Aprotinin—Drug against Respiratory Diseases
Abstract
:1. Introduction
1.1. APR Inhibitory Activity
1.2. Adverse Effects of APR
2. Antiviral Treatment of Influenza
2.1. The Structure IAV, Function of Its Proteins, and HA Cleavage of IVs
2.2. Antiviral Drugs Available for Influenza Treatment
2.3. APR for Influenza Treatment
3. APR for COVID-19 Treatment
3.1. SARS-CoV-2
3.2. Emergency Use of Inhibitors for COVID-19 Treatment
3.3. Entry Inhibitors of SARS-CoV-2
3.3.1. APR for COVID-19 Prevention
3.3.2. APR for COVID-19 Treatment
3.3.3. APR and Antiviral Drug Combinations for Treatment of Viral Infections
Combined Treatment of Hospitalized Patients with Moderate COVID-19-Associated Pneumonia with APR + FVP
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Forgie, S.; Marrie, T.J. Healthcare-associated atypical pneumonia. Semin. Respir. Crit. Care Med. 2009, 30, 67–85. [Google Scholar] [CrossRef]
- CDC. History of the 1918 Influenza Pandemic. 2018. Available online: https://www.cdc.gov/flu/pandemic-resources/1918-commemoration/1918-pandemic-history.htm (accessed on 2 July 2023).
- WHO. Coronavirus Disease (COVID-19) Pandemic. 2023. Available online: https://www.who.int/europe/emergencies/situations/covid-19 (accessed on 2 July 2023).
- WHO. 14.9 Million Excess Deaths Associated with the COVID-19 Pandemic in 2020 and 2021. 2022. Available online: https://www.who.int/news/item/05-05-2022-14.9-million-excess-deaths-were-associated-with-the-covid-19-pandemic-in-2020-and-2021 (accessed on 2 July 2023).
- Haridy, R. Study Estimates Real Global COVID Death Toll is Approaching 20 Million. Health & Wellbeing, 10 March 2022. Available online: https://newatlas.com/health-wellbeing/global-covid19-excess-death-toll-three-times-higher (accessed on 2 July 2023).
- Muoio, D. WHO Declares End to COVID-19 Global Health Emergency. Fierce Healthcare, 5 May 2023. Available online: https://www.fiercehealthcare.com/providers/who-declares-end-covid-19-global-health-emergency (accessed on 2 July 2023).
- WHO. Influenza (Seasonal). 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (accessed on 2 July 2023).
- Kilbourne, E.D. Influenza pandemics of the 20th century. Emerg. Infect. Dis. 2006, 12, 9–14. [Google Scholar] [CrossRef]
- Baldo, V.; Bertoncello, C.; Cocchio, S.; Fonzo, M.; Pillon, P.; Buja, A.; Baldovin, T. The new pandemic influenza A/(H1N1)pdm09 virus: Is it really “new”? J. Prev. Med. Hyg. 2016, 57, E19–E22. [Google Scholar] [PubMed]
- CDC. 2009 H1N1 Pandemic (H1N1pdm09 Virus). 2019. Available online: https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html (accessed on 2 July 2023).
- Puryear, W.; Sawatzki, K.; Hill, N.; Foss, A.; Stone, J.J.; Doughty, L.; Walk, D.; Gilbert, K.; Murray, M.; Cox, E.; et al. Highly Pathogenic Avian Influenza A(H5N1) Virus Outbreak in New England Seals, United States. Emerg. Infect. Dis. 2023, 29, 786–791. [Google Scholar] [CrossRef]
- Thompson, W.W.; Shay, D.K.; Weintraub, E.; Brammer, L.; Cox, N.; Anderson, L.J.; Fukuda, K. Mortality associated with influenza and respiratory syncytial virus in the United States. J. Am. Med. Assoc. 2003, 289, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Rebaza, A.; Dela Cruz, C.S. When “B” becomes “A”: The emerging threat of influenza B virus. Eur. Respir. J. 2019, 54, 1901325. [Google Scholar] [CrossRef]
- Bui, C.H.; Chan, R.W.; Ng, M.M.; Cheung, M.-C.; Ng, K.-C.; Chan, M.P.; Chan, L.L.; Fong, J.H.; Nicholls, J.; Peiris, J.M.; et al. Tropism of influenza B viruses in human respiratory tract explants and airway organoids. Eur. Respir. J. 2019, 54, 1900008. [Google Scholar] [CrossRef] [PubMed]
- CDC. Influenza-Associated Pediatric Deaths—United States, September 2010–August 2011. Morb. Mortal. Wkly. Rep. 2011, 60, 1233–1238. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6036a1.htm (accessed on 2 July 2023).
- Tran, D.; Vaudry, W.; Moore, D.; Bettinger, J.A.; Halperin, S.A.; Scheifele, D.W.; Jadvji, T.; Lee, L.; Mersereau, T.; Members of the Canadian Immunization Monitoring Program Active. Hospitalization for Influenza a Versus B. Pediatrics 2016, 138, e20154643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caini, S.; Schellevis, F.; El-Guerche Séblain, C.; Paget, J. Important changes in the timing of influenza epidemics in the WHO European Region over the past 20 years: Virological surveillance 1996 to 2016. Eurosurveillance 2018, 23, 17-00302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caini, S.; Kusznierz, G.; Garate, V.V.; Wangchuk, S.; Thapa, B.; de Paula Júnior, F.J.; Ferreira de Almeida, W.A.; Njouom, R.; Fasce, R.A.; Bustos, P.; et al. The epidemiological signature of influenza B virus and its B/Victoria and B/Yamagata lineages in the 21st century. PLoS ONE 2019, 14, e0222381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Human Coronaviruses Types. 2020. Available online: https://www.cdc.gov/coronavirus/types.html (accessed on 2 July 2023).
- King, A. An uncommon cold. New Sci. 2020, 24, 32–35. [Google Scholar] [CrossRef] [PubMed]
- van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Thiel, V. Coronaviruses: Molecular and Cellular Biology, 1st ed.; Caister Academic Press: Poole, UK, 2007; Available online: https://www.amazon.com/Coronaviruses-Molecular-Cellular-Volker-Thiel/dp/1904455166 (accessed on 2 July 2023).
- Zumla, A.; Hui, D.S.; Perlman, S. Middle East respiratory syndrome. Lancet 2015, 386, 995–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramadan, N.; Shaib, H. Middle East respiratory syndrome coronavirus (MERS-CoV): A review. Germs 2019, 9, 35–42. [Google Scholar] [CrossRef]
- Killerby, M.E.; Biggs, H.M.; Midgley, C.M.; Gerber, S.I.; Watson, J.T. Middle East Respiratory Syndrome Coronavirus Transmission. Emerg. Infect. Dis. 2020, 26, 191–198. [Google Scholar] [CrossRef] [Green Version]
- ECDC. MERS-CoV Worldwide Overview. 2023. Available online: https://www.ecdc.europa.eu/en/middle-east-respiratory-syndrome-coronavirus-mers-cov-situation-update (accessed on 2 July 2023).
- Liu, P.; Shi, L.; Zhang, W.; He, J.; Liu, C.; Zhao, C.; Kong, S.K.; Loo, J.F.C.; Gu, D.; Hu, L. Prevalence and genetic diversity analysis of human coronaviruses among cross-border children. Virol. J. 2017, 14, 230. [Google Scholar] [CrossRef] [Green Version]
- Lau, S.K.P.; Luk, H.K.H.; Wong, A.C.P.; Li, K.S.M.; Zhu, L.; He, Z.; Fung, J.; Chan, T.T.Y.; Fung, K.S.C.; Woo, P.C.Y. Possible Bat Origin of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 2020, 26, 1542–1547. [Google Scholar] [CrossRef]
- Chakrabartty, I.; Khan, M.; Mahanta, S.; Chopra, H.; Dhawan, M.; Choudhary, O.P.; Bibi, S.; Mohanta, Y.K.; Emran, T.B. Comparative overview of emerging RNA viruses: Epidemiology, pathogenesis, diagnosis and current treatment. Ann. Med. Surg. 2022, 79, 103985. [Google Scholar] [CrossRef]
- Nolen, S.W.H.O. Ends Global Health Emergency Designation for Covid. The New York Times, 5 May 2023. Available online: https://www.nytimes.com/2023/05/05/health/covid-who-emergency-end.html (accessed on 2 July 2023).
- WHO. WHO Coronavirus (COVID-19) Dashboard. 2023. Available online: https://covid19.who.int (accessed on 2 July 2023).
- Mangano, D.T. Mortality Associated with Aprotinin during 5 Years Following Coronary Artery Bypass Graft Surgery. JAMA 2007, 297, 471. [Google Scholar] [CrossRef]
- Mangano, D.T.; Tudor, I.C.; Dietzel, C. The Risk Associated with Aprotinin in Cardiac Surgery. N. Engl. J. Med. 2006, 354, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Karkouti, K.; Beattie, W.S.; Dattilo, K.M.; McCluskey, S.A.; Ghannam, M.; Hamdy, A.; Wijeysundera, D.N.; Fedorko, L.; Yau, T.M. A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery. Transfusion 2006, 46, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Fergusson, D.A.; Hébert, P.C.; Mazer, C.D.; Fremes, S.; MacAdams, C.; Murkin, J.M.; Teoh, K.; Duke, P.C.; Arellano, R.; Blajchman, M.A.; et al. A Comparison of Aprotinin and Lysine Analogues in High-Risk Cardiac Surgery. N. Engl. J. Med. 2008, 358, 2319–2331. [Google Scholar] [CrossRef] [Green Version]
- Shaw, A.D.; Stafford-Smith, M.; White, W.D.; Phillips-Bute, B.; Swaminathan, M.; Milano, C.; Welsby, I.J.; Aronson, S.; Mathew, J.P.; Peterson, E.D.; et al. The Effect of Aprotinin on Outcome after Coronary-Artery Bypass Grafting. N. Engl. J. Med. 2008, 358, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Schneeweiss, S.; Seeger, J.D.; Landon, J.; Walker, A.M. Aprotinin during Coronary-Artery Bypass Grafting and Risk of Death. N. Engl. J. Med. 2008, 358, 771–783. [Google Scholar] [CrossRef]
- FDA. Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting. Fed. Regist. 2006, 71, 43487–43488. Available online: https://www.govinfo.gov/content/pkg/FR-2006-08-01/pdf/E6-12269.pdf (accessed on 2 July 2023).
