Serum-Circulating microRNAs in Sporadic Inclusion Body Myositis
Abstract
:1. Introduction
2. Results
Target Prediction Analysis for microRNAs
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Serum Samples
4.3. RNA Preparation, RT PCR
4.4. Preamplification and miRNA Array Analysis
4.5. Target Prediction Analysis for microRNAs
4.6. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Needham, M.; Corbett, A.; Day, T.; Christiansen, F.; Fabian, V.; Mastaglia, F.L. Prevalence of sporadic inclusion body myositis and factors contributing to delayed diagnosis. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2008, 15, 1350–1353. [Google Scholar] [CrossRef]
- Meyer, A.; Meyer, N.; Schaeffer, M.; Gottenberg, J.E.; Geny, B.; Sibilia, J. Incidence and prevalence of inflammatory myopathies: A systematic review. Rheumatology 2015, 54, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Keller, C.W.; Schmidt, J.; Lünemann, J.D. Immune and myodegenerative pathomechanisms in inclusion body myositis. Ann. Clin. Transl. Neuro. 2017, 4, 422–445. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, S.A. Inclusion body myositis: Clinical features and pathogenesis. Nat. Reviews. Rheumatol. 2019, 15, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Villanova, M.; Kawai, M.; Lübke, U.; Oh, S.J.; Perry, G.; Six, J.; Ceuterick, C.; Martin, J.J.; Cras, P. Rimmed vacuoles of inclusion body myositis and oculopharyngeal muscular dystrophy contain amyloid precursor protein and lysosomal markers. Brain Res. 1993, 603, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Mirabella, M.; Alvarez, R.B.; Bilak, M.; Engel, W.K.; Askanas, V. Difference in expression of phosphorylated tau epitopes between sporadic inclusion-body myositis and hereditary inclusion-body myopathies. J. Neuropathol. Exp. Neurol. 1996, 55, 774–786. [Google Scholar] [CrossRef] [Green Version]
- Larman, H.B.; Salajegheh, M.; Nazareno, R.; Lam, T.; Sauld, J.; Steen, H.; Kong, S.W.; Pinkus, J.L.; Amato, A.A.; Elledge, S.J.; et al. Cytosolic 5’-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann. Neurol. 2013, 73, 408–418. [Google Scholar] [CrossRef]
- Pluk, H.; van Hoeve, B.J.; van Dooren, S.H.; Stammen-Vogelzangs, J.; van der Heijden, A.; Schelhaas, H.J.; Verbeek, M.M.; Badrising, U.A.; Arnardottir, S.; Gheorghe, K.; et al. Autoantibodies to cytosolic 5’-nucleotidase 1A in inclusion body myositis. Ann. Neurol. 2013, 73, 397–407. [Google Scholar] [CrossRef]
- Lucchini, M.; Maggi, L.; Pegoraro, E.; Filosto, M.; Rodolico, C.; Valentino, M.L.; Siciliano, G.; Tasca, G.; De Arcangelis, V.; De Fino, C.; et al. Anti-cN1A Antibodies Are Associated with More Severe Dysphagia in Sporadic Inclusion Body Myositis. Cells 2021, 10, 1146. [Google Scholar] [CrossRef]
- Chen, J.Q.; Papp, G.; Szodoray, P.; Zeher, M. The role of microRNAs in the pathogenesis of autoimmune diseases. Autoimmun. Rev. 2016, 15, 1171–1180. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466, 835–840. [Google Scholar] [CrossRef] [Green Version]
- Long, H.; Wang, X.; Chen, Y.; Wang, L.; Zhao, M.; Lu, Q. Dysregulation of microRNAs in autoimmune diseases: Pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett. 2018, 428, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Turchinovich, A.; Cho, W.C. The origin, function and diagnostic potential of extracellular microRNA in human body fluids. Front. Genet. 2014, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, I.; Eran, A.; Nishino, I.; Moggio, M.; Lamperti, C.; Amato, A.A.; Lidov, H.G.; Kang, P.B.; North, K.N.; Mitrani-Rosenbaum, S.; et al. Distinctive patterns of microRNA expression in primary muscular disorders. Proc. Natl. Acad. Sci. USA 2007, 104, 17016–17021. