Multi-Modality Imaging of Atheromatous Plaques in Peripheral Arterial Disease: Integrating Molecular and Imaging Markers
Abstract
:1. Introduction
2. Method
3. Overview of Non-Invasive Medical Imaging Modalities
3.1. Computed Tomography (CT)
3.2. Magnetic Resonance Imaging (MRI)
3.3. Nuclear Imaging
4. Computed Tomography (CT)
4.1. CT for PAD Assessment
4.2. CT for Plaque Calcification Assessment
4.3. Recent Advances and Future Perspectives
5. Magnetic Resonance Imaging (MRI)
5.1. Contrast-Enhanced MRA
5.2. Non-Contrast MRA
5.3. MRI Techniques for Plaque Analysis
5.4. MRI for PAD Clinical Studies
5.5. AI Application in MRI PAD Assessment
6. Nuclear Imaging
6.1. SPECT for PAD Assessment
6.2. PET for PAD Assessment
7. Non-Invasive Perfusion Imaging in PAD
8. Molecular Markers in PAD and Their Correlations with Imaging Markers
8.1. Inflammatory Markers
8.2. Endothelial Dysfunction and Oxidative Stress Markers
8.3. Other Biomarkers
Imaging Modality | Study Population (n) | Molecular Biomarker | Location | Biomarker Source | Conclusion | Ref. |
---|---|---|---|---|---|---|
18F-FDG-PET | Patients with either vascular disease or at least 3 cardiovascular risk factors (41) | MMP-3, MMP-9, adiponectin | Aorta, Carotid | Serum |
| [144] |
18F-FDG-PET | Patients with known atherosclerosis history and LDL-C ≥ 100 mg/dL (43) receiving atorvastatin (40 mg daily) | MMP-9 | Carotid | Serum |
| [145] |
18F-FDG-PET | Participants of dal-PLAQUE trial (130) receiving dalcetrapib | MPO, Lp-PLA2 | Aorta, Carotid | Plasma |
| [149] |
18F-FDG-PET | Patients underwent CEA for carotid artery stenosis (25) | MMP-9 | Carotid | Plaque Tissue | Plaque FDG-PET signal significantly associated with immunohistochemistry MMP-9 content in plaque. | [146] |
CT | Patients with PAD stenosis 50–80% (31), PAD stenosis ≥ 80% (22), healthy subjects (27) | VEGF-C, IL-6 | Lower limb | Plasma | Serum concentrations of VEGF-C and IL-6 were significantly increased in patients showing moderate or severe peripheral artery stenosis. | [140] |
CT | Participants of the SMART study (patients with cardiovascular diseases, 520) and DCS cohort (type 2 diabetes patients, 200) | Inactive Matrix-Gla Protein, osteonectin, | Lower limb | Serum |
| [168] |
9. Challenges and Future Directions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aday, A.W.; Matsushita, K. Epidemiology of Peripheral Artery Disease and Polyvascular Disease. Circ. Res. 2021, 128, 1818–1832. [Google Scholar] [CrossRef]
- Simon, F.; Oberhuber, A.; Floros, N.; Düppers, P.; Schelzig, H.; Duran, M. Pathophysiology of chronic limb ischemia. Gefasschirurgie 2018, 23, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Morley, R.L.; Sharma, A.; Horsch, A.D.; Hinchliffe, R.J. Peripheral artery disease. BMJ 2018, 360, j5842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Signorelli, S.S.; Vanella, L.; Abraham, N.G.; Scuto, S.; Marino, E.; Rocic, P. Pathophysiology of chronic peripheral ischemia: New perspectives. Ther. Adv. Chronic. Dis. 2020, 11, 2040622319894466. [Google Scholar] [CrossRef] [PubMed]
- Criqui, M.H.; Matsushita, K.; Aboyans, V.; Hess, C.N.; Hicks, C.W.; Kwan, T.W.; McDermott, M.M.; Misra, S.; Ujueta, F. Lower Extremity Peripheral Artery Disease: Contemporary Epidemiology, Management Gaps, and Future Directions: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e171–e191. [Google Scholar] [CrossRef] [PubMed]
- Conte, M.S.; Bradbury, A.W.; Kolh, P.; White, J.V.; Dick, F.; Fitridge, R.; Mills, J.L.; Ricco, J.B.; Suresh, K.R.; Murad, M.H. Global vascular guidelines on the management of chronic limb-threatening ischemia. J. Vasc. Surg. 2019, 69, 3S–125S.e140. [Google Scholar] [CrossRef] [Green Version]
- Behrooz, L.; Abumoawad, A.; Rizvi, S.H.M.; Hamburg, N.M. A modern day perspective on smoking in peripheral artery disease. Front. Cardiovasc. Med. 2023, 10, 1154708. [Google Scholar] [CrossRef]
- Ismaeel, A.; Brumberg, R.S.; Kirk, J.S.; Papoutsi, E.; Farmer, P.J.; Bohannon, W.T.; Smith, R.S.; Eidson, J.L.; Sawicki, I.; Koutakis, P. Oxidative Stress and Arterial Dysfunction in Peripheral Artery Disease. Antioxidants 2018, 7, 145. [Google Scholar] [CrossRef] [Green Version]
- Kalra, M.K.; Maher, M.M.; D’Souza, R.; Saini, S. Multidetector computed tomography technology: Current status and emerging developments. J. Comput. Assist. Tomogr. 2004, 28 (Suppl. S1), S2–S6. [Google Scholar] [CrossRef]
- Meyersohn, N.M.; Walker, T.G.; Oliveira, G.R. Advances in axial imaging of peripheral vascular disease. Curr. Cardiol. Rep. 2015, 17, 87. [Google Scholar] [CrossRef]
- Davenport, M.S.; Perazella, M.A.; Yee, J.; Dillman, J.R.; Fine, D.; McDonald, R.J.; Rodby, R.A.; Wang, C.L.; Weinreb, J.C. Use of Intravenous Iodinated Contrast Media in Patients with Kidney Disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Radiology 2020, 294, 660–668. [Google Scholar] [CrossRef] [Green Version]
- Tarkin, J.M.; Dweck, M.R.; Evans, N.R.; Takx, R.A.; Brown, A.J.; Tawakol, A.; Fayad, Z.A.; Rudd, J.H. Imaging Atherosclerosis. Circ. Res. 2016, 118, 750–769. [Google Scholar] [CrossRef] [PubMed]
- Ewing, M.J.; Eidt, J.F. Con: Contrast-induced nephropathy-should we try to avoid contrast media in patients with chronic kidney disease? Nephrol. Dial. Transplant. 2018, 33, 1320–1322. [Google Scholar] [CrossRef]
- Hatabu, H.; Ohno, Y.; Gefter, W.B.; Parraga, G.; Madore, B.; Lee, K.S.; Altes, T.A.; Lynch, D.A.; Mayo, J.R.; Seo, J.B.; et al. Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders: Fleischner Society Position Paper. Radiology 2020, 297, 286–301. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Osborne, M.T.; Tung, B.; Li, M.; Li, Y. Imaging Cardiovascular Calcification. J. Am. Heart Assoc. 2018, 7, e008564. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Mittal, S.; Kish, K.; Yu, Y.; Hu, J.; Haacke, E.M. Identification of calcification with MRI using susceptibility-weighted imaging: A case study. J. Magn. Reson. Imaging 2009, 29, 177–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Zhu, W.; Kovanlikaya, I.; Kovanlikaya, A.; Liu, T.; Wang, S.; Salustri, C.; Wang, Y. Intracranial calcifications and hemorrhages: Characterization with quantitative susceptibility mapping. Radiology 2014, 270, 496–505. [Google Scholar] [CrossRef]