- Henry, D.A.; Carless, P.A.; Moxey, A.J.; O’Connell, D.; Stokes, B.J.; Fergusson, D.A.; Ker, K. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst. Rev. 2011, 1, CD001886. [Google Scholar] [CrossRef]
- DeAnda, A. Aprotinin and Cardiac Surgery. J. Thorac. Cardiovasc. Surg. 2008, 135, 492–494. [Google Scholar] [CrossRef] [Green Version]
- Furnary, A.P.; Wu, Y.; Hiratzka, L.F.; Grunkemeier, G.L.; Page, U.S. Aprotinin Does Not Increase the Risk of Renal Failure in Cardiac Surgery Patients. Circulation 2007, 116. [Google Scholar] [CrossRef] [Green Version]
- Royston, D. Aprotinin; an economy of truth? J. Thorac. Cardiovasc. Surg. 2008, 136, 798–799. [Google Scholar] [CrossRef] [Green Version]
- Pagano, D.; Howell, N.J.; Freemantle, N.; Cunningham, D.; Bonser, R.S.; Graham, T.R.; Mascaro, J.; Rooney, S.J.; Wilson, I.C.; Cramb, R.; et al. Bleeding in cardiac surgery: The use of aprotinin does not affect survival. J. Thorac. Cardiovasc. Surg. 2008, 135, 495–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, S. FDA Strengthens Safety Warning on Aprotinin Label. Medscape. 2023. Available online: https://www.medscape.com/viewarticle/549554 (accessed on 2 July 2023).
- Grunkemeier, G.L.; Wu, Y.; Furnary, A.P. What is the Value of a p Value? Ann. Thorac. Surg. 2009, 87, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Beattie, W.S.; Karkouti, K. The Post-BART Anti-Fibrinolytic Dilemma? J. Cardiothorac. Vasc. Anesth. 2011, 25, 3–5. [Google Scholar] [CrossRef] [PubMed]
- DeAnda, A.; Spiess, B.D. Aprotinin revisited. J. Thorac. Cardiovasc. Surg. 2012, 144, 998–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tempe, D.; Hasija, S. Are tranexamic acid and ε-aminocaproic acid adequate substitutes for aprotinin? Ann. Card. Anaesth. 2012, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- McMullan, V.; Alston, R.P., III. Aprotinin and cardiac surgery: A sorry tale of evidence misused. Br. J. Anaesth. 2013, 110, 675–678. [Google Scholar] [CrossRef] [Green Version]
- De Hert, S.G. Aprotinin an Old Kid Back on the Block. Presentation on Theme: “Aprotinin an Old Kid Back on the Block”. 2023. Available online: https://slideplayer.com/slide/15355651/ (accessed on 2 July 2023).
- De Hert, S.; Gill, R.; Habre, W.; Lance, M.; Llau, J.; Meier, J.; Pouard, P.; Samama, C.M.; van der Linden, J.; van der Linden, P.; et al. Aprotinin: Is it time to reconsider? Eur. J. Anaesthesiol. 2015, 32, 591–595. [Google Scholar] [CrossRef]
- European Medicines Agency. European Medicines Agency Recommends Lifting Suspension of Aprotinin. Press Release, 17 February 2012. Available online: https://www.ema.europa.eu/en/documents/press-release/european-medicines-agency-recommends-lifting-suspension-aprotinin_en.pdf (accessed on 2 July 2023).
- FDA. List of Approved NDAs for Biological Products That Were Deemed to Be BLAs on 23 March 2020. FDA. 2020. Available online: https://www.fda.gov/media/119229/download (accessed on 2 July 2023).
- Ferraris, V.A. Facts, opinions, and conclusions: Aprotinin brings out all of these. J. Thorac. Cardiovasc. Surg. 2013, 145, 240–242. [Google Scholar] [CrossRef] [Green Version]
- FIERCE Biotech; Hale, C. Nordic Pharma and Clinigen Sign Global Trasylol Supply Deal. 2018. Available online: https://www.fiercebiotech.com/cro/nordic-pharma-and-clinigen-sign-global-trasylol-supply-deal (accessed on 2 July 2023).
- Huber, R.; Kukla, D.; Rühlmann, A.; Epp, O.; Formanek, H. The basic trypsin inhibitor of bovine pancreas. Die Nat. 1970, 57, 389–392. [Google Scholar] [CrossRef]
- Deisenhofer, J.; Steigemann, W. The Model of the Basic Pancreatic Trypsin Inhibitor Refined at 1.5 Å resolution. In Proteinase Inhibitors; Fritz, H., Tschesche, H., Greene, L.J., Truscheit, E., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1974; pp. 484–496. [Google Scholar]
- Fritz, H.; Wunderer, G. Biochemistry and applications of aprotinin, the kallikrein inhibitor from bovine organs. Arzneim. Forsch. 1983, 33, 479–494. Available online: https://pubmed.ncbi.nlm.nih.gov/6191764/ (accessed on 2 July 2023).
- Ivashchenko, A.; Svistunov, A.; Khorobryh, T.; Loginov, V.; Karapetian, R.; Mishchenko, N.; Poyarkov, S.; Topr, M.; Volgin, M.; Yakubova, E.; et al. Aprotinin—A new multi-target drug candidate or “magic shotgun” for the therapy of COVID-19. COVID-19-Preprints 2020. [Google Scholar] [CrossRef]
- Ivachtchenko, A.V.; Lavrovsky, Y.; Okun, I. AVN-101: A Multi-Target Drug Candidate for the Treatment of CNS Disorders. J. Alzheimer’s Dis. 2016, 53, 583–620. [Google Scholar] [CrossRef]
- Saenz-Méndez, P. Multi-Target Drugs as Master Keys to Complex Diseases: Inverse Docking Strategies and Opportunities. In Molecular Docking for Computer-Aided Drug Design; Coumar, S.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 295–311. [Google Scholar]
- Youdim, M.B.H.; Buccafusco, J.J. CNS Targets for multi-functional drugs in the treatment of Alzheimer’s and Parkinson’s diseases. J. Neural Transm. 2005, 112, 519–537. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.C.; Noble, S. Aprotinin. Drugs 1999, 57, 233–260. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Cromheecke, M.E.; de Jonge, E.; Prins, M.H.; de Mol, B.J.; Briët, E.; Büller, H.R. Pharmacological strategies to decrease excessive blood loss in cardiac surgery: A meta-analysis of clinically relevant endpoints. Lancet 1999, 354, 1940–1947. [Google Scholar] [CrossRef]
- Samama, C.M. Aprotinin and major orthopedic surgery. Eur. Spine J. 2004, 13 (Suppl. 1), S56–S61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivashchenko, A.; Svistunov, A.; Khorobryh, T.; Loginov, V.; Karapetian, R.; Mishchenko, N.; Poyarkov, S.; Volgin, M.; Yakubova, E.; Topr, M.; et al. Aprotinin—A New Drug Candidate for The Prevention of SARS-CoV-2 (COVID-19). COVID-19-Preprints 2020. [Google Scholar] [CrossRef]
- Ivashchenko, A.; Azarova, V.; Egorova, A.; Karapetian, R.; Kravchenko, D.; Krivonos, N.; Loginov, V.; Poyarkov, S.; Merkulova, E.; Rosinkova, O.; et al. Aprotinin is a potent multi-target drug for the combination therapy of moderate COVID-19 cases. COVID-19-Preprints 2020. [Google Scholar] [CrossRef]
- Ivashchenko, A.A.; Zagribelnyy, B.A.; Ivanenkov, Y.A.; Ivashchenko, I.A.; Karapetian, R.N.; Kravchenko, D.V.; Savchuk, N.P.; Yakubova, E.V.; Ivachtchenko, A.V. The Efficacy of Aprotinin Combinations with Selected Antiviral Drugs in Mouse Models of Influenza Pneumonia and Coronavirus Infection Caused by SARS-CoV-2. Molecules 2022, 27, 4975. [Google Scholar] [CrossRef] [PubMed]
- Mahdy, A.M.; Webster, N.R. Perioperative systemic haemostatic agents. Br. J. Anaesth. 2004, 93, 842–858. [Google Scholar] [CrossRef] [Green Version]
- Mannucci, P.M. Hemostatic Drugs. N. Engl. J. Med. 1998, 339, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Didiasova, M.; Wujak, L.; Schaefer, L.; Wygrecka, M. Factor XII in coagulation, inflammation and beyond. Cell. Signal. 2018, 51, 257–265. [Google Scholar] [CrossRef] [PubMed]
- DrugBank. Aprotinin, DB06692. Available online: https://go.drugbank.com/drugs/DB06692 (accessed on 2 July 2023).