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Streicher, K.; Shen, N.; Higgs, B.W.; Morehouse, C.; Greenlees, L.; Amato, A.A.; Ranade, K.; Richman, L.; Fiorentino, D.; et al. Genomic signatures characterize leukocyte infiltration in myositis muscles. BMC Med. Genom. 2012, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Oshikawa, Y.; Jinnin, M.; Makino, T.; Kajihara, I.; Makino, K.; Honda, N.; Nakayama, W.; Inoue, K.; Fukushima, S.; Ihn, H. Decreased miR-7 expression in the skin and sera of patients with dermatomyositis. Acta Derm. -Venereol. 2013, 93, 273–276. [Google Scholar] [CrossRef]
- Inoue, K.; Jinnin, M.; Yamane, K.; Makino, T.; Kajihara, I.; Makino, K.; Honda, N.; Nakayama, W.; Fukushima, S.; Ihn, H. Down-regulation of miR-223 contributes to the formation of Gottron’s papules in dermatomyositis via the induction of PKCε. Eur. J. Dermatol. EJD 2013, 23, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Shimada, S.; Jinnin, M.; Ogata, A.; Makino, T.; Kajihara, I.; Makino, K.; Honda, N.; Nakayama, W.; Inoue, K.; Fukushima, S.; et al. Serum miR-21 levels in patients with dermatomyositis. Clin. Exp. Rheumatol. 2013, 31, 161–162. [Google Scholar]
- Tang, X.; Tian, X.; Zhang, Y.; Wu, W.; Tian, J.; Rui, K.; Tong, J.; Lu, L.; Xu, H.; Wang, S. Correlation between the frequency of Th17 cell and the expression of microRNA-206 in patients with dermatomyositis. Clin. Dev. Immunol. 2013, 2013, 345347. [Google Scholar] [CrossRef] [Green Version]
- Georgantas, R.W.; Streicher, K.; Greenberg, S.A.; Greenlees, L.M.; Zhu, W.; Brohawn, P.Z.; Higgs, B.W.; Czapiga, M.; Morehouse, C.A.; Amato, A.; et al. Inhibition of myogenic microRNAs 1, 133, and 206 by inflammatory cytokines links inflammation and muscle degeneration in adult inflammatory myopathies. Arthritis Rheumatol. 2014, 66, 1022–1033. [Google Scholar] [CrossRef] [PubMed]
- Misunova, M.; Salinas-Riester, G.; Luthin, S.; Pommerenke, C.; Husakova, M.; Zavada, J.; Klein, M.; Plestilova, L.; Svitalkova, T.; Cepek, P.; et al. Microarray analysis of circulating micro RNAs in the serum of patients with polymyositis and dermatomyositis reveals a distinct disease expression profile and is associated with disease activity. Clin. Exp. Rheumatol. 2016, 34, 17–24. [Google Scholar]
- Hirai, T.; Ikeda, K.; Tsushima, H.; Fujishiro, M.; Hayakawa, K.; Yoshida, Y.; Morimoto, S.; Yamaji, K.; Takasaki, Y.; Takamori, K.; et al. Circulating plasma microRNA profiling in patients with polymyositis/dermatomyositis before and after treatment: miRNA may be associated with polymyositis/dermatomyositis. Inflamm. Regen. 2018, 38, 1. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Jinnin, M.; Wang, Z.; Nakamura, K.; Inoue, K.; Ichihara, A.; Moriya, C.; Sakai, K.; Fukushima, S.; Ihn, H. microRNA level is raised in the hair shafts of patients with dematomyositis in comparison with normal subjects and patients with scleroderma. Int. J. Dermatol. 2016, 55, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Zilahi, E.; Adamecz, Z.; Bodoki, L.; Griger, Z.; Póliska, S.; Nagy-Vincze, M.; Dankó, K. Dysregulated expression profile of myomiRs in the skeletal muscle of patients with polymyositis. Ejifcc 2019, 30, 237–245. [Google Scholar]
