Endothelial Function in Patients with Multiple Sclerosis: The Role of GLP-1 Agonists, Lipoprotein Subfractions, and Redox Balance
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. A Study Population
4.2. Evaluation of Endothelial Function
4.3. Lipoprotein Levels
4.4. Assessment of Antioxidant Capacity
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MS | Multiple sclerosis |
CNS | Central nervous system |
ROS | Reactive oxygen species |
GLP-1 | Glucagon like peptide 1 |
GLP-1as | Glucagon like peptide 1 agonists |
GLP-1R | Glucagon like peptide 1 receptor |
EDSS | Expanded Disability Status Scale |
RHI | Reperfusion hyperemia index |
IMT | Intima-media complex |
cAMP | Cyclic adenosine triphosphate |
PI3K | Phosphoinositide 3-kinase |
PKA, PKC | Protein kinase A, C |
Nrf2-ARE | Nuclear factor erythroid-related factor 2 |
NAD(P)H | Nicotinamide adenine dinucleotide phosphate |
MKK4/MKK7 | Mitogen-activated protein kinase kinase 4/7 |
JNK | c-Jun N-terminal kinase |
NO synthase | Nitric oxide synthase |
References
- Rostami, A.; Ciric, B. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J. Neurol. Sci. 2013, 333, 76–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penesova, A.; Vlcek, M.; Imrich, R.; Vernerova, L.; Marko, A.; Meskova, M.; Grunnerova, L.; Turcani, P.; Jezova, D.; Kollar, B. Hyperinsulinemia in newly diagnosed patients with multiple sclerosis. Metab. Brain Dis. 2015, 30, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Penesová, A.; Dean, Z.; Kollár, B.; Havranová, A.; Imrich, R.; Vlček, M.; Rádiková, Ž. Nutritional intervention as an essential part of multiple sclerosis treatment? Physiol. Res. 2018, 67, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Penesova, A.; Rovensky, J.; Zlnay, M.; Dedik, L.; Radikova, Z.; Koska, J.; Vigas, M.; Imrich, R. Attenuated insulin response and normal insulin sensitivity in lean patients with ankylosing spondylitis. Int. J. Clin. Pharmacol. Res. 2005, 25, 107–114. [Google Scholar] [PubMed]
- Sivakova, M.; Siarnik, P.; Filippi, P.; Vlcek, M.; Imrich, R.; Turcani, P.; Zitnanova, I.; Penesova, A.; Radikova, Z.; Kollar, B. Oxidative stress in patients with newly diagnosed multiple sclerosis: Any association with subclinical atherosclerosis? Neuroendocrinol. Lett. 2019, 40, 135–140. [Google Scholar]
- Vlcek, M.; Penesova, A.; Imrich, R.; Meskova, M.; Mravcova, M.; Grunnerova, L.; Garafova, A.; Sivakova, M.; Turcani, P.; Kollar, B.; et al. Autonomic Nervous System Response to Stressors in Newly Diagnosed Patients with Multiple Sclerosis. Cell. Mol. Neurobiol. 2018, 38, 363–370. [Google Scholar] [CrossRef]
- Prokopova, B.; Hlavacova, N.; Vlcek, M.; Penesova, A.; Grunnerova, L.; Garafova, A.; Turcani, P.; Kollar, B.; Jezova, D. Early cognitive impairment along with decreased stress-induced BDNF in male and female patients with newly diagnosed multiple sclerosis. J. Neuroimmunol. 2017, 302, 34–40. [Google Scholar] [CrossRef]
- Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1066–1077. [Google Scholar] [CrossRef]
