
ZmGPXL2 | GRMZM2G012479_P01 | |
ZmGPXL3 | GRMZM2G012479_P02 | |
ZmGPXL4 | GRMZM2G013299_P01 | |
ZmGPXL5 | GRMZM2G135893_P01 | |
ZmGPXL6 | GRMZM2G144153_P01 | |
ZmGPXL7 | GRMZM2G144153_P02 | |
ZmGPXL8 | GRMZM2G329144_P01 | |
ZmGPXL9 | GRMZM2G329144_P02 | |
ZmGPXL10 | GRMZM5G884600_P01 | |
ZmGPXL11 | GRMZM5G884600_P02 |
Gene | Callus | Carpels | Flowers | Leaves | Petals | Petioles | Roots | Shoots | Stamens | Stems | Stolons | Tubers |
---|---|---|---|---|---|---|---|---|---|---|---|---|
StGPXL1 | 6.93 | 7.12 | 7.31 | 4.68 | 6.64 | 5.55 | 7.32 | 5.67 | 7.88 | 5.25 | 4.96 | 5.41 |
StGPXL2 | 5.20 | 3.52 | 2.42 | 2.07 | 1.54 | 2.35 | 1.57 | 0.00 | 1.44 | 0.00 | 1.29 | 0.00 |
StGPXL3 | 3.34 | 4.51 | 4.66 | 6.10 | 4.63 | 4.20 | 3.17 | 5.29 | 4.33 | 5.21 | 5.47 | 4.36 |
StGPXL4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.48 | 1.34 | 0.00 |
StGPXL5 | 0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 2.08 | 0.00 | 0.71 | 0.00 | 3.04 | 2.31 | 0.00 |
StGPXL6 | 8.11 | 6.36 | 6.30 | 5.45 | 6.67 | 6.05 | 5.88 | 5.64 | 5.93 | 6.33 | 5.13 | 5.81 |
StGPXL7 | 3.86 | 4.55 | 1.00 | 0.00 | 3.91 | 1.19 | 2.94 | 1.42 | 0.00 | 0.99 | 2.36 | 1.49 |
StGPXL8 | 5.10 | 5.51 | 5.71 | 5.91 | 6.47 | 5.46 | 4.85 | 5.80 | 5.97 | 5.40 | 7.10 | 4.11 |
Gene | ABA | BAP | GA3 | IAA | Heat | Mannitol | Salt | BABA | BTH | P. infestans |
---|---|---|---|---|---|---|---|---|---|---|
StGPXL1 | 6.13 | 6.88 | 6.21 | 5.99 | 6.59 | 5.42 | 6.71 | 7.09 | 7.42 | 7.36 |
StGPXL2 | 5.04 | 3.44 | 3.70 | 3.94 | 3.32 | 4.65 | 4.23 | 1.58 | 4.15 | 2.77 |
StGPXL3 | 5.58 | 5.85 | 5.50 | 5.74 | 5.04 | 5.70 | 6.07 | 3.19 | 5.44 | 4.67 |
StGPXL4 | 1.47 | 1.21 | 0.80 | 1.50 | 0.00 | 0.73 | 1.69 | 0.00 | −0.79 | 0.00 |
StGPXL5 | 0.48 | 0.35 | 0.38 | 0.85 | −0.71 | 1.76 | 1.34 | 0.00 | −1.97 | 0.00 |
StGPXL6 | 6.81 | 6.20 | 6.61 | 5.74 | 5.75 | 4.95 | 5.70 | 8.03 | 6.34 | 6.75 |
StGPXL7 | 4.39 | 4.62 | 3.90 | 4.35 | 4.94 | 4.75 | 4.37 | 3.48 | 4.45 | 4.19 |
StGPXL8 | 5.73 | 6.15 | 6.04 | 6.21 | 6.47 | 6.00 | 6.44 | 4.51 | 5.66 | 5.66 |
Species | Sequence (in 5′ → 3′ Order) | |
---|---|---|
Forward | Reverse | |
StGPXL1 | CAAGGATATACAGGGAAATGAGGTA | CCACAGAAACTGGTTACAAGGA |
StGPXL2 | ACCCAGGACAAGTGAGGAAG | GCAGTAGTGGAGCCATAACG |
StGPXL3 | CAACTCTTCTTCTTCTTCTTCCTAC | TGTCGTCAAGCCACATCTG |
StGPXL4 | TATTCCTCAGATGGGTTCTATATGG | TTGTGATACCTCTTGATGTCCTC |
StGPXL5 | CTGCCCAAACCTCTCCACTT | TTCATACTGCGACTCTGTCCATA |
StGPXL6 | TAGTCAATCCAGCAATCCTCAATC | AGCAGCATTATCGCCATTCAC |
StGPXL7 | AACTACACGGAACTCAACCAAT | AGACTCAATGCTTCGCAACTAT |
StGPXL8 | TTCCGACAACGACGAGGAT | GACGCAACATTCACGATAAGTAG |
ef1α | GGAAAAGCTTGCCTATGTGG | CTGCTCCTGGCAGTTTCAA |
References
- Ozyigit, I.I.; Filiz, E.; Vatansever, R.; Kurtoglu, K.Y.; Koc, I.; Ozturk, M.X.; Anjum, N.A. Identification and Comparative Analysis of H2O2-Scavenging Enzymes (Ascorbate Peroxidase and Glutathione Peroxidase) in Selected Plants Employing Bioinformatics Approaches. Front. Plant Sci. 2016, 7, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goo, Y.M.; Chun, H.J.; Kim, T.W.; Lee, C.H.; Ahn, M.J.; Bae, S.C.; Cho, K.J.; Chun, J.A.; Chung, C.H.; Lee, S.W. Expressional characterization of dehydroascorbate reductase cDNA in transgenic potato plants. J. Plant Biol. 2008, 51, 35–41. [Google Scholar] [CrossRef]