- Ascenzi, P.; Bocedi, A.; Bolognesi, M.; Spallarossa, A.; Coletta, M.; Cristofaro, R.; Menegatti, E. The Bovine Basic Pancreatic Trypsin Inhibitor (Kunitz Inhibitor): A Milestone Protein. Curr. Protein Pept. Sci. 2003, 4, 231–251. [Google Scholar] [CrossRef]
- Taylor, K.M. Antiinflammatory Effects of Aprotinin. Transfus. Altern. Transfus. Med. 2004, 6, 39–46. [Google Scholar] [CrossRef]
- Tassani, P.; Augustin, N.; Barankay, A.; Braun, S.L.; Zaccaria, F.; Richter, J.A. High-dose aprotinin modulates the balance between proinflammatory and anti-inflammatory responses during coronary artery bypass graft surgery. J. Cardiothorac. Vasc. Anesth. 2000, 14, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Asimakopoulos, G.; Taylor, K.M.; Haskard, D.O.; Landis, R.C. Inhibition of neutrophil L-selectin shedding: A potential anti-inflammatory effect of aprotinin. Perfusion 2000, 15, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Asimakopoulos, G.; Thompson, R.; Nourshargh, S.; Lidington, E.A.; Mason, J.C.; Ratnatunga, C.P.; Haskard, D.O.; Taylor, K.M.; Landis, R.C. An anti-inflammatory property of aprotinin detected at the level of leukocyte extravasation. J. Thorac. Cardiovasc. Surg. 2000, 120, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Michalets, E.; Harris, L. Chapter 44—Antifibrinolytics: Pharmacologic Profile and Clinical Utilization in Cardiovascular Thrombus. In Cardiovascular Thrombus; Topaz, O., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 615–649. [Google Scholar] [CrossRef]
- Wachtfogel, Y.T.; Kucich, U.; Hack, C.E.; Gluszko, P.; Niewiarowski, S.; Colman, R.W.; Edmunds, L.H.J. Aprotinin inhibits the contact, neutrophil, and platelet activation systems during simulated extracorporeal perfusion. J. Thorac. Cardiovasc. Surg. 1993, 106, 1–9. [Google Scholar] [CrossRef]
- Hill, G.E.; Alonso, A.; Spurzem, J.R.; Stammers, A.H.; Robbins, R.A. Aprotinin and methylprednisolone equally blunt cardiopulmonary bypass–induced inflammation in humans. J. Thorac. Cardiovasc. Surg. 1995, 110, 1658–1662. [Google Scholar] [CrossRef] [Green Version]
- Harig, F.; Feyrer, R.; Mahmoud, F.; Blum, U.; Emde, J. von der Reducing the Post-Pump Syndrome by Using Heparin-Coated Circuits, Steroids, or Aprotinin. Thorac. Cardiovasc. Surg. 1999, 47, 111–118. [Google Scholar] [CrossRef]
- Hill, G.E.; Robbins, R.A. Aprotinin but Not Tranexamic Acid Inhibits Cytokine-Induced Inducible Nitric Oxide Synthase Expression. Anesth. Analg. 1997, 84, 1198–1202. [Google Scholar] [CrossRef] [PubMed]
- Soeparwata, R.; Hartman, A.R.; Frerichmann, U.; Stefano, G.B.; Scheld, H.H.; Bilfinger, T.V. Aprotinin® diminishes inflammatory processes. Int. J. Cardiol. 1996, 53, S55–S63. [Google Scholar] [CrossRef] [PubMed]
- Gilliland, H.E.; Armstrong, M.A.; Uprichard, S.; Clarke, G.; McMurray, T.J. The effect of aprotinin on interleukin-8 concentration and leukocyte adhesion molecule expression in an isolated cardiopulmonary bypass system. Anaesthesia 1999, 54, 427–433. [Google Scholar] [CrossRef]
- Alonso, A.; Whitten, C.W.; Hill, G.E. Pump prime only aprotinin inhibits cardiopulmonary bypass-induced neutrophil CD11b up-regulation. Ann. Thorac. Surg. 1999, 67, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Bruda, N.L.; Hurlbert, B.J.; Hill, G.E. Aprotinin Reduces Nitric Oxide Production in Vitro and in Vivo in a Dose-Dependent Manner. Clin. Sci. 1998, 94, 505–509. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Üstünda, B.; Burma, O.; Özercan, I.H.; Çekirdekçi, A.; Bayar, M.K. Does aprotinin reduce lung reperfusion damage after cardiopulmonary bypass? Eur. J. Cardio-Thorac. Surg. 2000, 18, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Goto, H.; Wells, K.; Takada, A.; Kawaoka, Y. Plasminogen-Binding Activity of Neuraminidase Determines the Pathogenicity of Influenza A Virus. J. Virol. 2001, 75, 9297–9301. [Google Scholar] [CrossRef] [Green Version]
- Zhirnov, O.P.; Ovcharenko, A.V.; Bukrinskaya, A.G. Suppression of Influenza Virus Replication in Infected Mice by Protease Inhibitors. J. Gen. Virol. 1984, 65, 191–196. [Google Scholar] [CrossRef]
- Yang, J.; Li, M.; Shen, X.; Liu, S. Influenza A Virus Entry Inhibitors Targeting the Hemagglutinin. Viruses 2013, 5, 352–373. [Google Scholar] [CrossRef] [Green Version]
- Tse, L.V.; Marcano, V.C.; Huang, W.; Pocwierz, M.S.; Whittaker, G.R. Plasmin-Mediated Activation of Pandemic H1N1 Influenza Virus Hemagglutinin Is Independent of the Viral Neuraminidase. J. Virol. 2013, 87, 5161–5169. [Google Scholar] [CrossRef] [Green Version]
- De Bruin, A.C.M.; Funk, M.; Spronken, M.I.; Gultyaev, A.P.; Fouchier, R.A.M.; Richard, M. Hemagglutinin Subtype Specificity and Mechanisms of Highly Pathogenic Avian Influenza Virus Genesis. Viruses 2022, 14, 1566. [Google Scholar] [CrossRef] [PubMed]
- Schönfelder, K.; Breuckmann, K.; Elsner, C.; Dittmer, U.; Fistera, D.; Herbstreit, F.; Risse, J.; Schmidt, K.; Sutharsan, S.; Taube, C.; et al. Transmembrane serine protease 2 Polymorphisms and Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Type 2 Infection: A German Case-Control Study. Front. Genet. 2021, 12, 667231. [Google Scholar] [CrossRef] [PubMed]
- Lazarowitz, S.G.; Goldberg, A.R.; Choppin, P.W. Proteolytic cleavage by plasmin of the HA polypeptide of influenza virus: Host cell activation of serum plasminogen. Virology 1973, 56, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Cunha, J.P. Trasylol. RxList. 2022. Available online: https://www.rxlist.com/trasylol-drug.htm#side_effects.%20https://www.drugs.com/sfx/trasylol-side-effects.html (accessed on 2 July 2023).
- Dietrich, W.; Späth, P.; Ebell, A.; Richter, J.A. Prevalence of anaphylactic reactions to aprotinin: Analysis of two hundred forty-eight reexposures to aprotinin in heart operations. J. Thorac. Cardiovasc. Surg. 1997, 113, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Beierlein, W.; Scheule, A.M.; Dietrich, W.; Ziemer, G. Forty Years of Clinical Aprotinin Use: A Review of 124 Hypersensitivity Reactions. Ann. Thorac. Surg. 2005, 79, 741–748. [Google Scholar] [CrossRef]
- Dietrich, W.; Ebell, A.; Busley, R.; Boulesteix, A.-L. Aprotinin and Anaphylaxis: Analysis of 12,403 Exposures to Aprotinin in Cardiac Surgery. Ann. Thorac. Surg. 2007, 84, 1144–1150. [Google Scholar] [CrossRef]
- Royston, D.; Chhatwani, A. Safety aspects of aprotinin therapy in cardiac surgery patients. Expert Opin. Drug Saf. 2006, 5, 539–552. [Google Scholar] [CrossRef]
- Royston, D. The current place of aprotinin in the management of bleeding. Anaesthesia 2014, 70, 46–49.e17. [Google Scholar] [CrossRef] [Green Version]
- Karkouti, K.; Wijeysundera, D.N.; Yau, T.M.; McCluskey, S.A.; Tait, G.; Beattie, W.S. The Risk-Benefit Profile of Aprotinin Versus Tranexamic Acid in Cardiac Surgery. Anesth. Analg. 2010, 110, 21–29. [Google Scholar] [CrossRef]
- Influenza A virus. Wikipedia. Last edited on 10 May 2023.
- Zhirnov, O.P. Asymmetric structure of the influenza A virus and novel function of the matrix protein M1. Probl. Virusol. 2016, 61, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Rosário-Ferreira, N.; Preto, A.J.; Melo, R.; Moreira, I.S.; Brito, R.M.M. The Central Role of Non-Structural Protein 1 (NS1) in Influenza Biology and Infection. Int. J. Mol. Sci. 2020, 21, 1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varga, Z.T.; Palese, P. The influenza A virus protein PB1-F2: Killing two birds with one stone? Virulence 2011, 2, 542–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dou, D.; Revol, R.; Östbye, H.; Wang, H.; Daniels, R. Influenza A Virus Cell Entry, Replication, Virion Assembly and Movement. Front. Immunol. 2018, 9, 1581. [Google Scholar] [CrossRef] [PubMed]
- Borau, M.S.; Silke Stertz, S. Entry of influenza A virus into host cells—Recent progress and remaining challenges. Curr. Opin. Virol. 2021, 48, 23–29. [Google Scholar] [CrossRef]
- Moreira, E.A.; Yamauchi, Y.; Matthias, P. How Influenza Virus Uses Host Cell Pathways during Uncoating. Cells 2021, 10, 1722. [Google Scholar] [CrossRef]
- Zhirnov, O.P.; Bokova, N.O.; Isaeva, E.I.; Vorobeva, I.V.; Konakova, T.E.; Malyshev, N.A. Therapeutic effect of aerosol form of aprotinin against Influenza. Epidemiol. Infect. Dis. 2014, 19, 10–15. [Google Scholar] [CrossRef]
- Böttcher, E.; Matrosovich, T.; Beyerle, M.; Klenk, H.-D.; Garten, W.; Matrosovich, M. Proteolytic Activation of Influenza Viruses by Serine Proteases TMPRSS2 and HAT from Human Airway Epithelium. J. Virol. 2006, 80, 9896–9898. [Google Scholar] [CrossRef] [Green Version]
- Böttcher-Friebertshäuser, E.; Garten, W.; Matrosovich, M.; Klenk, H.D. The Hemagglutinin: A Determinant of Pathogenicity. In Influenza Pathogenesis and Control—Volume I; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 3–34. [Google Scholar]
- Wettstein, L.; Kirchhoff, F.; Münch, J. The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment. Int. J. Mol. Sci. 2022, 23, 1351. [Google Scholar] [CrossRef]