- Minagar, A.; Jy, W.; Jimenez, J.J.; Sheremata, W.A.; Mauro, L.M.; Mao, W.W.; Horstman, L.L.; Ahn, Y.S. Elevated plasma endothelial microparticles in multiple sclerosis. Neurology 2001, 56, 1319–1324. [Google Scholar] [CrossRef]
- Keményová, P.; Siarnik, P.; Sutovský, S.; Blaho, A.; Turcáni, P.; Kollár, B. Impairment of endothelial function in patients with multiple sclerosis. Neuroendocrinol. Lett. 2015, 36, 67–71. [Google Scholar]
- Siarnik, P.; Carnicka, Z.; Krizova, L.; Wagnerova, H.; Sutovsky, S.; Klobucnikova, K.; Kollar, B.; Turcani, P.; Sykora, M. Predictors of impaired endothelial function in obstructive sleep apnea syndrome. Neuroendocrinol. Lett. 2014, 35, 142–148. [Google Scholar] [PubMed]
- Marrie, R.A.; Reider, N.; Cohen, J.; Stuve, O.; Trojano, M.; Cutter, G.; Reingold, S.; Sorensen, P.S. A systematic review of the incidence and prevalence of cardiac, cerebrovascular, and peripheral vascular disease in multiple sclerosis. Mult. Scler. 2015, 21, 318–331. [Google Scholar] [CrossRef] [PubMed]
- Rádiková, Ž.; Penesová, A.; Vlček, M.; Havranová, A.; Siváková, M.; Šiarnik, P.; Žitňanová, I.; Imrich, R.; Turčáni, P.; Kollár, B. Lipoprotein profiling in early multiple sclerosis patients: Effect of chronic inflammation? Lipids Health Dis. 2020, 19, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radikova, Z.; Penesova, A.; Vlcek, M.; Havranova, A.; Sivakova, M.; Siarnik, P.; Zitnanova, I.; Imrich, R.; Kollar, B.; Turcani, P. LDL and HDL lipoprotein subfractions in multiple sclerosis patients with decreased insulin sensitivity. Endocr. Regul. 2018, 52, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, C.F.; Christensen, S.; Farkas, D.K.; Miret, M.; Sørensen, H.T.; Pedersen, L. Risk of arterial cardiovascular diseases in patients with multiple sclerosis: A population-based cohort study. Neuroepidemiology 2010, 35, 267–274. [Google Scholar] [CrossRef]
- Correale, M.; Lamacchia, O.; Ciccarelli, M.; Dattilo, G.; Tricarico, L.; Brunetti, N.D. Vascular and metabolic effects of SGLT2i and GLP-1 in heart failure patients. Heart Fail. Rev. 2021, 28, 733–744. [Google Scholar] [CrossRef]
- Gault, V.A.; Hölscher, C. GLP-1 receptor agonists show neuroprotective effects in animal models of diabetes. Peptides 2018, 100, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Hölscher, C. Central effects of GLP-1: New opportunities for treatments of neurodegenerative diseases. J. Endocrinol. 2014, 221, T31–T41. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Kim, E.H.; Jung, H.S.; Yang, D.; Park, E.Y.; Jun, H.S. EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage. Toxicol. Appl. Pharmacol. 2017, 315, 60–69. [Google Scholar] [CrossRef]
- Breder, I.; Cunha Breder, J.; Bonilha, I.; Munhoz, D.B.; Medorima, S.T.K.; Oliveira, D.C.; do Carmo, H.R.; Moreira, C.; Kontush, A.; Zimetti, F.; et al. Rationale and design of the expanded combination of evolocumab plus empagliflozin in diabetes: EXCEED-BHS3 trial. Ther. Adv. Chronic Dis. 2020, 11, 2040622320959248. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Pfeiffer, A.F.H. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes. Metab. 2021, 23 (Suppl. S3), 5–29. [Google Scholar] [CrossRef]