- Navrot, N.; Collin, V.; Gualberto, J.; Gelhaye, E.; Hirasawa, M.; Rey, P.; Knaff, D.B.; Issakidis, E.; Jacquot, J.P.; Rouhier, N. Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol. 2006, 142, 1364–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attacha, S.; Solbach, D.; Bela, K.; Moseler, A.; Wagner, S.; Schwarzlander, M.; Aller, I.; Muller, S.J.; Meyer, A.J. Glutathione peroxidase-like enzymes cover five distinct cell compartments and membrane surfaces in Arabidopsis thaliana. Plant Cell Environ. 2017, 40, 1281–1295. [Google Scholar] [CrossRef] [PubMed]
- Bela, K.; Riyazuddin, R.; Horvath, E.; Hurton, A.; Galle, A.; Takacs, Z.; Zsigmond, L.; Szabados, L.; Tari, I.; Csiszar, J. Comprehensive analysis of antioxidant mechanisms in Arabidopsis glutathione peroxidase-like mutants under salt-and osmotic stress reveals organ-specific significance of the AtGPXL’s activities. Environ. Exp. Bot. 2018, 150, 127–140. [Google Scholar] [CrossRef]
- Islam, T.; Manna, M.; Kaul, T.; Pandey, S.; Reddy, C.S.; Reddy, M.K. Genome-Wide Dissection of Arabidopsis and Rice for the Identification and Expression Analysis of Glutathione Peroxidases Reveals Their Stress-Specific and Overlapping Response Patterns. Plant Mol. Biol. Rep. 2015, 33, 1413–1427. [Google Scholar] [CrossRef]
- Akbudak, M.A.; Filiz, E.; Vatansever, R.; Kontbay, K. Genome-Wide Identification and Expression Profiling of Ascorbate Peroxidase (APX) and Glutathione Peroxidase (GPX) Genes Under Drought Stress in Sorghum (Sorghum bicolor L.). J. Plant Growth Regul. 2018, 37, 925–936. [Google Scholar] [CrossRef]
- Chen, M.Y.; Li, K.; Li, H.P.; Song, C.P.; Miao, Y.C. The Glutathione Peroxidase Gene Family in Gossypium hirsutum: Genome-Wide Identification, Classification, Gene Expression and Functional Analysis. Sci. Rep. 2017, 7, 44743. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Jang, M.G.; Noh, H.Y.; Lee, H.J.; Sukweenadhi, J.; Kim, J.H.; Kim, S.Y.; Kwon, W.S.; Yang, D.C. Molecular characterization of two glutathione peroxidase genes of Panax ginseng and their expression analysis against environmental stresses. Gene 2014, 535, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Han, X.M.; Wang, W.; Yang, H.L. Molecular and Catalytic Properties of Glutathione Peroxidase Family Proteins from Pinus tabulaeformis. Plant Mol. Biol. Rep. 2014, 32, 771–778. [Google Scholar] [CrossRef]
- Depege, N.; Drevet, J.; Boyer, N. Molecular cloning and characterization of tomato cDNAs encoding glutathione peroxidase-like proteins. Eur. J. Chem. 1998, 253, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Hu, L.F.; Ye, S.F.; Jiang, L.W.; Liu, S.Q. Genome-wide identification of glutathione peroxidase (GPX) gene family and their response to abiotic stress in cucumber. 3 Biotech 2018, 8, 159. [Google Scholar] [CrossRef]
- Holland, D.; Benhayyim, G.; Faltin, Z.; Camoin, L.; Strosberg, A.D.; Eshdat, Y. Molecular characterization of salt-stress-associated protein in citrus: Protein and cDNA sequence homology to mammalian glutathione peroxidases. Plant Mol. Biol. 1993, 21, 923–927. [Google Scholar] [CrossRef]