- Chou, T.H.; Stacy, M.R. Clinical Applications for Radiotracer Imaging of Lower Extremity Peripheral Arterial Disease and Critical Limb Ischemia. Mol. Imaging Biol. 2020, 22, 245–255. [Google Scholar] [CrossRef]
- Van Veelen, A.; van der Sangen, N.M.R.; Delewi, R.; Beijk, M.A.M.; Henriques, J.P.S.; Claessen, B. Detection of Vulnerable Coronary Plaques Using Invasive and Non-Invasive Imaging Modalities. J. Clin. Med. 2022, 11, 1361. [Google Scholar] [CrossRef]
- Currie, G.M.; Kamvosoulis, P.; Bushong, S. PET/MRI, Part 2: Technologic Principles. J. Nucl. Med. Technol. 2021, 49, 217–225. [Google Scholar] [CrossRef]
- Ehman, E.C.; Johnson, G.B.; Villanueva-Meyer, J.E.; Cha, S.; Leynes, A.P.; Larson, P.E.Z.; Hope, T.A. PET/MRI: Where might it replace PET/CT? J. Magn. Reson. Imaging 2017, 46, 1247–1262. [Google Scholar] [CrossRef] [Green Version]
- Rubin, G.D.; Schmidt, A.J.; Logan, L.J.; Sofilos, M.C. Multi-detector row CT angiography of lower extremity arterial inflow and runoff: Initial experience. Radiology 2001, 221, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.N.; Chung, J.W.; Park, E.A.; Lee, W. Dual-energy computed tomography angiography: Virtual calcified plaque subtraction in a vascular phantom. Acta Radiol. Open 2017, 6, 2058460117717765. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.C.; Ranatunga, D.; Owen, A.; Spelman, T.; Galea, M.; Chuen, J.; Lim, R.P. Multidetector (64+) Computed Tomography Angiography of the Lower Limb in Symptomatic Peripheral Arterial Disease: Assessment of Image Quality and Accuracy in a Tertiary Care Setting. J. Comput. Assist. Tomogr. 2017, 41, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Jain, N.; Bhagwat, A. CT Angiography of Peripheral Arterial Disease by 256-Slice Scanner: Accuracy, Advantages and Disadvantages Compared to Digital Subtraction Angiography. Vasc. Endovasc. Surg. 2017, 51, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Pomposelli, F. Arterial imaging in patients with lower extremity ischemia and diabetes mellitus. J. Vasc. Surg. 2010, 52, 81s–91s. [Google Scholar] [CrossRef] [Green Version]
- Met, R.; Bipat, S.; Legemate, D.A.; Reekers, J.A.; Koelemay, M.J. Diagnostic performance of computed tomography angiography in peripheral arterial disease: A systematic review and meta-analysis. JAMA 2009, 301, 415–424. [Google Scholar] [CrossRef]
- Langenberger, H.; Schillinger, M.; Plank, C.; Sabeti, S.; Dick, P.; Cejna, M.; Lammer, J.; Minar, E.; Loewe, C. Agreement of duplex ultrasonography vs. computed tomography angiography for evaluation of native and in-stent SFA re-stenosis—Findings from a randomized controlled trial. Eur. J. Radiol. 2012, 81, 2265–2269. [Google Scholar] [CrossRef]
- Patel, S.D.; Zymvragoudakis, V.; Sheehan, L.; Lea, T.; Modarai, B.; Katsanos, K.; Zayed, H. Atherosclerotic Plaque Analysis: A Pilot Study to Assess a Novel Tool to Predict Outcome Following Lower Limb Endovascular Intervention. Eur. J. Vasc. Endovasc. Surg. 2015, 50, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Kaladji, A.; Vent, P.A.; Danvin, A.; Chaillou, P.; Costargent, A.; Guyomarch, B.; Quillard, T.; Gouëffic, Y. Impact of Vascular Calcifications on Long Femoropopliteal Stenting Outcomes. Ann. Vasc. Surg. 2018, 47, 170–178. [Google Scholar] [CrossRef]
- He, H.P.; Weng, J.C.; Zhao, Y.; Cai, S.H.; Zhang, X.L.; Yin, H.H. Impact of Plaque Calcification and Stent Oversizing on Clinical Outcomes of Atherosclerotic Femoropopliteal Arterial Occlusive Disease Following Stent Angioplasty. Eur. J. Vasc. Endovasc. Surg. 2019, 58, 215–222. [Google Scholar] [CrossRef]
- Chang, Z.; Yan, H.; Zhen, Y.; Zheng, J.; Liu, Z. Lower Limb Arterial Calcification and Acute Thrombosis Risk in Patients with Peripheral Artery Disease. Ann. Vasc. Surg. 2020, 63, 227–233. [Google Scholar] [CrossRef]
- Megale, A.; Wolosker, N.; Kalil, V.; Nigro, J.; Wakisaka, C.; Dias, B.; Teivelis, M.; Rocha, M.; Mendes, C. Calcium Score Predicts Mortality After Revascularization in Critical Limb Ischemia. J. Endovasc. Ther. 2022, 29, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Torii, S.; Mustapha, J.A.; Narula, J.; Mori, H.; Saab, F.; Jinnouchi, H.; Yahagi, K.; Sakamoto, A.; Romero, M.E.; Narula, N.; et al. Histopathologic Characterization of Peripheral Arteries in Subjects with Abundant Risk Factors: Correlating Imaging with Pathology. JACC Cardiovasc. Imaging 2019, 12, 1501–1513. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Yang, J.G.; Li, Y.M.; Rong, J.; Du, F.Z.; Yang, Z.G.; Gu, M. Comparison of lower extremity atherosclerosis in diabetic and non-diabetic patients using multidetector computed tomography. BMC Cardiovasc. Disord. 2014, 14, 125. [Google Scholar] [CrossRef] [Green Version]
- Mary, A.; Hartemann, A.; Liabeuf, S.; Aubert, C.E.; Kemel, S.; Salem, J.E.; Cluzel, P.; Lenglet, A.; Massy, Z.A.; Lalau, J.D.; et al. Association between metformin use and below-the-knee arterial calcification score in type 2 diabetic patients. Cardiovasc. Diabetol. 2017, 16, 24. [Google Scholar] [CrossRef] [Green Version]
- Kock, M.C.; Dijkshoorn, M.L.; Pattynama, P.M.; Myriam Hunink, M.G. Multi-detector row computed tomography angiography of peripheral arterial disease. Eur. Radiol. 2007, 17, 3208–3222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.Y.; Nelson, R.C.; Miller, M.J.; Kim, C.Y.; Lawson, J.H.; Husarik, D.B.; Boll, D.T. Assessment of vascular contrast and depiction of stenoses in abdominopelvic and lower extremity vasculature: Comparison of dual-energy MDCT with digital subtraction angiography. Acad. Radiol. 2012, 19, 1149–1157. [Google Scholar] [CrossRef]
- Kuntz, S.H.; Jinnouchi, H.; Kutyna, M.; Torii, S.; Cornelissen, A.; Sakamoto, A.; Sato, Y.; Fuller, D.T.; Schwein, A.; Ohana, M.; et al. Co-Registration of Peripheral Atherosclerotic Plaques Assessed by Conventional CT Angiography, MicroCT and Histology in Patients with Chronic Limb Threatening Ischaemia. Eur. J.Vasc. Endovasc. Surg. 2021, 61, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Cahalane, R.M.; Broderick, S.P.; Kavanagh, E.G.; Moloney, M.A.; Mongrain, R.; Purtill, H.; Walsh, M.T.; O’Brien, J.M. Comparative analysis of calcification parameters with Agatston Score approximations for ex vivo atherosclerotic lesions. J. Cardiovasc. Comput. Tomogr. 2020, 14, 20–26. [Google Scholar] [CrossRef]