- Nauck, M.A.; Meier, J.J.; Cavender, M.A.; Abd El Aziz, M.; Drucker, D.J. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Circulation 2017, 136, 849–870. [Google Scholar] [CrossRef]
- Rizzo, M.; Chandalia, M.; Patti, A.M.; Di Bartolo, V.; Rizvi, A.A.; Montalto, G.; Abate, N. Liraglutide decreases carotid intima-media thickness in patients with type 2 diabetes: 8-month prospective pilot study. Cardiovasc. Diabetol. 2014, 13, 49. [Google Scholar] [CrossRef] [Green Version]
- Jorsal, A.; Kistorp, C.; Holmager, P.; Tougaard, R.S.; Nielsen, R.; Hänselmann, A.; Nilsson, B.; Møller, J.E.; Hjort, J.; Rasmussen, J.; et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur. J. Heart Fail. 2017, 19, 69–77. [Google Scholar] [CrossRef]
- Marso, S.P.; Holst, A.G.; Vilsbøll, T. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2017, 376, 891–892. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Jun, H.S. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control. Mediat. Inflamm. 2016, 2016, 3094642. [Google Scholar] [CrossRef] [Green Version]
- Honigberg, M.C.; Chang, L.S.; McGuire, D.K.; Plutzky, J.; Aroda, V.R.; Vaduganathan, M. Use of Glucagon-Like Peptide-1 Receptor Agonists in Patients With Type 2 Diabetes and Cardiovascular Disease: A Review. JAMA Cardiol. 2020, 5, 1182–1190. [Google Scholar] [CrossRef]
- Wei, R.; Ma, S.; Wang, C.; Ke, J.; Yang, J.; Li, W.; Liu, Y.; Hou, W.; Feng, X.; Wang, G.; et al. Exenatide exerts direct protective effects on endothelial cells through the AMPK/Akt/eNOS pathway in a GLP-1 receptor-dependent manner. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E947–E957. [Google Scholar] [CrossRef] [Green Version]
- Feingold, K.R. Introduction to Lipids and Lipoproteins. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Oravec, S.; Dostal, E.; Dukát, A.; Gavorník, P.; Kucera, M.; Gruber, K. HDL subfractions analysis: A new laboratory diagnostic assay for patients with cardiovascular diseases and dyslipoproteinemia. Neuroendocrinol. Lett. 2011, 32, 502–509. [Google Scholar]
- Kollar, B.; Siarnik, P.; Hluchanova, A.; Klobucnikova, K.; Mucska, I.; Turcani, P.; Paduchova, Z.; Katrencikova, B.; Janubova, M.; Konarikova, K.; et al. The impact of sleep apnea syndrome on the altered lipid metabolism and the redox balance. Lipids Health Dis. 2021, 20, 175. [Google Scholar] [CrossRef] [PubMed]
- Hluchanova, A.; Kollar, B.; Klobucnikova, K.; Hardonova, M.; Poddany, M.; Zitnanova, I.; Dvorakova, M.; Konarikova, K.; Tedla, M.; Urik, M.; et al. Lipoprotein Subfractions Associated with Endothelial Function in Previously Healthy Subjects with Newly Diagnosed Sleep Apnea-A Pilot Study. Life 2023, 13, 441. [Google Scholar] [CrossRef] [PubMed]