- Parkes, J.E.; Thoma, A.; Lightfoot, A.P.; Day, P.J.; Chinoy, H.; Lamb, J.A. MicroRNA and mRNA profiling in the idiopathic inflammatory myopathies. BMC Rheumatol. 2020, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Li, X.; Zhang, H.; Wu, J.; Ma, G.; Zhang, B.; Gao, J.; Ding, Y.; Huang, Y.; Xia, K.; et al. MiR-192-5p Alleviated Fibrosis and Inflammatory Responses of Tendon Cells by Targeting NFAT5. Comput. Math. Methods Med. 2022, 2022, 6481846. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.J.; Yao, Y.; Cai, X.Y.; Fang, G.Y. Emerging Role of MiR-192-5p in Human Diseases. Front. Pharmacol. 2021, 12, 614068. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Zhang, J.; Zhang, J.; Miao, Q.; Yao, L.; Zhang, J. Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Lett. 2015, 357, 196–205. [Google Scholar] [CrossRef]
- Xie, X.; Huang, N.; Zhang, Y.; Wei, X.; Gao, M.; Li, M.; Ning, J.; Liu, W.; Zhao, Q.; Wang, H.; et al. MiR-192-5p reverses cisplatin resistance by targeting ERCC3 and ERCC4 in SGC7901/DDP cells. J. Cancer 2019, 10, 1039–1051. [Google Scholar] [CrossRef] [Green Version]
- Fang, R.; Zhu, Y.; Hu, L.; Khadka, V.S.; Ai, J.; Zou, H.; Ju, D.; Jiang, B.; Deng, Y.; Hu, X. Plasma MicroRNA Pair Panels as Novel Biomarkers for Detection of Early Stage Breast Cancer. Front. Physiol. 2018, 9, 1879. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Huang, Y.; Li, W.; Wang, Z.; Zhan, S.; Zhou, M.; Yao, Y.; Zeng, Z.; Hou, Y.; Chen, Q.; et al. Post-transcriptional regulation of cardiac sodium channel gene SCN5A expression and function by miR-192-5p. Biochim. Et Biophys. Acta 2015, 1852, 2024–2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunez Lopez, Y.O.; Retnakaran, R.; Zinman, B.; Pratley, R.E.; Seyhan, A.A. Predicting and understanding the response to short-term intensive insulin therapy in people with early type 2 diabetes. Mol. Metab. 2019, 20, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Caserta, S.; Kern, F.; Cohen, J.; Drage, S.; Newbury, S.F.; Llewelyn, M.J. Circulating Plasma microRNAs can differentiate Human Sepsis and Systemic Inflammatory Response Syndrome (SIRS). Sci. Rep. 2016, 6, 28006. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Wang, Y.; Kudo, K.; Gavin, E.J.; Xi, Y.; Ju, J. miR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 8080–8086. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Kang, Y.; Wang, H.Y.; Guan, W.J.; Li, X.C.; Jiang, L.; He, X.H.; Pu, Y.B.; Han, J.L.; Ma, Y.H.; et al. Expression profiling and functional characterization of miR-192 throughout sheep skeletal muscle development. Sci. Rep. 2016, 6, 30281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puppo, M.; Bucci, G.; Rossi, M.; Giovarelli, M.; Bordo, D.; Moshiri, A.; Gorlero, F.; Gherzi, R.; Briata, P. miRNA-Mediated KHSRP Silencing Rewires Distinct Post-transcriptional Programs during TGF-β-Induced Epithelial-to-Mesenchymal Transition. Cell Rep. 2016, 16, 967–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasero, M.; Giovarelli, M.; Bucci, G.; Gherzi, R.; Briata, P. Bone morphogenetic protein/SMAD signaling orients cell fate decision by impairing KSRP-dependent microRNA maturation. Cell Rep. 2012, 2, 1159–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massagué, J.; Cheifetz, S.; Endo, T.; Nadal-Ginard, B. Type beta transforming growth factor is an inhibitor of myogenic differentiation. Proc. Natl. Acad. Sci. USA 1986, 83, 8206–8210. [Google Scholar] [CrossRef]
- Liu, D.; Black, B.L.; Derynck, R. TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev. 2001, 15, 2950–2966. [Google Scholar] [CrossRef] [Green Version]
- Azmi, S.; Ozog, A.; Taneja, R. Sharp-1/DEC2 inhibits skeletal muscle differentiation through repression of myogenic transcription factors. J. Biol. Chem. 2004, 279, 52643–52652. [Google Scholar] [CrossRef] [Green Version]
- Morosetti, R.; Mirabella, M.; Gliubizzi, C.; Broccolini, A.; De Angelis, L.; Tagliafico, E.; Sampaolesi, M.; Gidaro, T.; Papacci, M.; Roncaglia, E.; et al. MyoD expression restores defective myogenic differentiation of human mesoangioblasts from inclusion-body myositis muscle. Proc. Natl. Acad. Sci. USA 2006, 103, 16995–17000. [Google Scholar] [CrossRef] [PubMed]