- Yoon, W.J.; Crisostomo, P.; Halandras, P.; Bechara, C.F.; Aulivola, B. The Use of the Agatston Calcium Score in Predicting Carotid Plaque Vulnerability. Ann. Vasc. Surg. 2019, 54, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Vancheri, F.; Longo, G.; Vancheri, S.; Danial, J.S.H.; Henein, M.Y. Coronary Artery Microcalcification: Imaging and Clinical Implications. Diagnostics 2019, 9, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakahara, T.; Dweck, M.R.; Narula, N.; Pisapia, D.; Narula, J.; Strauss, H.W. Coronary Artery Calcification: From Mechanism to Molecular Imaging. JACC Cardiovasc. Imaging 2017, 10, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, A.; Ferrero, A.; Mileto, A.; Baffour, F.; Horst, K.; Rajiah, P.S.; Inoue, A.; Leng, S.; McCollough, C.; Fletcher, J.G. Photon-Counting Detector CT: Key Points Radiologists Should Know. Korean J. Radiol. 2022, 23, 854–865. [Google Scholar] [CrossRef]
- Willemink, M.J.; Persson, M.; Pourmorteza, A.; Pelc, N.J.; Fleischmann, D. Photon-counting CT: Technical Principles and Clinical Prospects. Radiology 2018, 289, 293–312. [Google Scholar] [CrossRef]
- Si-Mohamed, S.A.; Boccalini, S.; Lacombe, H.; Diaw, A.; Varasteh, M.; Rodesch, P.A.; Dessouky, R.; Villien, M.; Tatard-Leitman, V.; Bochaton, T.; et al. Coronary CT Angiography with Photon-counting CT: First-In-Human Results. Radiology 2022, 303, 303–313. [Google Scholar] [CrossRef]
- Dai, L.; Zhou, Q.; Zhou, H.; Zhang, H.; Cheng, P.; Ding, M.; Xu, X.; Zhang, X. Deep learning-based classification of lower extremity arterial stenosis in computed tomography angiography. Eur. J. Radiol. 2021, 136, 109528. [Google Scholar] [CrossRef]
- Jens, S.; Koelemay, M.J.; Reekers, J.A.; Bipat, S. Diagnostic performance of computed tomography angiography and contrast-enhanced magnetic resonance angiography in patients with critical limb ischaemia and intermittent claudication: Systematic review and meta-analysis. Eur. Radiol. 2013, 23, 3104–3114. [Google Scholar] [CrossRef]
- Mathew, R.C.; Kramer, C.M. Recent advances in magnetic resonance imaging for peripheral artery disease. Vasc. Med. 2018, 23, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Collins, R.; Burch, J.; Cranny, G.; Aguiar-Ibáñez, R.; Craig, D.; Wright, K.; Berry, E.; Gough, M.; Kleijnen, J.; Westwood, M. Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: Systematic review. BMJ 2007, 334, 1257. [Google Scholar] [CrossRef] [Green Version]
- Costello, J.R.; Kalb, B.; Martin, D.R. Incidence and Risk Factors for Gadolinium-Based Contrast Agent Immediate Reactions. Top. Magn. Reson. Imaging 2016, 25, 257–263. [Google Scholar] [CrossRef]
- Lehrman, E.D.; Plotnik, A.N.; Hope, T.; Saloner, D. Ferumoxytol-enhanced MRI in the peripheral vasculature. Clin. Radiol. 2019, 74, 37–50. [Google Scholar] [CrossRef]
- Zheng, K.H.; Schoormans, J.; Stiekema, L.C.A.; Calcagno, C.; Cicha, I.; Alexiou, C.; Strijkers, G.J.; Nederveen, A.J.; Stroes, E.S.G.; Coolen, B.F. Plaque Permeability Assessed with DCE-MRI Associates with USPIO Uptake in Patients with Peripheral Artery Disease. JACC Cardiovasc. Imaging 2019, 12, 2081–2083. [Google Scholar] [CrossRef] [PubMed]
- Smits, L.P.; Tiessens, F.; Zheng, K.H.; Stroes, E.S.; Nederveen, A.J.; Coolen, B.F. Evaluation of ultrasmall superparamagnetic iron-oxide (USPIO) enhanced MRI with ferumoxytol to quantify arterial wall inflammation. Atherosclerosis 2017, 263, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Grist, T.M.; Mistretta, C.A.; Strother, C.M.; Turski, P.A. Time-resolved angiography: Past, present, and future. J. Magn. Reson. Imaging 2012, 36, 1273–1286. [Google Scholar] [CrossRef] [PubMed]
- Maj, E.; Cieszanowski, A.; Rowiński, O.; Wojtaszek, M.; Szostek, M.; Tworus, R. Time-resolved contrast-enhanced MR angiography: Value of hemodynamic information in the assessment of vascular diseases. Pol. J. Radiol. 2010, 75, 52–60. [Google Scholar]
- Andreisek, G.; Pfammatter, T.; Goepfert, K.; Nanz, D.; Hervo, P.; Koppensteiner, R.; Weishaupt, D. Peripheral arteries in diabetic patients: Standard bolus-chase and time-resolved MR angiography. Radiology 2007, 242, 610–620. [Google Scholar] [CrossRef]
- Hansmann, J.; Michaely, H.J.; Morelli, J.N.; Diehl, S.J.; Meyer, M.; Schoenberg, S.O.; Attenberger, U.I. Impact of time-resolved MRA on diagnostic accuracy in patients with symptomatic peripheral artery disease of the calf station. AJR Am. J. Roentgenol. 2013, 201, 1368–1375. [Google Scholar] [CrossRef]
- Pollak, A.W.; Norton, P.T.; Kramer, C.M. Multimodality imaging of lower extremity peripheral arterial disease: Current role and future directions. Circ. Cardiovasc. Imaging 2012, 5, 797–807. [Google Scholar] [CrossRef] [Green Version]
- Wedeen, V.J.; Meuli, R.A.; Edelman, R.R.; Geller, S.C.; Frank, L.R.; Brady, T.J.; Rosen, B.R. Projective imaging of pulsatile flow with magnetic resonance. Science 1985, 230, 946–948. [Google Scholar] [CrossRef]
- Rodríguez-Palomares, J.F.; Dux-Santoy, L.; Guala, A.; Kale, R.; Maldonado, G.; Teixidó-Turà, G.; Galian, L.; Huguet, M.; Valente, F.; Gutiérrez, L.; et al. Aortic flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilatation in bicuspid aortic valve disease. J. Cardiovasc. Magn. Reson. 2018, 20, 28. [Google Scholar] [CrossRef]
- Galizia, M.S.; Barker, A.; Liao, Y.; Collins, J.; Carr, J.; McDermott, M.M.; Markl, M. Wall morphology, blood flow and wall shear stress: MR findings in patients with peripheral artery disease. Eur. Radiol. 2014, 24, 850–856. [Google Scholar] [CrossRef] [Green Version]
- Hoey, E.T.; Ganeshan, A.; Puni, R.; Henderson, J.; Crowe, P.M. Fresh blood imaging of the peripheral vasculature: An emerging unenhanced MR technique. AJR Am. J. Roentgenol. 2010, 195, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xing, Z.; She, D.; Huang, N.; Cao, D. Repeatability of Non-Contrast-Enhanced Lower-Extremity Angiography Using the Flow-Spoiled Fresh Blood Imaging. J. Comput. Assist. Tomogr. 2018, 42, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Edelman, R.R.; Koktzoglou, I. Noncontrast MR angiography: An update. J. Magn. Reson. Imaging 2019, 49, 355–373. [Google Scholar] [CrossRef] [PubMed]
- Foo, T.K.; Ho, V.B.; Marcos, H.B.; Hood, M.N.; Choyke, P.L. MR angiography using steady-state free precession. Magn. Reson. Med. 2002, 48, 699–706. [Google Scholar] [CrossRef]