- Šiarnik, P.; Čarnická, Z.; Krivošíková, Z.; Klobučníková, K.; Žitňanová, I.; Kollár, B.; Sýkora, M.; Turčáni, P. Association of lipoprotein subfractions with endothelial function and arterial stiffness in acute ischemic stroke. Scand. J. Clin. Lab. Investig. 2017, 77, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Margulies, K.B.; Hernandez, A.F.; Redfield, M.M.; Givertz, M.M.; Oliveira, G.H.; Cole, R.; Mann, D.L.; Whellan, D.J.; Kiernan, M.S.; Felker, G.M.; et al. Effects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA 2016, 316, 500–508. [Google Scholar] [CrossRef]
- Balestrieri, M.L.; Rizzo, M.R.; Barbieri, M.; Paolisso, P.; D’Onofrio, N.; Giovane, A.; Siniscalchi, M.; Minicucci, F.; Sardu, C.; D’Andrea, D.; et al. Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: Effects of incretin treatment. Diabetes 2015, 64, 1395–1406. [Google Scholar] [CrossRef] [Green Version]
- Sposito, A.C.; Berwanger, O.; de Carvalho, L.S.F.; Saraiva, J.F.K. GLP-1RAs in type 2 diabetes: Mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc. Diabetol. 2018, 17, 157. [Google Scholar] [CrossRef]
- Oh, Y.S.; Jun, H.S. Effects of Glucagon-Like Peptide-1 on Oxidative Stress and Nrf2 Signaling. Int. J. Mol. Sci. 2017, 19, 26. [Google Scholar] [CrossRef] [Green Version]
- Silva-Palacios, A.; Königsberg, M.; Zazueta, C. Nrf2 signaling and redox homeostasis in the aging heart: A potential target to prevent cardiovascular diseases? Ageing Res. Rev. 2016, 26, 81–95. [Google Scholar] [CrossRef]
- Li, J.; Ichikawa, T.; Villacorta, L.; Janicki, J.S.; Brower, G.L.; Yamamoto, M.; Cui, T. Nrf2 protects against maladaptive cardiac responses to hemodynamic stress. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1843–1850. [Google Scholar] [CrossRef]
- Laviola, L.; Leonardini, A.; Melchiorre, M.; Orlando, M.R.; Peschechera, A.; Bortone, A.; Paparella, D.; Natalicchio, A.; Perrini, S.; Giorgino, F. Glucagon-like peptide-1 counteracts oxidative stress-dependent apoptosis of human cardiac progenitor cells by inhibiting the activation of the c-Jun N-terminal protein kinase signaling pathway. Endocrinology 2012, 153, 5770–5781. [Google Scholar] [CrossRef] [Green Version]
- Axtell, A.L.; Gomari, F.A.; Cooke, J.P. Assessing endothelial vasodilator function with the Endo-PAT 2000. J. Vis. Exp. 2010, 44, e2167. [Google Scholar] [CrossRef] [Green Version]
- Hoefner, D.M.; Hodel, S.D.; O’Brien, J.F.; Branum, E.L.; Sun, D.; Meissner, I.; McConnell, J.P. Development of a rapid, quantitative method for LDL subfractionation with use of the Quantimetrix Lipoprint LDL System. Clin. Chem. 2001, 47, 266–274. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Baseline | Follow-Up | |||||
---|---|---|---|---|---|---|
GLP-1a Group | Control Group | p | GLP-1a Group | Control Group | p | |
Age (years) | 44.9 ± 7.7 | 35.8 ± 5.4 | 0.002 ** | 45.9 ± 7.7 | 36.8 ± 5.4 | 0.002 ** |
Female/male | 6/7 (46.2/53.8%) | 6/6 (50/50%) | 0.848 | 6/7 (46.2/53.8%) | 6/6 (50/50%) | 0.848 |
Disease duration (months) | 144.0 ± 44.6 | 136.0 ± 40.1 | 0.643 | 156.0 ± 44.6 | 148.0 ± 40.1 | 0.643 |
EDSS | 4.0, 2.25 (1.0–4.5) | 1.5, 3.5 (0–4.5) | 0.077 | 4.0, 2.25 (1.0–4.5) | 1.5, 3.5 (0–4.5) | 0.077 |