- Chaipan, C.; Kobasa, D.; Bertram, S.; Glowacka, I.; Steffen, I.; Tsegaye, T.S.; Takeda, M.; Bugge, T.H.; Kim, S.; Park, Y.; et al. Proteolytic Activation of the 1918 Influenza Virus Hemagglutinin. J. Virol. 2009, 83, 3200–3211. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, B.S.; Gludish, D.W.J.; Whittaker, G.R. Cleavage Activation of the Human-Adapted Influenza Virus Subtypes by Matriptase Reveals both Subtype and Strain Specificities. J. Virol. 2012, 86, 10579–10586. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, B.S.; Whittaker, G.R. Cleavage Activation of Human-adapted Influenza Virus Subtypes by Kallikrein-related Peptidases 5 and 12. J. Biol. Chem. 2013, 288, 17399–17407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zmora, P.; Blazejewska, P.; Moldenhauer, A.-S.; Welsch, K.; Nehlmeier, I.; Wu, Q.; Schneider, H.; Pöhlmann, S.; Bertram, S. DESC1 and MSPL Activate Influenza A Viruses and Emerging Coronaviruses for Host Cell Entry. J. Virol. 2014, 88, 12087–12097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limburg, H.; Harbig, A.; Bestle, D.; Stein, D.A.; Moulton, H.M.; Jaeger, J.; Janga, H.; Hardes, K.; Koepke, J.; Schulte, L.; et al. TMPRSS2 Is the Major Activating Protease of Influenza A Virus in Primary Human Airway Cells and Influenza B Virus in Human Type II Pneumocytes. J. Virol. 2019, 93, e00649-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertram, S.; Glowacka, I.; Blazejewska, P.; Soilleux, E.; Allen, P.; Danisch, S.; Steffen, I.; Choi, S.-Y.; Park, Y.; Schneider, H.; et al. TMPRSS2 and TMPRSS4 Facilitate Trypsin-Independent Spread of Influenza Virus in Caco-2 Cells. J. Virol. 2010, 84, 10016–10025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böttcher-Friebertshäuser, E.; Freuer, C.; Sielaff, F.; Schmidt, S.; Eickmann, M.; Uhlendorff, J.; Steinmetzer, T.; Klenk, H.-D.; Garten, W. Cleavage of Influenza Virus Hemagglutinin by Airway Proteases TMPRSS2 and HAT Differs in Subcellular Localization and Susceptibility to Protease Inhibitors. J. Virol. 2010, 84, 5605–5614. [Google Scholar] [CrossRef] [Green Version]
- Böttcher, E.; Freuer, C.; Steinmetzer, T.; Klenk, H.-D.; Garten, W. MDCK cells that express proteases TMPRSS2 and HAT provide a cell system to propagate influenza viruses in the absence of trypsin and to study cleavage of HA and its inhibition. Vaccine 2009, 27, 6324–6329. [Google Scholar] [CrossRef]
- Kido, H.; Takahashi, E.; Kimoto, T. Role of host trypsin-type serine proteases and influenza virus-cytokine-trypsin cycle in influenza viral pathogenesis. Pathogenesis-based therapeutic options. Biochimie 2019, 166, 203–213. [Google Scholar] [CrossRef]
- Böttcher-Friebertshäuser, E. Membrane-Anchored Serine Proteases: Host Cell Factors in Proteolytic Activation of Viral Glycoproteins. In Activation of Viruses by Host Proteases; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 153–203. [Google Scholar]
- Hatesuer, B.; Bertram, S.; Mehnert, N.; Bahgat, M.M.; Nelson, P.S.; Pöhlman, S.; Schughart, K. Tmprss2 Is Essential for Influenza H1N1 Virus Pathogenesis in Mice. PLoS Pathog. 2013, 9, e1003774. [Google Scholar] [CrossRef] [Green Version]
- Tarnow, C.; Engels, G.; Arendt, A.; Schwalm, F.; Sediri, H.; Preuss, A.; Nelson, P.S.; Garten, W.; Klenk, H.-D.; Gabriel, G.; et al. TMPRSS2 Is a Host Factor That Is Essential for Pneumotropism and Pathogenicity of H7N9 Influenza A Virus in Mice. J. Virol. 2014, 88, 4744–4751. [Google Scholar] [CrossRef] [Green Version]
- Bestle, D.; Limburg, H.; Kruhl, D.; Harbig, A.; Stein, D.A.; Moulton, H.; Matrosovich, M.; Abdelwhab, E.M.; Stech, J.; Böttcher-Friebertshäuser, E. Hemagglutinins of Avian Influenza Viruses Are Proteolytically Activated by TMPRSS2 in Human and Murine Airway Cells. J. Virol. 2021, 95. [Google Scholar] [CrossRef]
- Braun, E.; Sauter, D. Furin-mediated protein processing in infectious diseases and cancer. Clin. Transl. Immunol. 2019, 8, e1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavallazzi, R.; Ramirez, J.A. Influenza and Viral Pneumonia. Clin. Chest Med. 2018, 39, 703–721. [Google Scholar] [CrossRef] [PubMed]
- McCullers, J.A. Effect of Antiviral Treatment on the Outcome of Secondary Bacterial Pneumonia after Influenza. J. Infect. Dis. 2004, 190, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.E.; Cleary, D.W.; Clarke, S.C. Secondary Bacterial Infections Associated with Influenza Pandemics. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Javanian, M.; Barary, M.; Ghebrehewet, S.; Koppolu, V.; Vasigala, V.; Ebrahimpour, S. A brief review of influenza virus infection. J. Med. Virol. 2021, 93, 4638–4646. [Google Scholar] [CrossRef]
- CDC. Disease Burden of Flu. 2022. Available online: https://www.cdc.gov/flu/about/burden/index.html (accessed on 2 July 2023).
- CDC. Archived: Estimated Influenza Illnesses, Medical Visits, Hospitalizations, and Deaths in the United States—2019–2020 Influenza Season. 2021. Available online: https://www.cdc.gov/flu/about/burden/2019-2020/archive-09292021.html#:~:text=During%20the%202019-2020%20influenza,405%2C000%20hospitalizations%2C%20and%2022%2C000%20deaths (accessed on 2 July 2023).
- Blanton, L.; Mustaquim, D.; Alabi, N.; Kniss, K.; Kramer, N.; Budd, A.; Garg, S.; Cummings, C.N.; Fry, A.M.; Bresee, J.; et al. Update: Influenza activity—United States, October 2, 2016-February 4, 2017. Morb. Mortal. Wkly. Rep. 2017, 66, 159–166. Available online: https://www.cdc.gov/mmwr/volumes/66/wr/mm6606a2.htm (accessed on 2 July 2023). [CrossRef] [Green Version]
- Garg, S.; Jain, S.; Dawood, F.S.; Jhung, M.; Pérez, A.; D’Mello, T.; Reingold, A.; Gershman, K.; Meek, J.; Arnold, K.E.; et al. Pneumonia among adults hospitalized with laboratory-confirmed seasonal influenza virus infection—United States, 2005–2008. BMC Infect. Dis. 2015, 15, 369. [Google Scholar] [CrossRef] [Green Version]
- CDC. Seasonal Flu Vaccine Effectiveness Studies. 2022. Available online: https://www.cdc.gov/flu/vaccines-work/effectiveness-studies.htm (accessed on 2 July 2023).
- Soema, P.C.; Kompier, R.; Amorij, J.-P.; Kersten, G.F.A. Current and next generation influenza vaccines: Formulation and production strategies. Eur. J. Pharm. Biopharm. 2015, 94, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Tenforde, M.W.; Kondor, R.J.G.; Chung, J.R.; Zimmerman, R.K.; Nowalk, M.P.; Jackson, M.L.; Jackson, L.A.; Monto, A.S.; Martin, E.T.; Belongia, E.A.; et al. Effect of Antigenic Drift on Influenza Vaccine Effectiveness in the United States—2019–2020. Clin. Infect. Dis. 2020, 73, e4244–e4250. [Google Scholar] [CrossRef]
- Jones, J.C.; Yen, H.-L.; Adams, P.; Armstrong, K.; Govorkova, E.A. Influenza antivirals and their role in pandemic preparedness. Antivir. Res. 2023, 210, 105499. [Google Scholar] [CrossRef]
- Sokolova, A.S.; Yarovaya, O.I.; Semenova, M.D.; Shtro, A.A.; Orshanskaya, I.R.; Zarubaev, V.V.; Salakhutdinova, N.F. Synthesis and in vitro study of novel borneol derivatives as potent inhibitors of the influenza A virus. Med. Chem. Commun. 2017, 8, 960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Ma, C.; Wang, J.; Jo, H.; Canturk, B.; Fiorin, C.; Pinto, L.H.; Lamb, R.A.; Michael, L.; Klein, M.L.; et al. Discovery of Novel Dual Inhibitors of the Wild-Type and the Most Prevalent Drug-Resistant Mutant, S31N, of the M2 Proton Channel from Influenza A Virus. J. Med. Chem. 2013, 56, 2804–2812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranovich, T.; Wong, S.S.; Armstrong, J.; Marjuki, H.; Webby, R.J.; Webster, R.G.; Govorkova, E.A. Govorkova T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J. Virol. 2013, 87, 3741–3751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, D.-E.; Milde, J.; Ham, Y.; Calderón, J.P.R.; Wedde, M.; Dürrwald, R.; Duwe, S.C. Preparing for the Next Influenza Season: Monitoring the Emergence and Spread of Antiviral Resistance. Infect. Drug Resist. 2023, 16, 949–959. [Google Scholar] [CrossRef]
- Vavricka, C.J.; Li, Q.; Wu, Y.; Qi, J.; Wang, M.; Liu, Y.; Gao, F.; Liu, J.; Feng, E.; He, J.; et al. Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition. PLoS Pathog. 2011, 7, e1002249. [Google Scholar] [CrossRef] [PubMed]
- Ivashchenko, A.A.; Mitkin, O.D.; Jones, J.C.; Nikitin, A.V.; Koryakova, A.G.; Karapetian, R.N.; Kravchenko, D.V.; Mochalov, S.V.; Ryakhovskiy, A.A.; Aladinskiy, V.; et al. Synthesis, inhibitory activity and oral dosing formulation of AV5124, the structural analogue of influenza virus endonuclease inhibitor baloxavir. J. Antimicrob. Chemother. 2020, 76, 1010–1018. [Google Scholar] [CrossRef]
- Song, E.-J.; Españo, E.; Shim, S.-M.; Nam, J.-H.; Kim, J.; Lee, K.; Park, S.-K.; Lee, C.-K.; Kim, J.-K. Inhibitory effects of aprotinin on influenza A and B viruses in vitro and in vivo. Sci. Rep. 2021, 11, 9427. [Google Scholar] [CrossRef]
- Oxford, J.S.; Galbraith, A. Antiviral activity of amantadine: A review of laboratory and clinical data. Pharmacol. Ther. 1980, 11, 181–262. [Google Scholar] [CrossRef]
- CDC. CDC Seasonal Influenza Vaccine Effectiveness Studies. 2021–2022. 2022. Available online: https://www.cdc.gov/flu/vaccines-work/effectiveness-studies.htm (accessed on 2 July 2023).