- Hodnett, P.A.; Ward, E.V.; Davarpanah, A.H.; Scanlon, T.G.; Collins, J.D.; Glielmi, C.B.; Bi, X.; Koktzoglou, I.; Gupta, N.; Carr, J.C.; et al. Peripheral arterial disease in a symptomatic diabetic population: Prospective comparison of rapid unenhanced MR angiography (MRA) with contrast-enhanced MRA. AJR. Am. J. Roentgenol. 2011, 197, 1466–1473. [Google Scholar] [CrossRef] [Green Version]
- Ward, E.V.; Galizia, M.S.; Usman, A.; Popescu, A.R.; Dunkle, E.; Edelman, R.R. Comparison of quiescent inflow single-shot and native space for nonenhanced peripheral MR angiography. J. Magn. Reson. Imaging 2013, 38, 1531–1538. [Google Scholar] [CrossRef] [Green Version]
- Edelman, R.R.; Silvers, R.I.; Thakrar, K.H.; Metzl, M.D.; Nazari, J.; Giri, S.; Koktzoglou, I. Nonenhanced MR angiography of the pulmonary arteries using single-shot radial quiescent-interval slice-selective (QISS): A technical feasibility study. J. Cardiovasc. Magn. Reson. 2017, 19, 48. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Yang, J.; Zhang, T.; Morelli, J.N.; Giri, S.; Li, X.; Tang, W. The diagnostic value of non-contrast enhanced quiescent interval single shot (QISS) magnetic resonance angiography at 3T for lower extremity peripheral arterial disease, in comparison to CT angiography. J. Cardiovasc. Magn. Reson. 2016, 18, 71. [Google Scholar] [CrossRef] [Green Version]
- Isbell, D.C.; Meyer, C.H.; Rogers, W.J.; Epstein, F.H.; DiMaria, J.M.; Harthun, N.L.; Wang, H.; Kramer, C.M. Reproducibility and reliability of atherosclerotic plaque volume measurements in peripheral arterial disease with cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2007, 9, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Zhang, N.; Xie, Y.; Nguyen, C.; Deng, Z.; Bi, X.; Fan, Z.; Liu, X.; Li, D.; Fan, Z. DANTE-prepared three-dimensional FLASH: A fast isotropic-resolution MR approach to morphological evaluation of the peripheral arterial wall at 3 Tesla. J. Magn. Reson. Imaging 2016, 43, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Fan, Z.; Carroll, T.J.; Chung, Y.; Weale, P.; Jerecic, R.; Li, D. Three-dimensional T2-weighted MRI of the human femoral arterial vessel wall at 3.0 Tesla. Investig. Radiol. 2009, 44, 619–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihai, G.; Chung, Y.C.; Kariisa, M.; Raman, S.V.; Simonetti, O.P.; Rajagopalan, S. Initial feasibility of a multi-station high resolution three-dimensional dark blood angiography protocol for the assessment of peripheral arterial disease. J. Magn. Reson. Imaging 2009, 30, 785–793. [Google Scholar] [CrossRef]
- Langham, M.C.; Li, C.; Englund, E.K.; Chirico, E.N.; Mohler, E.R., III; Floyd, T.F.; Wehrli, F.W. Vessel-wall imaging and quantification of flow-mediated dilation using water-selective 3D SSFP-echo. J. Cardiovasc. Magn. Reson. 2013, 15, 100. [Google Scholar] [CrossRef] [Green Version]
- Langham, M.C.; Desjardins, B.; Englund, E.K.; Mohler, E.R., III; Floyd, T.F.; Wehrli, F.W. Rapid High-resolution, Self-registered, Dual Lumen-contrast MRI Method for Vessel-wall Assessment in Peripheral Artery Disease:: A Preliminary Investigation. Acad. Radiol. 2016, 23, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Roy, T.; Liu, G.; Shaikh, N.; Dueck, A.D.; Wright, G.A. Puncturing Plaques. J. Endovasc. Ther. 2017, 24, 35–46. [Google Scholar] [CrossRef]
- Polonsky, T.S.; Liu, K.; Tian, L.; Carr, J.; Carroll, T.J.; Berry, J.; Criqui, M.H.; Ferrucci, L.; Guralnik, J.M.; Kibbe, M.R.; et al. High-risk plaque in the superficial femoral artery of people with peripheral artery disease: Prevalence and associated clinical characteristics. Atherosclerosis 2014, 237, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvera, S.S.; Aidi, H.E.; Rudd, J.H.; Mani, V.; Yang, L.; Farkouh, M.; Fuster, V.; Fayad, Z.A. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis 2009, 207, 139–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helck, A.; Bianda, N.; Canton, G.; Yuan, C.; Hippe, D.S.; Reiser, M.F.; Gallino, A.; Wyttenbach, R.; Saam, T. Intra-individual comparison of carotid and femoral atherosclerotic plaque features with in vivo MR plaque imaging. Int. J. Cardiovasc. Imaging 2015, 31, 1611–1618. [Google Scholar] [CrossRef]
- McDermott, M.M.; Kramer, C.M.; Tian, L.; Carr, J.; Guralnik, J.M.; Polonsky, T.; Carroll, T.; Kibbe, M.; Criqui, M.H.; Ferrucci, L.; et al. Plaque Composition in the Proximal Superficial Femoral Artery and Peripheral Artery Disease Events. JACC Cardiovasc. Imaging 2017, 10, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.D.; Epstein, F.H.; Meyer, C.H.; Hagspiel, K.D.; Wang, H.; Berr, S.S.; Harthun, N.L.; Weltman, A.; Dimaria, J.M.; West, A.M.; et al. Multifactorial determinants of functional capacity in peripheral arterial disease: Uncoupling of calf muscle perfusion and metabolism. J. Am. Coll. Cardiol. 2009, 54, 628–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, M.M.; Liu, K.; Carr, J.; Criqui, M.H.; Tian, L.; Li, D.; Ferrucci, L.; Guralnik, J.M.; Kramer, C.M.; Yuan, C.; et al. Superficial femoral artery plaque, the ankle-brachial index, and leg symptoms in peripheral arterial disease: The walking and leg circulation study (WALCS) III. Circ. Cardiovasc. Imaging 2011, 4, 246–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, M.M.; Liu, K.; Carroll, T.J.; Tian, L.; Ferrucci, L.; Li, D.; Carr, J.; Guralnik, J.M.; Kibbe, M.; Pearce, W.H.; et al. Superficial femoral artery plaque and functional performance in peripheral arterial disease: Walking and leg circulation study (WALCS III). JACC Cardiovasc. Imaging 2011, 4, 730–739. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M.; Carroll, T.J.; Kibbe, M.; Kramer, C.M.; Liu, K.; Guralnik, J.M.; Keeling, A.N.; Criqui, M.H.; Ferrucci, L.; Yuan, C.; et al. Proximal superficial femoral artery occlusion, collateral vessels, and walking performance in peripheral artery disease. JACC Cardiovasc. Imaging 2013, 6, 687–694. [Google Scholar] [CrossRef]
- McDermott, M.M.; Carroll, T.; Carr, J.; Yuan, C.; Ferrucci, L.; Guralnik, J.M.; Kibbe, M.; Criqui, M.H.; Tian, L.; Polonsky, T.; et al. Femoral artery plaque characteristics, lower extremity collaterals, and mobility loss in peripheral artery disease. Vasc. Med. 2017, 22, 473–481. [Google Scholar] [CrossRef]