- Noda, S.; Koike, H.; Maeshima, S.; Nakanishi, H.; Iijima, M.; Matsuo, K.; Kimura, S.; Katsuno, M.; Sobue, G. Transforming growth factor-β signaling is upregulated in sporadic inclusion body myositis. Muscle Nerve 2017, 55, 741–747. [Google Scholar] [CrossRef]
- Liang, H.; Gong, F.; Zhang, S.; Zhang, C.Y.; Zen, K.; Chen, X. The origin, function, and diagnostic potential of extracellular microRNAs in human body fluids. Wiley Interdiscip. Rev. RNA 2014, 5, 285–300. [Google Scholar] [CrossRef]
- Liu, Y.; Shang, Y.; Yan, Z.; Li, H.; Wang, Z.; Liu, Z.; Li, Z. Pim1 kinase positively regulates myoblast behaviors and skeletal muscle regeneration. Cell Death Dis. 2019, 10, 773. [Google Scholar] [CrossRef] [Green Version]
- Di Filippo, E.S.; Costamagna, D.; Giacomazzi, G.; Cortés-Calabuig, Á.; Stryjewska, A.; Huylebroeck, D.; Fulle, S.; Sampaolesi, M. Zeb2 Regulates Myogenic Differentiation in Pluripotent Stem Cells. Int. J. Mol. Sci. 2020, 21, 2525. [Google Scholar] [CrossRef] [Green Version]
- Stryjewska, A.; Dries, R.; Pieters, T.; Verstappen, G.; Conidi, A.; Coddens, K.; Francis, A.; Umans, L.; van Ijcken, W.F.; Berx, G.; et al. Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells. Stem Cells 2017, 35, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Suh, M.R.; Lee, Y.; Kim, J.Y.; Kim, S.K.; Moon, S.H.; Lee, J.Y.; Cha, K.Y.; Chung, H.M.; Yoon, H.S.; Moon, S.Y.; et al. Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 2004, 270, 488–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Judson, R.L.; Babiarz, J.E.; Venere, M.; Blelloch, R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat. Biotechnol. 2009, 27, 459–461. [Google Scholar] [CrossRef] [Green Version]
- Subramanyam, D.; Lamouille, S.; Judson, R.L.; Liu, J.Y.; Bucay, N.; Derynck, R.; Blelloch, R. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat. Biotechnol. 2011, 29, 443–448. [Google Scholar] [CrossRef]
- Peng, H.; Pan, X.; Su, Q.; Zhu, L.S.; Ma, G.D. MiR-372-3p promotes tumor progression by targeting LATS2 in colorectal cancer. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8332–8344. [Google Scholar] [CrossRef]
- Lin, Z.; Lu, Y.; Meng, Q.; Wang, C.; Li, X.; Yang, Y.; Xin, X.; Zheng, Q.; Xu, J.; Gui, X.; et al. miR372 Promotes Progression of Liver Cancer Cells by Upregulating erbB-2 through Enhancement of YB-1. Mol. Ther. Nucleic Acids 2018, 11, 494–507. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Wang, Y.; Lu, X.; He, H.; Liu, H.; Meng, X.; Xia, S.; Zheng, K.; Liu, B. Low mir-372 expression correlates with poor prognosis and tumor metastasis in hepatocellular carcinoma. BMC Cancer 2015, 15, 182. [Google Scholar] [CrossRef] [Green Version]
- Ullmann, P.; Rodriguez, F.; Schmitz, M.; Meurer, S.K.; Qureshi-Baig, K.; Felten, P.; Ginolhac, A.; Antunes, L.; Frasquilho, S.; Zügel, N.; et al. The miR-371~373 Cluster Represses Colon Cancer Initiation and Metastatic Colonization by Inhibiting the TGFBR2/ID1 Signaling Axis. Cancer Res. 2018, 78, 3793–3808. [Google Scholar] [CrossRef] [Green Version]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, M.P.; Ismail, N.; Zhang, X.; Aguda, B.D.; Lee, E.J.; Yu, L.; Xiao, T.; Schafer, J.; Lee, M.L.; Schmittgen, T.D.; et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 2008, 3, e3694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morosetti, R.; Broccolini, A.; Sancricca, C.; Gliubizzi, C.; Gidaro, T.; Tonali, P.A.; Ricci, E.; Mirabella, M. Increased aging in primary muscle cultures of sporadic inclusion-body myositis. Neurobiol. Aging 2010, 31, 1205–1214. [Google Scholar] [CrossRef]