- Madhu; Sharma, A.; Kaur, A.; Tyagi, S.; Upadhyay, S.K. Glutathione Peroxidases in Plants: Innumerable Role in Abiotic Stress Tolerance and Plant Development. J. Plant Growth Regul. 2023, 42, 598–613. [Google Scholar] [CrossRef]
- Miao, Y.C.; Lv, D.; Wang, P.C.; Wang, X.C.; Chen, J.; Miao, C.; Song, C.P. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 2006, 18, 2749–2766. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.C.; Slesak, I.; Jorda, L.; Sotnikov, A.; Melzer, M.; Miszalski, Z.; Mullineaux, P.M.; Parker, J.E.; Karpinska, B.; Karpinski, S. Arabidopsis Chloroplastic Glutathione Peroxidases Play a Role in Cross Talk between Photooxidative Stress and Immune Responses. Plant Physiol. 2009, 150, 670–683. [Google Scholar] [CrossRef] [Green Version]
- Gaber, A.; Ogata, T.; Maruta, T.; Yoshimura, K.; Tamoi, M.; Shigeoka, S. The Involvement of Arabidopsis Glutathione Peroxidase 8 in the Suppression of Oxidative Damage in the Nucleus and Cytosol. Plant Cell Physiol. 2012, 53, 1596–1606. [Google Scholar] [CrossRef] [Green Version]
- Passaia, G.; Fonini, L.S.; Caverzan, A.; Jardim-Messeder, D.; Christoff, A.P.; Gaeta, M.L.; Mariath, J.E.D.; Margis, R.; Margis-Pinheiro, M. The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci. 2013, 208, 93–101. [Google Scholar] [CrossRef]
- Paiva, A.L.S.; Passaia, G.; Lobo, A.K.M.; Jardim-Messeder, D.; Silveira, J.A.G.; Margis-Pinheiro, M. Mitochondrial glutathione peroxidase (OsGPX3) has a crucial role in rice protection against salt stress. Environ. Exp. Bot. 2019, 158, 12–21. [Google Scholar] [CrossRef]
- Haluskova, L.; Valentovicova, K.; Huttova, J.; Mistrik, I.; Tamas, L. Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol. Bioch. 2009, 47, 1069–1074. [Google Scholar] [CrossRef]
- Passaia, G.; Caverzan, A.; Fonini, L.S.; Carvalho, F.E.L.; Silveira, J.A.G.; Margis-Pinheiro, M. Chloroplastic and mitochondrial GPXL genes play a critical role in rice development. Biol. Plantarum 2014, 58, 375–378. [Google Scholar] [CrossRef]
- Paiva, A.L.S.; Passaia, G.; Jardim-Messeder, D.; Nogueira, F.C.S.; Domont, G.B.; Margis-Pinheiro, M. The mitochondrial isoform glutathione peroxidase 3 (OsGPX3) is involved in ABA responses in rice plants. J. Proteom. 2021, 232, 104029. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Cheng, T.; Pan, H.; Yang, W.; Wang, J.; Zhang, Q. Genome-wide identification, molecular evolution and expression analyses of the phospholipase D gene family in three Rosaceae species. Sci. Hortic. 2013, 153, 13–21. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Noshi, M.; Yamada, H.; Hatanaka, R.; Tanabe, N.; Tamoi, M.; Shigeoka, S. Arabidopsis dehydroascorbate reductase 1 and 2 modulate redox states of ascorbate-glutathione cycle in the cytosol in response to photooxidative stress. Biosci. Biotech. Bioch. 2017, 81, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Sanmartin, M.; Pateraki, I.; Chatzopoulou, F.; Kanellis, A.K. Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress. Planta 2007, 225, 873–885. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Bioch. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Lim, B.; Pasternak, M.; Meyer, A.J.; Cobbett, C.S. Restricting glutamylcysteine synthetase activity to the cytosol or glutathione biosynthesis to the plastid is sufficient for normal plant development and stress tolerance. Plant Biol. 2014, 16, 58–67. [Google Scholar] [CrossRef]