- Weir-McCall, J.R.; Khan, F.; Lambert, M.A.; Adamson, C.L.; Gardner, M.; Gandy, S.J.; Ramkumar, P.G.; Belch, J.J.; Struthers, A.D.; Rauchhaus, P.; et al. Common carotid intima media thickness and ankle-brachial pressure index correlate with local but not global atheroma burden: A cross sectional study using whole body magnetic resonance angiography. PLoS ONE 2014, 9, e99190. [Google Scholar] [CrossRef] [Green Version]
- Van den Bosch, H.; Westenberg, J.; Setz-Pels, W.; Kersten, E.; Tielbeek, A.; Duijm, L.; Post, J.; Teijink, J.; de Roos, A. Prognostic value of cardiovascular MR imaging biomarkers on outcome in peripheral arterial disease: A 6-year follow-up pilot study. Int. J. Cardiovasc. Imaging 2016, 32, 1281–1288. [Google Scholar] [CrossRef]
- Van den Bosch, H.C.; Westenberg, J.J.; Setz-Pels, W.; Wondergem, J.; Wolterbeek, R.; Duijm, L.E.; Teijink, J.A.; de Roos, A. Site-specific association between distal aortic pulse wave velocity and peripheral arterial stenosis severity: A prospective cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2015, 17, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir-McCall, J.R.; Cassidy, D.B.; Belch, J.J.; Gandy, S.J.; Houston, J.G.; Lambert, M.A.; Littleford, R.C.; Rowland, J.; Struthers, A.D.; Khan, F. Whole-body cardiovascular MRI for the comparison of atherosclerotic burden and cardiac remodelling in healthy South Asian and European adults. Br. J. Radiol. 2016, 89, 20160342. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Guan, M.; Zhu, Z.; Li, D.; Chen, H.; Yuan, C.; Li, C.; Wang, W.; Zhao, X. Assessment of longitudinal distribution of subclinical atherosclerosis in femoral arteries by three-dimensional cardiovascular magnetic resonance vessel wall imaging. J. Cardiovasc. Magn. Reson. 2018, 20, 60. [Google Scholar] [CrossRef] [PubMed]
- West, A.M.; Anderson, J.D.; Meyer, C.H.; Epstein, F.H.; Wang, H.; Hagspiel, K.D.; Berr, S.S.; Harthun, N.L.; DiMaria, J.M.; Hunter, J.R.; et al. The effect of ezetimibe on peripheral arterial atherosclerosis depends upon statin use at baseline. Atherosclerosis 2011, 218, 156–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, K.S.; Yates, D.P.; Kramer, C.M.; Feller, A.; Mahling, P.; Colin, L.; Clough, T.; Wang, T.; LaPerna, L.; Patel, A.; et al. A randomized, placebo-controlled trial of canakinumab in patients with peripheral artery disease. Vasc. Med. 2019, 24, 414–421. [Google Scholar] [CrossRef]
- Chen, W.; Xu, J.; Chiu, B. Fast segmentation of the femoral arteries from 3D MR images: A tool for rapid assessment of peripheral arterial disease. Med. Phys. 2015, 42, 2431–2448. [Google Scholar] [CrossRef]
- Ukwatta, E.; Yuan, J.; Qiu, W.; Rajchl, M.; Chiu, B.; Fenster, A. Joint segmentation of lumen and outer wall from femoral artery MR images: Towards 3D imaging measurements of peripheral arterial disease. Med. Image Anal. 2015, 26, 120–132. [Google Scholar] [CrossRef]
- Mistelbauer, G.; Morar, A.; Schernthaner, R.; Strassl, A.; Fleischmann, D.; Moldoveanu, F.; Gröller, M.E. Semi-automatic vessel detection for challenging cases of peripheral arterial disease. Comput. Biol. Med. 2021, 133, 104344. [Google Scholar] [CrossRef]
- Hippe, D.S.; Balu, N.; Chen, L.; Canton, G.; Liu, W.; Watase, H.; Waterton, J.C.; Hatsukami, T.S.; Hwang, J.N.; Yuan, C. Confidence Weighting for Robust Automated Measurements of Popliteal Vessel Wall Magnetic Resonance Imaging. Circ. Genom. Precis. Med. 2020, 13, e002870. [Google Scholar] [CrossRef]
- Hendrikx, G.; Vöö, S.; Bauwens, M.; Post, M.J.; Mottaghy, F.M. SPECT and PET imaging of angiogenesis and arteriogenesis in pre-clinical models of myocardial ischemia and peripheral vascular disease. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 2433–2447. [Google Scholar] [CrossRef] [Green Version]
- Horger, M.; Eschmann, S.M.; Pfannenberg, C.; Storek, D.; Vonthein, R.; Claussen, C.D.; Bares, R. Added value of SPECT/CT in patients suspected of having bone infection: Preliminary results. Arch. Orthop. Trauma Surg. 2007, 127, 211–221. [Google Scholar] [CrossRef]
- Vouillarmet, J.; Morelec, I.; Thivolet, C. Assessing diabetic foot osteomyelitis remission with white blood cell SPECT/CT imaging. Diabet. Med. 2014, 31, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Horger, M.; Eschmann, S.M.; Pfannenberg, C.; Storek, D.; Dammann, F.; Vonthein, R.; Claussen, C.D.; Bares, R. The value of SPET/CT in chronic osteomyelitis. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 1665–1673. [Google Scholar] [CrossRef]
- Johnson, L.L.; Tekabe, Y.; Kollaros, M.; Eng, G.; Bhatia, K.; Li, C.; Krueger, C.G.; Shanmuganayagam, D.; Schmidt, A.M. Imaging RAGE expression in atherosclerotic plaques in hyperlipidemic pigs. EJNMMI Res. 2014, 4, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, F.M.; Yuan, Z. PET/SPECT molecular imaging in clinical neuroscience: Recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 2015, 5, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Stacy, M.R. Radionuclide Imaging of Atherothrombotic Diseases. Curr. Cardiovasc. Imaging Rep. 2019, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Masuda, A.; Yamaki, T.; Sakamoto, N.; Kunii, H.; Ito, H.; Nanbu, T.; Kubo, H.; Hara, T.; Takenoshita, S.; Takeishi, Y. Vulnerable plaque on the common iliac artery detected by (18)F-FDG PET/MRI. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 793–794. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.M.; Tarkin, J.M.; Albaghdadi, M.S.; Evans, N.R.; Le, E.P.V.; Berrett, T.B.; Sadat, U.; Joshi, F.R.; Warburton, E.A.; Buscombe, J.R.; et al. Vascular Positron Emission Tomography and Restenosis in Symptomatic Peripheral Arterial Disease: A Prospective Clinical Study. JACC Cardiovasc. Imaging 2020, 13, 1008–1017. [Google Scholar] [CrossRef]
- De Boer, S.A.; Hovinga-de Boer, M.C.; Heerspink, H.J.; Lefrandt, J.D.; van Roon, A.M.; Lutgers, H.L.; Glaudemans, A.W.; Kamphuisen, P.W.; Slart, R.H.; Mulder, D.J. Arterial Stiffness Is Positively Associated with 18F-fluorodeoxyglucose Positron Emission Tomography-Assessed Subclinical Vascular Inflammation in People with Early Type 2 Diabetes. Diabetes Care 2016, 39, 1440–1447. [Google Scholar] [CrossRef] [Green Version]