BMI (kg/m2) | 27.8 ± 5.1 | 23.9 ± 3.9 | 0.040 * | 27.1 ± 4.8 | 24.3 ± 4.2 | 0.135 |
Arterial hypertension | 2 (15.4%) | 0 (0%) | 0.157 | 2 (15.4%) | 0 (0%) | 0.157 |
Statin use | 1 (7.7%) | 0 (0%) | 0.327 | 1 (7.7%) | 0 (0%) | 0.327 |
Smoking | 2 (15.4%) | 1 (8.3%) | 0.588 | 2 (15.4%) | 1 (8.3%) | 0.588 |
GLP-1a Group | Control Group | p | |
---|---|---|---|
BMI (kg/m2) | 27.8 ± 5.1 | 23.9 ± 3.9 | 0.040 * |
RHI | 2.1 ± 0.6 | 2.1 ± 0.5 | 0.792 |
TC (mg/dL) | 200.6 ± 39.7 | 168.5 ± 29.2 | 0.032 * |
LDL (mg/dL) | 112.3 ± 34.3 | 84.2 ± 16.6 | 0.017 * |
HDL (mg/dL) | 53.2 ± 11.9 | 53.3 ± 16.6 | 0.986 |
VLDL (mg/dL) | 34.9 ± 10.3 | 30.8 ± 10.2 | 0.329 |
IDL (mg/dL) | 45.8 ± 11.9 | 37.8 ± 8.5 | 0.067 |
Small LDL (mg/dL) | 1.0, 5.0 (0–27.0) | 0, 2.0 (0–4.0) | 0.376 |
Large LDL (mg/dL) | 58.0, 30.0 (31.0–104.0) | 45.0, 18.5 (26.0–66.0) | 0.035 * |
Small HDL (mg/dL) | 8.0, 6.0 (0.0–14.0) | 6.5, 4.0 (4.0–10.0) | 0.376 |
Intermediate HDL (mg/dL) | 29.0, 9.0 (22.0–42.0) | 29.8, 8.0 (24.0–44.0) | 0.574 |
Large HDL (mg/dL) | 13.0, 15.0 (5.0–25.0) | 12.5, 19.0 (5.0–37.0) | 0.769 |
TEAC (mmol/L) | 4.1 ± 1.4 | 4.3 ± 1.4 | 0.704 |
GLP-1a Group | Control Group | p | |
---|---|---|---|
BMI (kg/m2) | 27.1 ± 4.8 | 24.3 ± 4.2 | 0.135 |
RHI | 2.1 ± 0.7 | 1.8 ± 0.6 | 0.166 |
TC (mg/dL) | 184.8 ± 22.3 | 157.7 ± 23.5 | 0.007 ** |
LDL (mg/dL) | 103.0 ± 18.4 | 84.3 ± 19.2 | 0.020 * |
HDL (mg/dL) | 52.5 ± 11.1 | 50.6 ± 14.5 | 0.707 |
VLDL (mg/dL) | 29.2 ± 11.9 | 22.6 ± 8.3 | 0.130 |
IDL (mg/dL) | 43.4 ± 14.5 | 34.6 ± 6.6 | 0.068 |
Small LDL (mg/dL) | 0, 1.5 (0–12.0) | 2.0, 3.5 (0–15.0) | 0.168 |
Large LDL (mg/dL) | 59.0, 16.0 (44.0–79.0) | 44.5, 20.0 (26.0–77.0) | 0.040 * |
Small HDL (mg/dL) | 8.0, 6.0 (5.0–19.0) | 7.0, 4.0 (2.0–11.0) | 0.728 |
Intermediate HDL (mg/dL) | 28.0, 6.0 (18.0–40.0) | 29.0, 11.0 (18.0–37.0) | 0.894 |
Large HDL (mg/dL) | 16.0, 11.0 (6.0–28.0) | 13.0, 15.0 (3.0–35.0) | 0.810 |
TEAC (mmol/L) | 5.2 ± 0.5 | 4.7 ± 1.2 | 0.172 |
Baseline | Follow-Up | p | |
---|---|---|---|
BMI (kg/m2) | 27.8 ± 5.1 | 27.1 ± 4.8 | 0.705 |
RHI | 2.1 ± 0.6 | 2.1 ± 0.7 | 0.807 |
TC (mg/dL) | 200.6 ± 39.7 | 184.8 ± 22.3 | 0.224 |
LDL (mg/dL) | 112.3 ± 34.3 | 103.0 ± 18.4 | 0.397 |
HDL (mg/dL) | 53.2 ± 11.9 | 52.5 ± 11.1 | 0.879 |
VLDL (mg/dL) | 34.9 ± 10.3 | 29.2 ± 11.9 | 0.197 |
IDL (mg/dL) | 45.8 ± 11.9 | 43.4 ± 14.5 | 0.641 |
Small LDL (mg/dL) | 1.0, 5.0 (0–27.0) | 0, 1.5 (0–12.0) | 0.362 |
Large LDL (mg/dL) | 58.0, 30.0 (31.0–104.0) | 59.0, 16.0 (44.0–79.0) | 0.762 |
Small HDL (mg/dL) | 8.0, 6.0 (0.0–14.0) | 8.0, 6.0 (5.0–19.0) | 0.840 |
Intermediate HDL (mg/dL) | 29.0, 9.0 (22.0–42.0) | 28.0, 6.0 (18.0–40.0) | 0.448 |
Large HDL (mg/dL) | 13.0, 15.0 (5.0–25.0) | 16.0, 11.0 (6.0–28.0) | 0.920 |
TEAC (mmol/L) | 4.1 ± 1.4 | 5.2 ± 0.5 | 0.010 * |
Baseline | Follow-Up | p | |
---|---|---|---|
BMI (kg/m2) | 23.9 ± 3.9 | 24.3 ± 4.2 | 0.795 |
RHI | 2.1 ± 0.5 | 1.8 ± 0.6 | 0.030 * |
TC (mg/dL) | 168.5 ± 29.2 | 157.7 ± 23.5 | 0.332 |
LDL (mg/dL) | 84.2 ± 16.6 | 84.3 ± 19.2 | 0.991 |
HDL (mg/dL) | 53.3 ± 16.6 | 50.6 ± 14.5 | 0.669 |
VLDL (mg/dL) | 30.8 ± 10.2 | 22.6 ± 8.3 | 0.043 * |