- Wang, X.Y.; Liu, X.M.; An, Y.Q.C.; Zhang, H.Y.; Meng, D.; Jin, Y.A.; Huo, H.Y.; Yu, L.L.; Zhang, J.X. Identification of Glutathione Peroxidase Gene Family in Ricinus communis and Functional Characterization of RcGPX4 in Cold Tolerance. Front. Plant Sci. 2021, 12, 707127. [Google Scholar] [CrossRef]
- Leister, D. Piecing the Puzzle Together: The Central Role of Reactive Oxygen Species and Redox Hubs in Chloroplast Retrograde Signaling. Antioxid. Redox Signal. 2019, 30, 1206–1219. [Google Scholar] [CrossRef]
- Asada, K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 601–639. [Google Scholar] [CrossRef]
- Passaia, G.; Queval, G.; Bai, J.; Margis-Pinheiro, M.; Foyer, C.H. The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana. J. Exp. Bot. 2014, 65, 1403–1413. [Google Scholar] [CrossRef] [Green Version]
- Haskirli, H.; Yilmaz, O.; Ozgur, R.; Uzilday, B.; Turkan, I. Melatonin mitigates UV-B stress via regulating oxidative stress response, cellular redox and alternative electron sinks in Arabidopsis thaliana. Phytochemistry 2021, 182, 112592. [Google Scholar] [CrossRef]
- Zhao, X.L.; Gao, L.J.; Jin, P.N.; Cui, L.S. The similar to RCD-one 1 protein SRO1 interacts with GPX3 and functions in plant tolerance of mercury stress. Biosci. Biotech. Bioch. 2018, 82, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Rico-Medina, A.; Cano-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef]
- Zhang, L.P.; Wu, M.; Teng, Y.J.; Jia, S.H.; Yu, D.S.; Wei, T.; Chen, C.B.; Song, W.Q. Overexpression of the Glutathione Peroxidase 5 (RcGPX5) Gene From Rhodiola crenulata Increases Drought Tolerance in Salvia miltiorrhiza. Front. Plant Sci. 2019, 9, 1950. [Google Scholar] [CrossRef]
- Bertini, L.; Palazzi, L.; Proietti, S.; Pollastri, S.; Arrigoni, G.; de Laureto, P.; Caruso, C. Proteomic Analysis of MeJa-Induced Defense Responses in Rice against Wounding. Int. J. Mol. Sci. 2019, 20, 2525. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Wang, D.; Zhang, C.; Ye, M.; Kong, N.; Ma, H.; Chen, Q. Comprehensive Analysis and Expression Profiling of PIN, AUX/LAX, and ABCB Auxin Transporter Gene Families in Solanum tuberosum under Phytohormone Stimuli and Abiotic Stresses. Biology 2021, 10, 127. [Google Scholar] [CrossRef]
- Mo, F.; Li, L.; Zhang, C.; Yang, C.; Chen, G.; Niu, Y.; Si, J.; Liu, T.; Sun, X.; Wang, S.; et al. Genome-Wide Analysis and Expression Profiling of the Phenylalanine Ammonia-Lyase Gene Family in Solanum tuberosum. Int. J. Mol. Sci. 2022, 23, 6833. [Google Scholar] [CrossRef]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef]
- Yuan, J.; Amend, A.; Borkowski, J.; DeMarco, R.; Bailey, W.; Liu, Y.; Xie, G.C.; Blevins, R. MULTICLUSTAL: A systematic method for surveying Clustal W alignment parameters. Bioinformatics 1999, 15, 862–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Guo, K.; Li, Y.; Tu, Y.; Hu, H.; Wang, B.; Cui, X.; Peng, L. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol. 2010, 10, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Dennis, G.