- Yun, M.; Yeh, D.; Araujo, L.I.; Jang, S.; Newberg, A.; Alavi, A. F-18 FDG uptake in the large arteries: A new observation. Clin. Nucl. Med. 2001, 26, 314–319. [Google Scholar] [CrossRef]
- Bural, G.G.; Torigian, D.A.; Chamroonrat, W.; Houseni, M.; Chen, W.; Basu, S.; Kumar, R.; Alavi, A. FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 562–569. [Google Scholar] [CrossRef]
- Pasha, A.K.; Moghbel, M.; Saboury, B.; Gharavi, M.H.; Blomberg, B.A.; Torigian, D.A.; Kwee, T.C.; Basu, S.; Mohler Iii, E.R.; Alavi, A. Effects of age and cardiovascular risk factors on (18)F-FDG PET/CT quantification of atherosclerosis in the aorta and peripheral arteries. Hell. J. Nucl. Med. 2015, 18, 5–10. [Google Scholar]
- Bural, G.G.; Torigian, D.; Rubello, D.; Alavi, A. Atherosclerotic 18F-FDG and MDP uptake in femoral arteries, changes with age. Nucl. Med. Commun. 2016, 37, 833–836. [Google Scholar] [CrossRef]
- Fernández-Friera, L.; Fuster, V.; López-Melgar, B.; Oliva, B.; Sánchez-González, J.; Macías, A.; Pérez-Asenjo, B.; Zamudio, D.; Alonso-Farto, J.C.; España, S.; et al. Vascular Inflammation in Subclinical Atherosclerosis Detected by Hybrid PET/MRI. J. Am. Coll. Cardiol. 2019, 73, 1371–1382. [Google Scholar] [CrossRef]
- Lee, S.J.; On, Y.K.; Lee, E.J.; Choi, J.Y.; Kim, B.T.; Lee, K.H. Reversal of vascular 18F-FDG uptake with plasma high-density lipoprotein elevation by atherogenic risk reduction. J. Nucl. Med. 2008, 49, 1277–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, H.; Nishio, M.; Takahashi, H.; Aoyama, T.; Tanaka, M.; Toriyama, T.; Tamaki, T.; Yoshikawa, D.; Hayashi, M.; Amano, T.; et al. Comparison of atorvastatin 5 and 20 mg/d for reducing F-18 fluorodeoxyglucose uptake in atherosclerotic plaques on positron emission tomography/computed tomography: A randomized, investigator-blinded, open-label, 6-month study in Japanese adults scheduled for percutaneous coronary intervention. Clin. Ther. 2010, 32, 2337–2347. [Google Scholar] [CrossRef]
- Jiang, Y.; Fan, J.; Li, Y.; Wu, G.; Wang, Y.; Yang, J.; Wang, M.; Cao, Z.; Li, Q.; Wang, H.; et al. Rapid reduction in plaque inflammation by sonodynamic therapy inpatients with symptomatic femoropopliteal peripheral artery disease:A randomized controlled trial. Int. J. Cardiol 2021, 325, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Dregely, I.; Koppara, T.; Nekolla, S.G.; Nährig, J.; Kuhs, K.; Langwieser, N.; Dzijan-Horn, M.; Ganter, C.; Joner, M.; Laugwitz, K.L.; et al. Observations with Simultaneous 18F-FDG PET and MR Imaging in Peripheral Artery Disease. JACC Cardiovasc. Imaging 2017, 10, 709–711. [Google Scholar] [CrossRef] [PubMed]
- Bucerius, J.; Hyafil, F.; Verberne, H.J.; Slart, R.H.; Lindner, O.; Sciagra, R.; Agostini, D.; Übleis, C.; Gimelli, A.; Hacker, M. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 780–792. [Google Scholar] [CrossRef] [Green Version]
- Tarkin, J.M.; Joshi, F.R.; Evans, N.R.; Chowdhury, M.M.; Figg, N.L.; Shah, A.V.; Starks, L.T.; Martin-Garrido, A.; Manavaki, R.; Yu, E.; et al. Detection of Atherosclerotic Inflammation by (68)Ga-DOTATATE PET Compared to [(18)F]FDG PET Imaging. J. Am. Coll. Cardiol. 2017, 69, 1774–1791. [Google Scholar] [CrossRef]
- Ahuja, K.; Sotoudeh, H.; Galgano, S.J.; Singh, R.; Gupta, N.; Gaddamanugu, S.; Choudhary, G. (18)F-Sodium Fluoride PET: History, Technical Feasibility, Mechanism of Action, Normal Biodistribution, and Diagnostic Performance in Bone Metastasis Detection Compared with Other Imaging Modalities. J. Nucl. Med. Technol. 2020, 48, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Derlin, T.; Richter, U.; Bannas, P.; Begemann, P.; Buchert, R.; Mester, J.; Klutmann, S. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J. Nucl. Med. 2010, 51, 862–865. [Google Scholar] [CrossRef] [Green Version]
- Janssen, T.; Bannas, P.; Herrmann, J.; Veldhoen, S.; Busch, J.D.; Treszl, A.; Münster, S.; Mester, J.; Derlin, T. Association of linear ¹⁸F-sodium fluoride accumulation in femoral arteries as a measure of diffuse calcification with cardiovascular risk factors: A PET/CT study. J. Nucl. Cardiol. 2013, 20, 569–577. [Google Scholar] [CrossRef]
- Herrero, P.; Kim, J.; Sharp, T.L.; Engelbach, J.A.; Lewis, J.S.; Gropler, R.J.; Welch, M.J. Assessment of myocardial blood flow using 15O-water and 1-11C-acetate in rats with small-animal PET. J. Nucl. Med. 2006, 47, 477–485. [Google Scholar]
- Jambor, I.; Borra, R.; Kemppainen, J.; Lepomäki, V.; Parkkola, R.; Dean, K.; Alanen, K.; Arponen, E.; Nurmi, M.; Aronen, H.J.; et al. Functional imaging of localized prostate cancer aggressiveness using 11C-acetate PET/CT and 1H-MR spectroscopy. J. Nucl. Med. 2010, 51, 1676–1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derlin, T.; Habermann, C.R.; Lengyel, Z.; Busch, J.D.; Wisotzki, C.; Mester, J.; Pávics, L. Feasibility of 11C-acetate PET/CT for imaging of fatty acid synthesis in the atherosclerotic vessel wall. J. Nucl. Med. 2011, 52, 1848–1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caroca, S.; Villagran, D.; Chabert, S. Four functional magnetic resonance imaging techniques for skeletal muscle exploration, a systematic review. Eur. J. Radiol. 2021, 144, 109995. [Google Scholar] [CrossRef]
- Galanakis, N.; Maris, T.G.; Kontopodis, N.; Tsetis, K.; Kehagias, E.; Tsetis, D. Perfusion imaging techniques in lower extremity peripheral arterial disease. Br. J. Radiol. 2022, 95, 20211203. [Google Scholar] [CrossRef] [PubMed]
- Wermelink, B.; Ma, K.F.; Haalboom, M.; El Moumni, M.; de Vries, J.P.M.; Geelkerken, R.H. A Systematic Review and Critical Appraisal of Peri-Procedural Tissue Perfusion Techniques and their Clinical Value in Patients with Peripheral Arterial Disease. Eur. J. Vasc. Endovasc. Surg. 2021, 62, 896–908. [Google Scholar] [CrossRef]
- García-Figueiras, R.; Goh, V.J.; Padhani, A.R.; Baleato-González, S.; Garrido, M.; León, L.; Gómez-Caamaño, A. CT perfusion in oncologic imaging: A useful tool? AJR Am. J. Roentgenol. 2013, 200, 8–19. [Google Scholar] [CrossRef]
- Galanakis, N.; Maris, T.G.; Kontopodis, N.; Ioannou, C.V.; Kehagias, E.; Matthaiou, N.; Papadakis, A.E.; Hatzidakis, A.; Perisinakis, K.; Tsetis, D. CT Foot Perfusion Examination for Evaluation of Percutaneous Transluminal Angioplasty Outcome in Patients with Critical Limb Ischemia: A Feasibility Study. J. Vasc. Interv. Radiol. 2019, 30, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Cindil, E.; Erbas, G.; Akkan, K.; Cerit, M.N.; Sendur, H.N.; Zor, M.H.; Ilgıt, E. Dynamic Volume Perfusion CT of the Foot in Critical Limb Ischemia: Response to Percutaneous Revascularization. AJR Am. J. Roentgenol. 2020, 214, 1398–1408. [Google Scholar] [CrossRef]