- Loregian, A.; Mercorelli, B.; Nannetti, G.; Compagnin, C.; Palù, G. Antiviral strategies against influenza virus: Towards new therapeutic approaches. Cell. Mol. Life Sci. 2014, 71, 3659–3683. [Google Scholar] [CrossRef]
- Hussain, M.; Galvin, H.; Haw, T.Y.; Nutsford, A.; Husain, M. Drug resistance in influenza A virus: The epidemiology and management. Infect. Drug Resist. 2017, 10, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Dunning, J.; Thwaites, R.S.; Openshaw, P.J.M. Seasonal and pandemic influenza: 100 years of progress, still much to learn. Mucosal Immunol. 2020, 13, 566–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrukee, R.; Hurt, A.C. Antiviral Drugs for the Treatment and Prevention of Influenza. Curr. Treat. Options Infect. Dis. 2017, 9, 318–332. [Google Scholar] [CrossRef]
- De Clercq, E. Antiviral agents active against influenza A viruses. Nat. Rev. Drug Discov. 2006, 5, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Gubareva, L.V.; Besselaar, T.G.; Daniels, R.S.; Fry, A.; Gregory, V.; Huang, W.; Hurt, A.C.; Jorquera, P.A.; Lackenby, A.; Leang, S.-K.; et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2015–2016. Antivir. Res. 2017, 146, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Lina, B.; Boucher, C.; Osterhaus, A.; Monto, A.S.; Schutten, M.; Whitley, R.J.; Nguyen-Van-Tam, J.S. Five years of monitoring for the emergence of oseltamivir resistance in patients with influenza A infections in the Influenza Resistance Information Study. Influenza Other Respir. Viruses 2018, 12, 267–278. [Google Scholar] [CrossRef] [Green Version]
- CDC. Influenza Antiviral Drug Resistance. 25 October 2022. Available online: https://www.cdc.gov/flu/treatment/antiviralresistance.htm (accessed on 2 July 2023).
- Ivachtchenko, A.V.; Ivanenkov, Y.A.; Mitkin, O.D.; Yamanushkin, P.M.; Bichko, V.V.; Shevkun, N.A.; Karapetian, R.N.; Leneva, I.A.; Borisova, O.V.; Veselov, M.S. Novel oral anti-influenza drug candidate AV5080. J. Antimicrob. Chemother. 2014, 69, 1892–1902. [Google Scholar] [CrossRef]
- The National Institutes of Health. Dose Range Study to Evaluate the Efficacy and Safety of AV5080 in Patients with Influenza. NCT05095545, 27 October 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT05095545 (accessed on 2 July 2023).
- Shiraki, K.; Daikoku, T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol. Ther. 2020, 209, 107512. [Google Scholar] [CrossRef]
- Lai, S.; Qin, Y.; Cowling, B.J.; Ren, X.; Wardrop, N.A.; Gilbert, M.; Tsang, T.K.; Wu, P.; Feng, L.; Jiang, H.; et al. Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997–2015: A systematic review of individual case data. Lancet Infect. Dis. 2016, 16, e108–e118. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhou, L.; Zhou, M.; Chen, Z.; Li, F.; Wu, H.; Xiang, N.; Chen, E.; Tang, F.; Wang, D.; et al. Epidemiology of Human Infections with Avian Influenza A(H7N9) Virus in China. N. Engl. J. Med. 2014, 370, 520–532. [Google Scholar] [CrossRef]
- Furuta, Y.; Takahashi, K.; Fukuda, Y.; Kuno, M.; Kamiyama, T.; Kozaki, K.; Nomura, N.; Egawa, H.; Minami, S.; Watanabe, Y.; et al. In Vitro and In Vivo Activities of Anti-Influenza Virus Compound T-705. Antimicrob. Agents Chemother. 2002, 46, 977–981. [Google Scholar] [CrossRef] [Green Version]
- Furuta, Y.; Gowen, B.B.; Takahashi, K.; Shiraki, K.; Smee, D.F.; Barnard, D.L. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antivir. Res. 2013, 100, 446–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sleeman, K.; Mishin, V.P.; Deyde, V.M.; Furuta, Y.; Klimov, A.I.; Gubareva, L.V. In Vitro Antiviral Activity of Favipiravir (T-705) against Drug-Resistant Influenza and 2009 A(H1N1) Viruses. Antimicrob. Agents Chemother. 2010, 54, 2517–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Rumschlag-Booms, E.; Wang, J.; Xiao, H.; Yu, J.; Wang, J.; Guo, L.; Gao, G.F.; Cao, Y.; Caffrey, M.; et al. Analysis of hemagglutinin-mediated entry tropism of H5N1 avian influenza. Virol. J. 2009, 6, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Furuta, Y.; Fukuda, Y.; Kuno, M.; Kamiyama, T.; Kozaki, K.; Nomura, N.; Egawa, H.; Minami, S.; Shiraki, K. In Vitro and in Vivo Activities of T-705 and Oseltamivir against Influenza Virus. Antivir. Chem. Chemother. 2003, 14, 235–241. [Google Scholar] [CrossRef] [Green Version]
- FujiFIlm. The New Drug Application Approval of “AVIGAN® Tablet 200mg” in Japan for the Anti-Influenza Virus Drug. 24 March 2014. Available online: https://www.toyama-chemical.co.jp/eng/news/news140324e.html (accessed on 2 July 2023).
- Hayden, F.G.; Lenk, R.P.; Stonis, L.; Oldham-Creamer, C.; Kang, L.L.; Epstein, C. Favipiravir Treatment of Uncomplicated Influenza in Adults: Results of Two Phase 3, Randomized, Double-Blind, Placebo-Controlled Trials. J. Infect. Dis. 2022, 226, 1790–1799. [Google Scholar] [CrossRef]
- Dufrasne, F. Baloxavir Marboxil: An Original New Drug against Influenza. Pharmaceuticals 2021, 15, 28. [Google Scholar] [CrossRef]
- Omoto, S.; Speranzini, V.; Hashimoto, T.; Noshi, T.; Yamaguchi, H.; Kawai, M.; Kawaguchi, K.; Uehara, T.; Shishido, T.; Naito, A.; et al. Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil. Sci. Rep. 2018, 8, 9633. [Google Scholar] [CrossRef]
- Kawai, M.; Tomita, K.; Akiyama, T.; Okano, A.; Miyagawa, M. Substituted Pyridine Derivative and Prodrag Thereof. International Patent Application WO2016175224, 3 November 2016. [Google Scholar]
- Mishin, V.P.; Patel, M.C.; Chesnokov, A.; Cruz, J.D.L.; Nguyen, H.T.; Lollis, L.; Hodges, E.; Jang, Y.; Barnes, J.; Uyeki, T.; et al. Susceptibility of Influenza A, B, C, and D Viruses to Baloxavir1. Emerg. Infect. Dis. 2019, 25, 1969–1972. [Google Scholar] [CrossRef] [Green Version]
- Govorkova, E.A.; Takashita, E.; Daniels, R.S.; Fujisaki, S.; Presser, L.D.; Patel, M.C.; Huang, W.; Lackenby, A.; Nguyen, H.T.; Pereyaslov, D.; et al. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2018–2020. Antivir. Res. 2022, 200, 105281. [Google Scholar] [CrossRef]
- Uehara, T.; Hayden, F.G.; Kawaguchi, K.; Omoto, S.; Hurt, A.C.; Jong, M.D.D.; Hirotsu, N.; Sugaya, N.; Lee, N.; Baba, K.; et al. Treatment-Emergent Influenza Variant Viruses with Reduced Baloxavir Susceptibility: Impact on Clinical and Virologic Outcomes in Uncomplicated Influenza. J. Infect. Dis. 2019, 221, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Hayden, F.G.; Sugaya, N.; Hirotsu, N.; Lee, N.; de Jong, M.D.; Hurt, A.C.; Ishida, T.; Sekino, H.; Yamada, K.; Portsmouth, S.; et al. Baloxavir Marboxil for Uncomplicated Influenza in Adults and Adolescents. N. Engl. J. Med. 2018, 379, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Gubareva, L.V.; Fry, A.M. Baloxavir and Treatment-Emergent Resistance: Public Health Insights and Next Steps. J. Infect. Dis. 2020, 221, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Ivashchenko, A.A.; Mitkin, O.D.; Jones, J.C.; Nikitin, A.V.; Koryakova, A.G.; Ryakhovskiy, A.; Karapetian, R.N.; Kravchenko, D.V.; Aladinskiy, V.; Leneva, I.A.; et al. Non-rigid Diarylmethyl Analogs of Baloxavir as Cap-Dependent Endonuclease Inhibitors of Influenza Viruses. J. Med. Chem. 2020, 63, 9403–9420. [Google Scholar] [CrossRef]
- Mitkin, O.D.; Ivachtchenko, A.V.; Ivashchenko, A.A. Substituted 3,4,12,12a-tetrahydro-1h-[1,4]oxazino [3,4-c]pyrido[2,1-f][1,2,4]triazine-6,8-dione, Pharmaceutical Composition, and Methods for Preparing and Using Same. Patent Application EP3763718A1, 2021. [Google Scholar]
- Bertram, S.; Dijkman, R.; Habjan, M.; Heurich, A.; Gierer, S.; Glowacka, I.; Welsch, K.; Winkler, M.; Schneider, H.; Hofmann-Winkler, H.; et al. TMPRSS2 Activates the Human Coronavirus 229E for Cathepsin-Independent Host Cell Entry and Is Expressed in Viral Target Cells in the Respiratory Epithelium. J. Virol. 2013, 87, 6150–6160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhirnov, O.P.; Matrosovich, T.Y.; Matrosovich, M.N.; Klenk, H.-D. Aprotinin, a Protease Inhibitor, Suppresses Proteolytic Activation of Pandemic H1N1v Influenza Virus. Antivir. Chem. Chemother. 2011, 21, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Zhirnov, O.P.; Malyshev, N.A. A new direction in the treatment of influenza and acute respiratory viral infections with aprotinin using a manual propellant metered-dose mini-inhaler. Lechaschiy Vrach 2014, 1, 57–62. Available online: https://www.lvrach.ru/2014/01/15435873 (accessed on 2 July 2023).
- Zhirnov, O.P.; Bokova, N.O.; Isaeva, E.I.; Vorobieva, I.V.; Malyshev, N.A. Pathogenetic treatment of influenza patients with aerosolized form of aprotinin, a protease inhibitor. Biol. Prod. Prev. Diagn. Treat. 2015, 4, 59–64. Available online: https://www.biopreparations.ru/jour/article/view/35?locale=en_US (accessed on 2 July 2023).