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 2003, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Cao, M.; Chen, X.; Ye, M.; Zhao, P.; Nan, Y.; Li, W.; Zhang, C.; Kong, L.; Kong, N.; et al. Genome-Wide Analysis of the Lateral Organ Boundaries Domain (LBD) Gene Family in Solanum tuberosum. Int. J. Mol. Sci. 2019, 20, 5360. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zhang, G.; Murphy, A.; De Koeyer, D.; Tai, H.; Bizimungu, B.; Si, H.; Li, X.-Q. Differences between the Bud End and Stem End of Potatoes in Dry Matter Content, Starch Granule Size, and Carbohydrate Metabolic Gene Expression at the Growing and Sprouting Stages. J. Agric. Food Chem. 2016, 64, 1176–1184. [Google Scholar] [CrossRef]
Gene 1 | Gene ID 1 | Chromosome Location (bp) 1 | ORF Length (bp) 1 | No. of Exons 1 | Protein 2 | Subcellular Location 3 | ||
---|---|---|---|---|---|---|---|---|
Length (aa) | MW (Da) | pI | ||||||
StGPXL1 | Soltu.DM.06G028790.1 | Chr06:54035324-54031449 (−) | 573 | 6 | 190 | 21,786.10 | 8.30 | Chloroplast |
StGPXL2 | Soltu.DM.06G034810.1 | Chr06:58777923-58773510 (−) | 303 | 5 | 100 | 11,227.20 | 10.21 | Cytoplasm |
StGPXL3 | Soltu.DM.08G001820.1 | Chr08:2523395-2528493 (+) | 717 | 6 | 238 | 26,153.87 | 9.06 | Chloroplast |
StGPXL4 | Soltu.DM.08G001830.1 | Chr08:2533676-2539357 (+) | 870 | 6 | 289 | 33,662.06 | 7.17 | Chloroplast |
StGPXL5 | Soltu.DM.08G018060.1 | Chr08:46713222-46708596 (−) | 753 | 6 | 250 | 28,095.02 | 9.27 | Nucleus |
StGPXL6 | Soltu.DM.08G027650.1 | Chr08:57099704-57105902 (+) | 2358 | 7 | 785 | 87,581.52 | 5.22 | Endoplasmic reticulum |
StGPXL7 | Soltu.DM.12G008100.1 | Chr12:7063794-7066913 (+) | 513 | 6 | 170 | 19,475.17 | 4.77 | Cytoplasm |
StGPXL8 | Soltu.DM.12G008110.1 | Chr12:7070265-7074434 (+) | 513 | 6 | 170 | 19,257.85 | 5.27 | Cytoplasm |
Motif | Length | Amino Acid Sequence |
---|---|---|
Motif1 | 50 | EILAFPCNQFGAQEPGSNEEIQQFVCTRFKAEFPIFDKIDVNGENAAPLY |
Motif2 | 50 | YDFTVKDAKGNDVDLSIYKGKVLLIVNVASKCGLTBSNYTELNQLYEKYK |
Motif3 | 41 | KFLKSSKGGFLGDAIKWNFAKFLVDKEGKVVDRYYPTTSPL |
Motif4 | 9 | IEKDIKKLL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Sun, X.; Miao, X.; Mo, F.; Liu, T.; Chen, Y. Genome-Wide Analysis and Expression Profiling of the Glutathione Peroxidase-like Enzyme Gene Family in Solanum tuberosum. Int. J. Mol. Sci. 2023, 24, 11078. https://doi.org/10.3390/ijms241311078
Wang S, Sun X, Miao X, Mo F, Liu T, Chen Y. Genome-Wide Analysis and Expression Profiling of the Glutathione Peroxidase-like Enzyme Gene Family in Solanum tuberosum. International Journal of Molecular Sciences. 2023; 24(13):11078. https://doi.org/10.3390/ijms241311078
Chicago/Turabian StyleWang, Shenglan, Xinxin Sun, Xinyue Miao, Fangyu Mo, Tong Liu, and Yue Chen. 2023. "Genome-Wide Analysis and Expression Profiling of the Glutathione Peroxidase-like Enzyme Gene Family in Solanum tuberosum" International Journal of Molecular Sciences 24, no. 13: 11078. https://doi.org/10.3390/ijms241311078
APA StyleWang, S., Sun, X., Miao, X., Mo, F., Liu, T., & Chen, Y. (2023). Genome-Wide Analysis and Expression Profiling of the Glutathione Peroxidase-like Enzyme Gene Family in Solanum tuberosum. International Journal of Molecular Sciences, 24(13), 11078. https://doi.org/10.3390/ijms241311078