- Rose, M.R. In Proceedings of the 188th ENMC International Workshop: Inclusion Body Myositis, Naarden, The Netherlands, 2–4 December 2011. Neuromuscul. Disord. NMD 2013, 23, 1044–1055. [Google Scholar] [CrossRef]
- Mestdagh, P.; Van Vlierberghe, P.; De Weer, A.; Muth, D.; Westermann, F.; Speleman, F.; Vandesompele, J. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009, 10, R64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, Research0034. [Google Scholar] [CrossRef] [Green Version]
- Kern, F.; Aparicio-Puerta, E.; Li, Y.; Fehlmann, T.; Kehl, T.; Wagner, V.; Ray, K.; Ludwig, N.; Lenhof, H.P.; Meese, E.; et al. miRTargetLink 2.0-interactive miRNA target gene and target pathway networks. Nucleic Acids Res. 2021, 49, W409–W416. [Google Scholar] [CrossRef]
s-IBM Group n = 14 | Control Group n = 8 | p Value | |
---|---|---|---|
Male sex, n (%) | 7 (50.0) | 5 (62.5) | 0.571 * |
Age (years) | 64.6 (8.9) | 63.9 (8.4) | 0.859 # |
Disease duration (years) | 1.0 (0.7) | NA | NA |
Creatinkinase levels (UI/L) | 721.1 (771.1) | NA | NA |
microRNA | Target | Reference/PMID |
---|---|---|
hsa-miR-192-5p | ALCAM | 21119604 |
BCL2 | 19074876, 26550150 | |
CDC7 | 19074876 | |
CUL5 | 19074876 | |
DLG5 | 19074876 | |
DTL | 19074876 | |
ERCC3 | 19074876, 21672525 | |
HOXA10 | 19074876 | |
HRH1 | 19074876 | |
LMNB2 | 19074876 | |
MAD2L1 | 19074876 | |
MCM10 | 19074876 | |
MIS12 | 19074876 | |
KIF20B | 19074876 | |
PIM1 | 19074876 | |
PRPF38A | 19074876 | |
RACGAP1 | 19074876 | |
10-Sep | 19074876 | |
SMARCB1 | 19074876 | |
TRAPPC2B | 18835392 | |
WNK1 | 20813867 | |
ACVR2B | 22431721 | |
RB1 | 21511813, 24012720 | |
ERCC4 | 21672525 | |
ATP1B1 | 23221637 | |
XIAP | 25444916 | |
NOB1 | 26743688 | |
ITGB1 | 26506238 | |
ITGAV | 26506238 | |
DHFR | 26506238 | |
ESR1 | 27304060 | |
DICER1 | 24223844 | |
CAV1 | 24623846 | |
SCN5A | 26209011 | |
NID1 | 25857602 | |
BMI1 | 26717043 | |
ITGB3 | 26506238 | |
AKT1 | 26351877 | |
H3F3A | 28217257 | |
CD47 | 26506238 | |
SERPINE1 | 27216198 | |
hsa-miR-372-3p | TRPS1 | 19229866 |
MBNL2 | 19229866 | |
KLF13 | 19229866 | |
CDKN1A | 18212054, 20190813 | |
LATS2 | 18155131, 20216554, 16564011, 22027184, 19937137 | |
ERBB4 | 19885849 | |
NR4A2 | 19885849 | |
VEGFA | 18320040 | |
TGFBR2 | 21490602, 22020335 | |
RHOC | 21490602 | |
NFIB | 21608007 | |
CDK2 | 21646351, 23479742 | |
CCNA1 | 21646351 | |
DKK1 | 22020335 | |
BTG1 | 22020335 | |
LEFTY1 | 22020335 | |
ATAD2 | 24552534 | |
TNFAIP1 | 23242208 | |
PHLPP2 | 25160587 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucchini, M.; De Arcangelis, V.; Santoro, M.; Morosetti, R.; Broccolini, A.; Mirabella, M. Serum-Circulating microRNAs in Sporadic Inclusion Body Myositis. Int. J. Mol. Sci. 2023, 24, 11139. https://doi.org/10.3390/ijms241311139
Lucchini M, De Arcangelis V, Santoro M, Morosetti R, Broccolini A, Mirabella M. Serum-Circulating microRNAs in Sporadic Inclusion Body Myositis. International Journal of Molecular Sciences. 2023; 24(13):11139. https://doi.org/10.3390/ijms241311139
Chicago/Turabian StyleLucchini, Matteo, Valeria De Arcangelis, Massimo Santoro, Roberta Morosetti, Aldobrando Broccolini, and Massimiliano Mirabella. 2023. "Serum-Circulating microRNAs in Sporadic Inclusion Body Myositis" International Journal of Molecular Sciences 24, no. 13: 11139. https://doi.org/10.3390/ijms241311139
APA StyleLucchini, M., De Arcangelis, V., Santoro, M., Morosetti, R., Broccolini, A., & Mirabella, M. (2023). Serum-Circulating microRNAs in Sporadic Inclusion Body Myositis. International Journal of Molecular Sciences, 24(13), 11139. https://doi.org/10.3390/ijms241311139