- Duet, M.; Virally, M.; Bailliart, O.; Kevorkian, J.P.; Kedra, A.W.; Benelhadj, S.; Ajzenberg, C.; Le Dref, O.; Guillausseau, P.J. Whole-body (201)Tl scintigraphy can detect exercise lower limb perfusion abnormalities in asymptomatic diabetic patients with normal Doppler pressure indices. Nucl. Med. Commun. 2001, 22, 949–954. [Google Scholar] [CrossRef]
- Stacy, M.R.; Sinusas, A.J. Novel Applications of Radionuclide Imaging in Peripheral Vascular Disease. Cardiol. Clin. 2016, 34, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Saenz-Pipaon, G.; Martinez-Aguilar, E.; Orbe, J.; González Miqueo, A.; Fernandez-Alonso, L.; Paramo, J.A.; Roncal, C. The Role of Circulating Biomarkers in Peripheral Arterial Disease. Int. J. Mol. Sci. 2021, 22, 3601. [Google Scholar] [CrossRef] [PubMed]
- Soeki, T.; Sata, M. Inflammatory Biomarkers and Atherosclerosis. Int. Heart J. 2016, 57, 134–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valkova, M.; Lazurova, I.; Petrasova, D.; Frankovicova, M.; Dravecka, I. Humoral predictors of ankle-brachial index in patients with peripheral arterial disease and controls. Bratisl. Lek. Listy 2018, 119, 646–650. [Google Scholar] [CrossRef] [Green Version]
- Pande, R.L.; Brown, J.; Buck, S.; Redline, W.; Doyle, J.; Plutzky, J.; Creager, M.A. Association of monocyte tumor necrosis factor α expression and serum inflammatory biomarkers with walking impairment in peripheral artery disease. J. Vasc. Surg. 2015, 61, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Engelberger, R.P.; Limacher, A.; Kucher, N.; Baumann, F.; Silbernagel, G.; Benghozi, R.; Do, D.D.; Willenberg, T.; Baumgartner, I. Biological variation of established and novel biomarkers for atherosclerosis: Results from a prospective, parallel-group cohort study. Clin. Chim. Acta 2015, 447, 16–22. [Google Scholar] [CrossRef]
- Tzoulaki, I.; Murray, G.D.; Lee, A.J.; Rumley, A.; Lowe, G.D.; Fowkes, F.G. C-reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population: Edinburgh Artery Study. Circulation 2005, 112, 976–983. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, Z.; Wang, L.; Yuan, L.; Bao, J.; Zhou, J.; Jing, Z. Six-month results of stenting of the femoropopliteal artery and predictive value of interleukin-6: Comparison with high-sensitivity C-reactive protein. Vascular 2020, 28, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Han, L.; Xu, X.; Tang, H.; Wang, H.; Wei, B. Serum biomarkers VEGF-C and IL-6 are associated with severe human Peripheral Artery Stenosis. J. Inflamm. 2015, 12, 50. [Google Scholar] [CrossRef] [Green Version]
- Bayoglu, B.; Arslan, C.; Tel, C.; Ulutin, T.; Dirican, A.; Deser, S.B.; Cengiz, M. Genetic variants rs1994016 and rs3825807 in ADAMTS7 affect its mRNA expression in atherosclerotic occlusive peripheral arterial disease. J. Clin. Lab. Anal. 2018, 32, e22174. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Aguilar, E.; Gomez-Rodriguez, V.; Orbe, J.; Rodriguez, J.A.; Fernández-Alonso, L.; Roncal, C.; Páramo, J.A. Matrix metalloproteinase 10 is associated with disease severity and mortality in patients with peripheral arterial disease. J. Vasc. Surg. 2015, 61, 428–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Signorelli, S.S.; Anzaldi, M.; Libra, M.; Navolanic, P.M.; Malaponte, G.; Mangano, K.; Quattrocchi, C.; Di Marco, R.; Fiore, V.; Neri, S. Plasma Levels of Inflammatory Biomarkers in Peripheral Arterial Disease: Results of a Cohort Study. Angiology 2016, 67, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Rudd, J.H.; Myers, K.S.; Bansilal, S.; Machac, J.; Woodward, M.; Fuster, V.; Farkouh, M.E.; Fayad, Z.A. Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers: A prospective fluorodeoxyglucose positron-emission tomography/computed tomography imaging study. Circ. Cardiovasc. Imaging 2009, 2, 107–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.W.; Kao, H.L.; Huang, C.L.; Chen, M.F.; Lin, L.Y.; Wang, Y.C.; Lin, Y.H.; Lin, H.J.; Tzen, K.Y.; Yen, R.F.; et al. The effects of 3-month atorvastatin therapy on arterial inflammation, calcification, abdominal adipose tissue and circulating biomarkers. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 399–407. [Google Scholar] [CrossRef]
- Saito, H.; Kuroda, S.; Hirata, K.; Magota, K.; Shiga, T.; Tamaki, N.; Yoshida, D.; Terae, S.; Nakayama, N.; Houkin, K. Validity of dual MRI and F-FDG PET imaging in predicting vulnerable and inflamed carotid plaque. Cerebrovasc. Dis. 2013, 35, 370–377. [Google Scholar] [CrossRef]
- Garg, P.K.; Arnold, A.M.; Hinckley Stukovsky, K.D.; Koro, C.; Jenny, N.S.; Mukamal, K.J.; Criqui, M.H.; Furberg, C.D.; Newman, A.B.; Cushman, M. Lipoprotein-Associated Phospholipase A2 and Incident Peripheral Arterial Disease in Older Adults: The Cardiovascular Health Study. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 750–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, P.K.; Norby, F.L.; Polfus, L.M.; Boerwinkle, E.; Gibbs, R.A.; Grove, M.L.; Folsom, A.R.; Garimella, P.S.; Matsushita, K.; Hoogeveen, R.C.; et al. Lipoprotein-associated phospholipase A(2) and risk of incident peripheral arterial disease: Findings from The Atherosclerosis Risk in Communities study (ARIC). Atherosclerosis 2018, 268, 12–18. [Google Scholar] [CrossRef]
- Duivenvoorden, R.; Mani, V.; Woodward, M.; Kallend, D.; Suchankova, G.; Fuster, V.; Rudd, J.H.F.; Tawakol, A.; Farkouh, M.E.; Fayad, Z.A. Relationship of serum inflammatory biomarkers with plaque inflammation assessed by FDG PET/CT: The dal-PLAQUE study. JACC Cardiovasc. Imaging 2013, 6, 1087–1094. [Google Scholar] [CrossRef] [Green Version]
- Murabito, J.M.; Keyes, M.J.; Guo, C.Y.; Keaney, J.F., Jr.; Vasan, R.S.; D’Agostino, R.B., Sr.; Benjamin, E.J. Cross-sectional relations of multiple inflammatory biomarkers to peripheral arterial disease: The Framingham Offspring Study. Atherosclerosis 2009, 203, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Saenz-Pipaon, G.; San Martín, P.; Planell, N.; Maillo, A.; Ravassa, S.; Vilas-Zornoza, A.; Martinez-Aguilar, E.; Rodriguez, J.A.; Alameda, D.; Lara-Astiaso, D.; et al. Functional and transcriptomic analysis of extracellular vesicles identifies calprotectin as a new prognostic marker in peripheral arterial disease (PAD). J. Extracell. Vesicles 2020, 9, 1729646. [Google Scholar] [CrossRef] [PubMed]