IDL (mg/dL) | 37.8 ± 8.5 | 34.6 ± 6.6 | 0.306 |
Small LDL (mg/dL) | 0, 2.0 (0–4.0) | 2.0, 3.5 (0–15.0) | 0.178 |
Large LDL (mg/dL) | 45.0, 18.5 (26.0–66.0) | 44.5, 20.0 (26.0–77.0) | 0.843 |
Small HDL (mg/dL) | 6.5, 4.0 (4.0–10.0) | 7.0, 4.0 (2.0–11.0) | 0.443 |
Intermediate HDL (mg/dL) | 29.8, 8.0 (24.0–44.0) | 29.0, 11.0 (18.0–37.0) | 0.671 |
Large HDL (mg/dL) | 12.5, 19.0 (5.0–37.0) | 13.0, 15.0 (3.0–35.0) | 0.887 |
TEAC (mmol/L) | 4.3 ± 1.4 | 4.7 ± 1.2 | 0.441 |
All Subjects | GLP-1a Group | Control Group | ||||
---|---|---|---|---|---|---|
Linear Regression | Linear Regression | Linear Regression | ||||
beta | p | beta | p | beta | p | |
BMI (kg/m2) | −0.091 | 0.598 | 0.021 | 0.941 | 0.002 | 0.995 |
TC | 0.156 | 0.405 | −0.103 | 0.702 | 0.125 | 0.657 |
LDL | 0.074 | 0.687 | 0.050 | 0.949 | 0.119 | 0.706 |
HDL | 0.181 | 0.300 | 0.585 | 0.036 * | 0.085 | 0.766 |
VLDL | −0.637 | 0.001 * | −0.373 | 0.214 | −0.621 | 0.031 * |
IDL | 0.020 | 0.912 | 0.007 | 0.981 | 0.116 | 0.677 |
Small LDL | 0.339 | 0.043 * | 0.073 | 0.782 | 0.262 | 0.343 |
Large LDL | 0.083 | 0.657 | 0.050 | 0.867 | −0.036 | 0.920 |
Small HDL | 0.167 | 0.389 | −0.010 | 0.969 | 0.121 | 0.655 |
Intermediate HDL | 0.220 | 0.180 | 0.136 | 0.816 | 0.137 | 0.612 |
Large HDL | 0.073 | 0.705 | −0.045 | 0.912 | −0.006 | 0.986 |
TEAC | 0.175 | 0.310 | 0.338 | 0.187 | 0.143 | 0.604 |
GLP-1a use | 0.560 | 0.003 * | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hardonova, M.; Siarnik, P.; Sivakova, M.; Sucha, B.; Penesova, A.; Radikova, Z.; Havranova, A.; Imrich, R.; Vlcek, M.; Zitnanova, I.; et al. Endothelial Function in Patients with Multiple Sclerosis: The Role of GLP-1 Agonists, Lipoprotein Subfractions, and Redox Balance. Int. J. Mol. Sci. 2023, 24, 11162. https://doi.org/10.3390/ijms241311162
Hardonova M, Siarnik P, Sivakova M, Sucha B, Penesova A, Radikova Z, Havranova A, Imrich R, Vlcek M, Zitnanova I, et al. Endothelial Function in Patients with Multiple Sclerosis: The Role of GLP-1 Agonists, Lipoprotein Subfractions, and Redox Balance. International Journal of Molecular Sciences. 2023; 24(13):11162. https://doi.org/10.3390/ijms241311162
Chicago/Turabian StyleHardonova, Miroslava, Pavel Siarnik, Monika Sivakova, Bianka Sucha, Adela Penesova, Zofia Radikova, Andrea Havranova, Richard Imrich, Miroslav Vlcek, Ingrid Zitnanova, and et al. 2023. "Endothelial Function in Patients with Multiple Sclerosis: The Role of GLP-1 Agonists, Lipoprotein Subfractions, and Redox Balance" International Journal of Molecular Sciences 24, no. 13: 11162. https://doi.org/10.3390/ijms241311162
APA StyleHardonova, M., Siarnik, P., Sivakova, M., Sucha, B., Penesova, A., Radikova, Z., Havranova, A., Imrich, R., Vlcek, M., Zitnanova, I., Krastev, G., Kiacikova, M., Kollar, B., & Turcani, P. (2023). Endothelial Function in Patients with Multiple Sclerosis: The Role of GLP-1 Agonists, Lipoprotein Subfractions, and Redox Balance. International Journal of Molecular Sciences, 24(13), 11162. https://doi.org/10.3390/ijms241311162