- Day, J.R.; Landis, R.C.; Taylor, K.M. Aprotinin and the protease-activated receptor 1 thrombin receptor: Antithrombosis, inflammation, and stroke reduction. Semin. Cardiothorac. Vasc. Anesth. 2006, 10, 132–142. [Google Scholar] [CrossRef]
- Landis, R.C.; Asimakopoulos, G.; Poullis, M.; Haskard, D.O.; Taylor, K.M. The antithrombotic and antiinflammatory mechanisms of action of aprotinin. Ann. Thorac. Surg. 2001, 72, 2169–2175. [Google Scholar] [CrossRef]
- Böttcher-Friebertshäuser, E.; Klenk, H.-D.; Garten, W. Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium. Pathog. Dis. 2013, 69, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Zhirnov, O.P.; Ovcharenko, A.V.; Bukrinskaya, A.G. A modified plaque assay method for accurate analysis of infectivity of influenza viruses with uncleaved hemagglutinin. Arch. Virol. 1982, 71, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Zhirnov, O.P.; Ovcharenko, A.V.; Bukrinskaia, A.G. Usovershenstvovannyĭ metod opredeleniia infektsionnoĭ aktivnosti virusa grippa [Improved method of determining the infectivity of the influenza virus]. Vopr. Virusol. 1981, 3, 298–305. Available online: https://pubmed.ncbi.nlm.nih.gov/7293161/ (accessed on 2 July 2023).
- Zhirnov, O.P.; Ovcharenko, A.V.; Bukrinskaya, A.G. Myxovirus Replication in Chicken Embryos Can Be Suppressed by Aprotinin Due to the Blockage of Viral Glycoprotein Cleavage. J. Gen. Virol. 1985, 66, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Zhirnov, O.P.; Golyando, P.B.; Ovcharenko, A.V. Replication of Influenza B virus in chicken embryos is suppressed by exogenous aprotinin. Arch. Virol. 1994, 135, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, K. New Data on Paxlovid Reported. AJN Am. J. Nurs. 2022, 122, 59. [Google Scholar] [CrossRef]
- Zhirnov, O.P.; Ikizler, M.R.; Wright, P.F. Cleavage of Influenza A Virus Hemagglutinin in Human Respiratory Epithelium Is Cell Associated and Sensitive to Exogenous Antiproteases. J. Virol. 2002, 76, 8682–8689. [Google Scholar] [CrossRef] [Green Version]
- Goliando, P.B.; Ovcharenko, A.V.; Zhirnov, O.P. Inhibition of the reproduction of the influenza B virus by aprotinin. Vopr. Virusol. 1992, 37, 144–146. Available online: https://pubmed.ncbi.nlm.nih.gov/1279898/ (accessed on 2 July 2023).
- Zhirnov, O.P.; Khanykov, A.V. Aerosolpraparat auf Aprotininbasis zur Behandlung von Virusinfektionen der Atemwege. Eur. Patent Application EP 25994283, 2013. Available online: https://patentimages.storage.googleapis.com/45/c2/06/87905f9e6fec16/EP2594283A1.pdf (accessed on 2 July 2023).
- Zhirnov, O.P.; Klenk, H.D.; Wright, P.F. Aprotinin and similar protease inhibitors as drugs against influenza. Antivir. Res. 2011, 92, 27–36. [Google Scholar] [CrossRef]
- Ovcharenko, A.V.; Goliando, P.B.; Zhirnov, O.P. The therapeutic effect of aprotinin inhalations in influenza and paramyxovirus infections in mice. Vopr. Virusol. 1992, 37, 207–211. Available online: https://pubmed.ncbi.nlm.nih.gov/1281946 (accessed on 2 July 2023).
- Ovcharenko, A.V.; Zhirnov, O.P. Aprotinin aerosol treatment of influenza and paramyxovirus bronchopneumonia of mice. Antivir. Res. 1994, 23, 107–118. [Google Scholar] [CrossRef]
- Zhirnov, O.P.; Ovcharenko, A.V. Pharmaceutical Aerosol Composition and Application Thereof for Treatment and Prophylaxis of Viral Diseases. U.S. Patent 5723439A, 1998. Available online: https://patents.google.com/patent/US5723439A/zh (accessed on 2 July 2023).
- Zhirnov, O.P.; Khanykov, A.V. Aprotinin Aerosol for Treating Viral Respiratory Infections. Patent RU 2425691, 2011. Available online: https://patents.google.com/patent/RU2425691C1/en (accessed on 2 July 2023).
- Zhirnov, O.P.; Kirzhner, L.S.; Ovcharenko, A.V.; Malyshev, N.A. Clinical effectiveness of aprotinin aerosol in influenza and parainfluenza. Vestn. Ross. Akad. Meditsinskikh Nauk. 1996, 5, 26–31. Available online: https://pubmed.ncbi.nlm.nih.gov/8924822/ (accessed on 2 July 2023).
- Al-Amoodi, M.; Rao, K.; Rao, S.; Brewer, J.H.; Magalski, A.; Chhatriwalla, A.K. Fulminant Myocarditis Due to H1N1 Influenza. Circ. Hear. Fail. 2010, 3, e7–e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ukimura, A.; Satomi, H.; Ooi, Y.; Kanzaki, Y. Myocarditis Associated with Influenza a H1N1pdm2009. Influenza Res. Treat. 2012, 2012, 351979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, H.-Y.; Yamada, H.; Chida, J.; Wang, S.; Yano, M.; Yao, M.; Zhu, J.; Kido, H. Up-regulation of ectopic trypsins in the myocardium by influenza A virus infection triggers acute myocarditis. Cardiovasc. Res. 2011, 89, 595–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, H.-Y.; Sun, H.-M.; Xue, L.-J.; Pan, M.; Wang, Y.-P.; Kido, H.; Zhu, J.-H. Ectopic trypsin in the myocardium promotes dilated cardiomyopathy after influenza A virus infection. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H922–H932. [Google Scholar] [CrossRef] [Green Version]
- Stadler, K.; Masignani, V.; Eickmann, M.; Becker, S.; Abrignani, S.; Klenk, H.-D.; Rappuoli, R. SARS—Beginning to understand a new virus. Nat. Rev. Microbiol. 2003, 1, 209–218. [Google Scholar] [CrossRef]
- Shi, J.-Y.; Pan, H.-Y.; Liu, K.; Pan, M.; Si, G.-J. Expression of ectopic trypsin in atherosclerotic plaques and the effects of aprotinin on plaque stability. Arch. Biochem. Biophys. 2020, 690, 108460. [Google Scholar] [CrossRef]
- Wang, M.-Y.; Zhao, R.; Gao, L.-J.; Gao, X.-F.; Wang, D.-P.; Cao, J.-M. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front. Cell. Infect. Microbiol. 2020, 10, 587269. [Google Scholar] [CrossRef]
- Yang, H.; Rao, Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat. Rev. Microbiol. 2021, 19, 685–700. [Google Scholar] [CrossRef]
- Menéndez, J.C. Approaches to the Potential Therapy of COVID-19: A General Overview from the Medicinal Chemistry Perspective. Molecules 2022, 27, 658. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, M.; Yang, Y.; Gu, X.; Yang, K.; Li, M.; Liu, Y.; Zhang, Q.; Zhang, P.; Wang, Y.; et al. Furin: A Potential Therapeutic Target for COVID-19. iScience 2020, 23, 101642. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, H.; Ji, W.; Wu, W.; Chen, S.; Zhang, W.; Duan, G. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses 2020, 12, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zumla, A.; Chan, J.F.W.; Azhar, E.I.; Hui, D.S.C.; Yuen, K.-Y. Coronaviruses—Drug discovery and therapeutic options. Nat. Rev. Drug Discov. 2016, 15, 327–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2021, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol. Cell 2020, 78, 779–784.e5. [Google Scholar] [CrossRef]
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef]
- Coutard, B.; Valle, C.; de Lamballerie, X.; Canard, B.; Seidah, N.G.; Decroly, E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir. Res. 2020, 176, 104742. [Google Scholar] [CrossRef]
- Fehr, A.R.; Perlman, S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In Coronaviruses; Springer: New York, NY, USA, 2015; pp. 1–23. [Google Scholar]
- Wu, C.-T.; Lidsky, P.V.; Xiao, Y.; Cheng, R.; Lee, I.T.; Nakayama, T.; Jiang, S.; He, W.; Demeter, J.; Knight, M.G.; et al. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell 2023, 186, 112–130.e20. [Google Scholar] [CrossRef]
- Duong, B.V.; Larpruenrudee, P.; Fang, T.; Hossain, S.I.; Saha, S.C.; Gu, Y.; Islam, M.S. Is the SARS CoV-2 Omicron Variant Deadlier and More Transmissible Than Delta Variant? Int. J. Environ. Res. Public Health 2022, 19, 4586. [Google Scholar] [CrossRef]
- Katella, K. 5 Things to Know About the Delta Variant. Yale Medicine. 2021. Available online: https://www.yalemedicine.org/nMws/5-things-to-know-delta-variant-covid (accessed on 2 July 2023).
- Xu, R.; Wang, W.; Zhang, W. As the SARS-CoV-2 virus evolves, should Omicron subvariant BA.2 be subjected to quarantine, or should we learn to live with it? Front. Public Health 2022, 10, 1039123. [Google Scholar] [CrossRef]
- Li, Q.; Nie, J.; Wu, J.; Zhang, L.; Ding, R.; Wang, H.; Zhang, Y.; Li, T.; Liu, S.; Zhang, M.; et al. SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell 2021, 184, 2362–2371.e9. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Beltran, W.F.; Lam, E.C.; Denis, K.S.; Nitido, A.D.; Garcia, Z.H.; Hauser, B.M.; Feldman, J.; Pavlovic, M.N.; Gregory, D.J.; Poznansky, M.C.; et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021, 184, 2372–2383.e9. [Google Scholar] [CrossRef]
- Cao, Y.; Yisimayi, A.; Bai, Y.; Huang, W.; Li, X.; Zhang, Z.; Yuan, T.; An, R.; Wang, J.; Xiao, T.; et al. Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines. Cell Res. 2021, 31, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Roberts, G.C. What Is Omicron XE Variant and Is There Cause for Concern? World Economic Forum, 20 April 2022. Available online: https://www.weforum.org/agenda/2022/04/omicron-xe-virologist-variants-covid19/ (accessed on 2 July 2023).