- Urbonaviciene, G.; Frystyk, J.; Flyvbjerg, A.; Urbonavicius, S.; Henneberg, E.W.; Lindholt, J.S. Markers of inflammation in relation to long-term cardiovascular mortality in patients with lower-extremity peripheral arterial disease. Int. J. Cardiol. 2012, 160, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Heneghan, H.M.; Sultan, S. Homocysteine, the cholesterol of the 21st century. Impact of hyperhomocysteinemia on patency and amputation-free survival after intervention for critical limb ischemia. J. Endovasc. Ther. 2008, 15, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.P.; Morris, D.R.; Smith, S.; Moxon, J.V.; Golledge, J. Systematic Review and Meta-Analysis of the Association between C-Reactive Protein and Major Cardiovascular Events in Patients with Peripheral Artery Disease. Eur. J. Vasc. Endovasc. Surg. 2017, 54, 220–233. [Google Scholar] [CrossRef]
- Kremers, B.; Wübbeke, L.; Mees, B.; Ten Cate, H.; Spronk, H.; Ten Cate-Hoek, A. Plasma Biomarkers to Predict Cardiovascular Outcome in Patients with Peripheral Artery Disease: A Systematic Review and Meta-Analysis. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2018–2032. [Google Scholar] [CrossRef]
- Li, J.J.; Zhu, C.G.; Yu, B.; Liu, Y.X.; Yu, M.Y. The role of inflammation in coronary artery calcification. Ageing Res. Rev. 2007, 6, 263–270. [Google Scholar] [CrossRef]
- Bueno, A.; March, J.R.; Garcia, P.; Cañibano, C.; Ferruelo, A.; Fernandez-Casado, J.L. Carotid Plaque Inflammation Assessed by (18)F-FDG PET/CT and Lp-PLA(2) Is Higher in Symptomatic Patients. Angiology 2021, 72, 260–267. [Google Scholar] [CrossRef]
- Urbonaviciene, G.; Frystyk, J.; Flyvbjerg, A.; Henneberg, E.W.; Lindholt, J.S. Association of serum adiponectin with risk for cardiovascular events in patients with peripheral arterial disease. Atherosclerosis 2010, 210, 619–624. [Google Scholar] [CrossRef]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature 2011, 473, 317–325. [Google Scholar] [CrossRef]
- Carr, A.C.; McCall, M.R.; Frei, B. Oxidation of LDL by myeloperoxidase and reactive nitrogen species: Reaction pathways and antioxidant protection. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1716–1723. [Google Scholar] [CrossRef] [Green Version]
- Dragneva, G.; Korpisalo, P.; Ylä-Herttuala, S. Promoting blood vessel growth in ischemic diseases: Challenges in translating preclinical potential into clinical success. Dis. Model. Mech. 2013, 6, 312–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roumeliotis, S.; Dounousi, E.; Eleftheriadis, T.; Liakopoulos, V. Association of the Inactive Circulating Matrix Gla Protein with Vitamin K Intake, Calcification, Mortality, and Cardiovascular Disease: A Review. Int. J. Mol. Sci. 2019, 20, 628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardana, M.; Vasim, I.; Varakantam, S.; Kewan, U.; Tariq, A.; Koppula, M.R.; Syed, A.A.; Beraun, M.; Drummen, N.E.; Vermeer, C.; et al. Inactive Matrix Gla-Protein and Arterial Stiffness in Type 2 Diabetes Mellitus. Am. J. Hypertens. 2017, 30, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Pivin, E.; Ponte, B.; Pruijm, M.; Ackermann, D.; Guessous, I.; Ehret, G.; Liu, Y.P.; Drummen, N.E.; Knapen, M.H.; Pechere-Bertschi, A.; et al. Inactive Matrix Gla-Protein Is Associated with Arterial Stiffness in an Adult Population-Based Study. Hypertension 2015, 66, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Roumeliotis, S.; Roumeliotis, A.; Dounousi, E.; Eleftheriadis, T.; Liakopoulos, V. Biomarkers of vascular calcification in serum. Adv. Clin. Chem. 2020, 98, 91–147. [Google Scholar] [CrossRef] [PubMed]
- Farrokhi, E.; GhatrehSamani, K.; Hashemzadeh Chaleshtori, M.; Tabatabaiefar, M.A. Effect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells. Iran Biomed. J. 2015, 19, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Ciceri, P.; Elli, F.; Cappelletti, L.; Tosi, D.; Savi, F.; Bulfamante, G.; Cozzolino, M. Osteonectin (SPARC) Expression in Vascular Calcification: In Vitro and Ex Vivo Studies. Calcif. Tissue Int. 2016, 99, 472–480. [Google Scholar] [CrossRef]
- Zwakenberg, S.R.; de Jong, P.A.; Hendriks, E.J.; Westerink, J.; Spiering, W.; de Borst, G.J.; Cramer, M.J.; Bartstra, J.W.; Doesburg, T.; Rutters, F.; et al. Intimal and medial calcification in relation to cardiovascular risk factors. PLoS ONE 2020, 15, e0235228. [Google Scholar] [CrossRef]
Imaging Modalities | Advantages | Disadvantages |
---|---|---|
CT |
|
|
MRI |
|
|
Nuclear Imaging (PET and SPECT) |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Nai, Y.-H.; Gan, J.; Lian, C.P.L.; Ryan, F.K.; Tan, F.S.L.; Chan, D.Y.S.; Ng, J.J.; Lo, Z.J.; Chong, T.T.; et al. Multi-Modality Imaging of Atheromatous Plaques in Peripheral Arterial Disease: Integrating Molecular and Imaging Markers. Int. J. Mol. Sci. 2023, 24, 11123. https://doi.org/10.3390/ijms241311123
Wang X, Nai Y-H, Gan J, Lian CPL, Ryan FK, Tan FSL, Chan DYS, Ng JJ, Lo ZJ, Chong TT, et al. Multi-Modality Imaging of Atheromatous Plaques in Peripheral Arterial Disease: Integrating Molecular and Imaging Markers. International Journal of Molecular Sciences. 2023; 24(13):11123. https://doi.org/10.3390/ijms241311123
Chicago/Turabian StyleWang, Xiaomeng, Ying-Hwey Nai, Julian Gan, Cheryl Pei Ling Lian, Fraser Kirwan Ryan, Forest Su Lim Tan, Dexter Yak Seng Chan, Jun Jie Ng, Zhiwen Joseph Lo, Tze Tec Chong, and et al. 2023. "Multi-Modality Imaging of Atheromatous Plaques in Peripheral Arterial Disease: Integrating Molecular and Imaging Markers" International Journal of Molecular Sciences 24, no. 13: 11123. https://doi.org/10.3390/ijms241311123
APA StyleWang, X., Nai, Y. -H., Gan, J., Lian, C. P. L., Ryan, F. K., Tan, F. S. L., Chan, D. Y. S., Ng, J. J., Lo, Z. J., Chong, T. T., & Hausenloy, D. J. (2023). Multi-Modality Imaging of Atheromatous Plaques in Peripheral Arterial Disease: Integrating Molecular and Imaging Markers. International Journal of Molecular Sciences, 24(13), 11123. https://doi.org/10.3390/ijms241311123