- Ulloa, A.C.; Buchan, S.A.; Daneman, N.; Brown, K.A. Estimates of SARS-CoV-2 Omicron Variant Severity in Ontario, Canada. JAMA 2022, 327, 1286. [Google Scholar] [CrossRef] [PubMed]
- Berg, S. XBB.1.5 Omicron Subvariant: Questions Patients May Have. Public Health, 2 February 2023. Available online: https://www.ama-assn.org/delivering-care/public-health/xbb15-omicron-subvariant-questions-patients-may-have (accessed on 2 July 2023).
- Martín-Sánchez, F.J.; Martínez-Sellés, M.; García, J.M.M.; Guillén, S.M.; Rodríguez-Artalejo, F.; Ruiz-Galiana, J.; Cantón, R.; Ramos, P.D.L.; García-Botella, A.; García-Lledó, A.; et al. Insights for COVID-19 in 2023. Rev. Española Quimioter. 2022, 36, 114–124. [Google Scholar] [CrossRef]
- Fan, Y.; Li, X.; Zhang, L.; Wan, S.; Zhang, L.; Zhou, F. SARS-CoV-2 Omicron variant: Recent progress and future perspectives. Signal Transduct. Target. Ther. 2022, 7, 141. [Google Scholar] [CrossRef]
- Pia, L.; Rowland-Jones, S. Omicron entry route. Nat. Rev. Immunol. 2022, 22, 144. [Google Scholar] [CrossRef]
- Willett, B.J.; Grove, J.; MacLean, O.A.; Wilkie, C.; Lorenzo, G.D.; Furnon, W.; Cantoni, D.; Scott, S.; Logan, N.; Ashraf, S.; et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat. Microbiol. 2022, 7, 1161–1179. [Google Scholar] [CrossRef]
- Meng, B.; Abdullahi, A.; Ferreira, I.A.T.M.; Goonawardane, N.; Saito, A.; Kimura, I.; Yamasoba, D.; Gerber, P.P.; Fatihi, S.; Rathore, S.; et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 2022, 603, 706–714. [Google Scholar] [CrossRef]
- Romano, M.; Ruggiero, A.; Squeglia, F.; Maga, G.; Berisio, R. A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells 2020, 9, 1267. [Google Scholar] [CrossRef]
- Pozzi, C.; Vanet, A.; Francesconi, V.; Tagliazucchi, L.; Tassone, G.; Venturelli, A.; Spyrakis, F.; Mazzorana, M.; Costi, M.P.; Tonelli, M. Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery–Genetics Alliance Perspective. J. Med. Chem. 2023, 66, 3664–3702. [Google Scholar] [CrossRef] [PubMed]
- Essalmani, R.; Jain, J.; Susan-Resiga, D.; Andréo, U.; Evagelidis, A.; Derbali, R.M.; Huynh, D.N.; Dallaire, F.; Laporte, M.; Delpal, A.; et al. Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity. J. Virol. 2022, 96, e0012822. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Agoramoorthy, G.; Lee, S.-S. The Drug Repurposing for COVID-19 Clinical Trials Provide Very Effective Therapeutic Combinations: Lessons Learned from Major Clinical Studies. Front. Pharmacol. 2021, 12, 704205. [Google Scholar] [CrossRef]
- Bojkova, D.; Widera, M.; Ciesek, S.; Wass, M.N.; Michaelis, M.; Cinatl, J. Reduced interferon antagonism but similar drug sensitivity in Omicron variant compared to Delta variant of SARS-CoV-2 isolates. Cell Res. 2022, 32, 319–321. [Google Scholar] [CrossRef]
- Takashita, E.; Kinoshita, N.; Yamayoshi, S.; Sakai-Tagawa, Y.; Fujisaki, S.; Ito, M.; Iwatsuki-Horimoto, K.; Chiba, S.; Halfmann, P.; Nagai, H.; et al. Efficacy of Antibodies and Antiviral Drugs against COVID-19 Omicron Variant. N. Engl. J. Med. 2022, 386, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, Y.; Lavrijsen, M.; Lamers, M.M.; de Vries, A.C.; Rottier, R.J.; Bruno, M.J.; Peppelenbosch, M.P.; Haagmans, B.L.; Pan, Q. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res. 2022, 32, 322–324. [Google Scholar] [CrossRef]
- Zhao, L.; Zhong, W. Mechanism of action of favipiravir against SARS-CoV-2: Mutagenesis or chain termination? Innovation 2021, 2, 100165. [Google Scholar] [CrossRef]
- Kokic, G.; Hillen, H.S.; Tegunov, D.; Dienemann, C.; Seitz, F.; Schmitzova, J.; Farnung, L.; Siewert, A.; Höbartner, C.; Cramer, P. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat. Commun. 2021, 12, 279. [Google Scholar] [CrossRef]
- Tian, L.; Pang, Z.; Li, M.; Lou, F.; An, X.; Zhu, S.; Song, L.; Tong, Y.; Fan, H.; Fan, J. Molnupiravir and Its Antiviral Activity against COVID-19. Front. Immunol. 2022, 13, 855496. [Google Scholar] [CrossRef]
- Marzi, M.; Vakil, M.K.; Bahmanyar, M.; Zarenezhad, E. Paxlovid: Mechanism of Action, Synthesis, and In Silico Study. BioMed Res. Int. 2022, 2022, 7341493. [Google Scholar] [CrossRef]
- McMahon, J.H.; Lau, J.S.Y.; Coldham, A.; Roney, J.; Hagenauer, M.; Price, S.; Bryant, M.; Garlick, J.; Paterson, A.; Lee, S.J.; et al. Favipiravir in early symptomatic COVID-19, a randomised placebo-controlled trial. Eclinical Med. 2022, 54, 101703. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020, 395, 1569–1578. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, E. No Reduction in Hospitalisation or Death from Covid Treatment Molnupiravir. Pulse, 20 October 2022. Available online: https://www.pulsetoday.co.uk/news/clinical-areas/respiratory/no-reduction-in-hospitalisation-or-death-from-covid-treatment-molnupiravir (accessed on 2 July 2023).
- Sirijatuphat, R.; Manosuthi, W.; Niyomnaitham, S.; Owen, A.; Copeland, K.K.; Charoenpong, L.; Rattanasompattikul, M.; Mahasirimongkol, S.; Wichukchinda, N.; Chokephaibulkit, K. Early treatment of Favipiravir in COVID-19 patients without pneumonia: A multicentre, open-labelled, randomized control study. Emerg. Microbes Infect. 2022, 11, 2197–2206. [Google Scholar] [CrossRef] [PubMed]
- Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad. Ser. B 2017, 93, 449–463. [Google Scholar] [CrossRef]
- Aleem, A.; Kothadia, J.P. Remdesivir. In StatPearls [Internet]. Treasure Island (FL); StatPearls Publishing: Tampa, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK563261/ (accessed on 2 July 2023).
- The United States Food and Drug Administration. FDA Approves First Treatment for COVID-19. 22 October 2020. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19 (accessed on 2 July 2023).
- Bhanot, G.; DeLisi, C. Predictions for Europe for the COVID-19 pandemic from a SIR model. medRxiv 2020. [Google Scholar] [CrossRef]
- Repurposed Antiviral Drugs for COVID-19—Interim WHO Solidarity Trial Results. N. Engl. J. Med. 2021, 384, 497–511. [CrossRef] [PubMed]
- Reuters. Fact Check-No Evidence Remdesivir Is “killing” COVID-19 Patients, Contrary to Social Media Posts. Reuters Fact Check, August 2022. Available online: https://www.reuters.com/article/factcheck-coronavirus-remdesivir-idUSL1N30111J (accessed on 2 July 2023).
- Hsu, J. COVID-19: What now for remdesivir? BMJ 2020, 371, m4457. [Google Scholar] [CrossRef] [PubMed]
- WHO Guideline Development Group Advises against the Use of Remdesivir for COVID-19. BMJ. 2020. Available online: https://www.bmj.com/company/newsroom/who-guideline-development-group-advises-against-use-of-remdesivir-for-covid-19/ (accessed on 2 July 2023).
- WHO. WHO Recommends against the Use of Remdesivir in COVID-19 Patients. 20 November 2020. Available online: https://www.who.int/news-room/feature-stories/detail/who-recommends-against-the-use-of-remdesivir-in-covid-19-patients (accessed on 2 July 2023).
- Wikipedia. Remdesivir. Available online: https://en.wikipedia.org/wiki/Remdesivir#Name (accessed on 2 July 2023).
- The United States Food and Drug Administration. VEKLURY® (Remdesivir) for Injection, for Intravenous US. 2020. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/214787Orig1s000lbl.pdf (accessed on 2 July 2023).
- Hashemian, S.M.R.; Pourhanifeh, M.H.; Hamblin, M.R.; Shahrzad, M.K.; Mirzaei, H. RdRp inhibitors and COVID-19: Is molnupiravir a good option? Biomed. Pharmacother. 2022, 146, 112517. [Google Scholar] [CrossRef]
- The Medicines and Healthcare Products Regulatory Agency (MHRA). First Oral Antiviral for COVID-19, Lagevrio (Molnupiravir), Approved by MHRA. 2021. Available online: https://www.gov.uk/government/news/first-oral-antiviral-for-covid-19-lagevrio-molnupiravir-approved-by-mhra (accessed on 2 July 2023).
- The Medicines and Healthcare Products Regulatory Agency. Last Updated 19/10/22—Summary of Product Characteristics for Lagevrio. Available online: https://www.gov.uk/government/publications/regulatory-approval-of-lagevrio-molnupiravir/summary-of-product-characteristics-for-lagevrio (accessed on 2 July 2023).
- Masyeni, S.; Iqhrammullah, M.; Frediansyah, A.; Nainu, F.; Tallei, T.; Emran, T.B.; Ophinni, Y.; Dhama, K.; Harapan, H. Molnupiravir: A lethal mutagenic drug against rapidly mutating severe acute respiratory syndrome coronavirus 2—A narrative review. J. Med. Virol. 2022, 94, 3006–3016. [Google Scholar] [CrossRef]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for Oral Treatment of COVID-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef]
- Fischer, W.A.; Eron, J.J.; Holman, W.; Cohen, M.S.; Fang, L.; Szewczyk, L.J.; Sheahan, T.P.; Baric, R.; Mollan, K.R.; Wolfe, C.R.; et al. A phase 2a clinical trial of molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus. Sci. Transl. Med. 2022, 14, eabl7430. [Google Scholar] [CrossRef]
- Caraco, Y.; Crofoot, G.E.; Moncada, P.A.; Galustyan, A.N.; Musungaie, D.B.; Payne, B.; Kovalchuk, E.; Gonzalez, A.; Brown, M.L.; Williams-Diaz, A.; et al. Phase 2/3 Trial of Molnupiravir for Treatment of COVID-19 in Nonhospitalized Adults. NEJM Evid. 2022, 1, 509–520. [Google Scholar] [CrossRef]
- Merck. Merck and Ridgeback’s Investigational Oral Antiviral Molnupiravir Reduced the Risk of Hospitalization or Death by Approximately 50 Percent Compared to Placebo for Patients with Mild or Moderate COVID-19 in Positive Interim Analysis of Phase 3 Study. 1 October 2021. Available online: https://www.merck.com/news/merck-and-ridgebacks-investigational-oral-antiviralmolnupiravir-reduced-the-risk-of-hospitalization-or-death-by-approximately50-percent-compared-to-placebo-for-patients-with-mild-or-moderat/ (accessed on 2 July 2023).
- Arribas, J.R.; Bhagani, S.; Lobo, S.M.; Khaertynova, I.; Mateu, L.; Fishchuk, R.; Park, W.Y.; Hussein, K.; Kim, S.W.; Ghosn, J.; et al. Randomized Trial of Molnupiravir or Placebo in Patients Hospitalized with COVID-19. NEJM Evid. 2022, 1, EVIDoa2100044. [Google Scholar] [CrossRef]
- The United States Food and Drug Administration. Fact Sheet for Healthcare Providers: Emergency Use Uthorization for Lagevrio™ (Molnupiravir) Capsules. Available online: https://www.fda.gov/media/155054/download (accessed on 2 July 2023).
- Reliefweb. WHO Updates Its Treatment Guidelines to Include Molnupiravir. 3 Mar 2022. Available online: https://reliefweb.int/report/world/who-updates-its-treatment-guidelines-include-molnupiravir?gclid=Cj0KCQjwwfiaBhC7ARIsAGvcPe5EAG7zvtT7RuwaHnYm2wGPNqKitVhZ7x1AAEjehV1s_D3UxAk8kZcaAl6cEALw_wcB (accessed on 2 July 2023).
- Ahmad, B.; Batool, M.; ul Ain, Q.; Kim, M.S.; Choi, S. Exploring the Binding Mechanism of PF-07321332 SARS-CoV-2 Protease Inhibitor through Molecular Dynamics and Binding Free Energy Simulations. Int. J. Mol. Sci. 2021, 22, 9124. [Google Scholar] [CrossRef] [PubMed]
- Eurapean Medicines Apency. EMA Issues Advice on Use of Paxlovid (PF-07321332 and RTV Treatment of COVID-19: Rolling Review Starts in Parallel. 16 December 2021. Available online: https://www.ema.europa.eu/en/news/ema-issues-advice-use-paxlovid-pf-07321332-ritonavir-treatment-covid-19 (accessed on 2 July 2023).
- DrugBank. Nirmatrelvir. DrugBank Accession Number DB16691. Available online: https://go.drugbank.com/drugs/DB16691 (accessed on 2 July 2023).
- GoodRx. Paxlovid (Nirmatrelvir/Ritonavir). 2021. Available online: https://www.goodrx.com/paxlovid/what-is (accessed on 2 July 2023).
- Jeong, J.H.; Chokkakula, S.; Min, S.C.; Kim, B.K.; Choi, W.-S.; Oh, S.; Yun, Y.S.; Kang, D.H.; Lee, O.-J.; Kim, E.-G.; et al. Combination therapy with nirmatrelvir and molnupiravir improves the survival of SARS-CoV-2 infected mice. Antivir. Res. 2022, 208, 105430. [Google Scholar] [CrossRef] [PubMed]
- Rosenke, K.; Lewis, M.C.; Feldmann, F.; Bohrnsen, E.; Schwarz, B.; Okumura, A.; Bohler, W.F.; Callison, J.; Shaia, C.; Bosio, C.M.; et al. Combined molnupiravir-nirmatrelvir treatment improves the inhibitory effect on SARS-CoV-2 in macaques. JCI Insight 2023, 8, e166485. [Google Scholar] [CrossRef]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Baniecki, M.; Hendrick, V.M.; Damle, B.; Simón-Campos, A.; et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with COVID-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef]
- Lee, E.; Park, S.; Choi, J.-P.; Kim, M.-K.; Yang, E.; Ham, S.Y.; Lee, S.; Lee, B.; Yang, J.-S.; Park, B.K.; et al. Short-Term Effectiveness of Oral Nirmatrelvir/Ritonavir Against the SARS-CoV-2 Omicron Variant and Culture-Positive Viral Shedding. J. Korean Med. Sci. 2023, 38, e59. [Google Scholar] [CrossRef]
- Alotaibi, M.; Ali, A.; Bakhshwin, D.; Alatawi, Y.; Alotaibi, S.; Alhifany, A.; Alharthi, B.; Alharthi, N.; Alyazidi, A.; Alharthi, Y.; et al. Effectiveness and Safety of Favipiravir Compared to Hydroxychloroquine for Management of COVID-19: A Retrospective Study. Int. J. Gen. Med. 2021, 14, 5597–5606. [Google Scholar] [CrossRef]
- Duyan, M.; ÖZTURAN, İ.U. Comparing the effects of hydroxychloroquine, favipiravir, and hydroxychloroquine plus favipiravir on survival of geriatric population with COVID-19-related pneumonia: A propensity score-matched analysis. Turk. J. Geriatr. 2022, 25, 138–147. [Google Scholar] [CrossRef]
- Shindo, Y.; Kondoh, Y.; Kada, A.; Doi, Y.; Tomii, K.; Mukae, H.; Murata, N.; Imai, R.; Okamoto, M.; Yamano, Y.; et al. Phase II Clinical Trial of Combination Therapy with Favipiravir and Methylprednisolone for COVID-19 with Non-Critical Respiratory Failure. Infect. Dis. Ther. 2021, 10, 2353–2369. [Google Scholar] [CrossRef] [PubMed]
- Murohashi, K.; Hagiwara, E.; Kitayama, T.; Yamaya, T.; Higa, K.; Sato, Y.; Otoshi, R.; Shintani, R.; Okabayashi, H.; Ikeda, S.; et al. Outcome of early-stage combination treatment with favipiravir and methylprednisolone for severe COVID-19 pneumonia: A report of 11 cases. Respir. Investig. 2020, 58, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.M.; Brown, L.-A.K.; Chowdhury, K.; Davey, S.; Yee, P.; Ikeji, F.; Ndoutoumou, A.; Shah, D.; Lennon, A.; Rai, A.; et al. Favipiravir, lopinavir-ritonavir, or combination therapy (FLARE): A randomised, double-blind, 2 × 2 factorial placebo-controlled trial of early antiviral therapy in COVID-19. PLOS Med. 2022, 19, e1004120. [Google Scholar] [CrossRef] [PubMed]
- Terada, J.; Fujita, R.; Kawahara, T.; Hirasawa, Y.; Kinoshita, T.; Takeshita, Y.; Isaka, Y.; Kinouchi, T.; Tajima, H.; Tada, Y.; et al. Favipiravir, camostat, and ciclesonide combination therapy in patients with moderate COVID-19 pneumonia with/without oxygen therapy: An open-label, single-center phase 3 randomized clinical trial. Eclinical Med. 2022, 49, 101484. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Patterson, T.F.; Mehta, A.K.; Tomashek, K.M.; Wolfe, C.R.; Ghazaryan, V.; Marconi, V.C.; Ruiz-Palacios, G.M.; Hsieh, L.; Kline, S.; et al. Baricitinib plus Remdesivir for Hospitalized Adults with COVID-19. N. Engl. J. Med. 2021, 384, 795–807. [Google Scholar] [CrossRef]
- Rosas, I.O.; Diaz, G.; Gottlieb, R.L.; Lobo, S.M.; Robinson, P.; Hunter, B.D.; Cavalcante, A.W.; Overcash, J.S.; Hanania, N.A.; Skarbnik, A.; et al. Tocilizumab and remdesivir in hospitalized patients with severe COVID-19 pneumonia: A randomized clinical trial. Intensive Care Med. 2021, 47, 1258–1270. [Google Scholar] [CrossRef]
- Kasgari, H.A.; Babamahmoodi, F.; Badabi, A.R.D.; Davanloo, A.A.; Moradimajd, P.; Samaee, H. Combination Therapy with Remdisivir and Tocilizumab for COVID-19: Lessons for Futures Studies. Arch. Clin. Infect. Dis. 2020, 15, 1–5. [Google Scholar] [CrossRef]
- Vulturar, D.-M.; Neag, M.A.; Vesa Ștefan, C.; Maierean, A.-D.; Gherman, D.; Buzoianu, A.D.; Orăsan, O.H.; Todea, D.-A. Therapeutic Efficacy and Outcomes of Remdesivir versus Remdesivir with Tocilizumab in Severe SARS-CoV-2 Infection. Int. J. Mol. Sci. 2022, 23, 14462. [Google Scholar] [CrossRef]
- ACTIV-3/TICO LY-CoV555 Study Group. Neutralizing Monoclonal Antibody for Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 905–914. [Google Scholar] [CrossRef]
- Kalil, A.C.; Mehta, A.K.; Patterson, T.F.; Erdmann, N.; Gomez, C.A.; Jain, M.K.; Wolfe, C.R.; Ruiz-Palacios, G.M.; Kline, S.; Pineda, J.R.; et al. Efficacy of interferon beta-1a plus remdesivir compared with remdesivir alone in hospitalised adults with COVID-19: A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2021, 9, 1365–1376. [Google Scholar] [CrossRef]
- Fakharian, A.; Barati, S.; Mirenayat, M.; Rezaei, M.; Haseli, S.; Torkaman, P.; Yousefian, S.; Dastan, A.; Jamaati, H.; Dastan, F. Evaluation of adalimumab effects in managing severe cases of COVID-19: A randomized controlled trial. Int. Immunopharmacol. 2021, 99, 107961. [Google Scholar] [CrossRef] [PubMed]
- Ianevski, A.; Yao, R.; Zusinaite, E.; Lello, L.S.; Wang, S.; Jo, E.; Yang, J.; Ravlo, E.; Wang, W.; Lysvand, H.; et al. Synergistic Interferon-Alpha-Based Combinations for Treatment of SARS-CoV-2 and Other Viral Infections. Viruses 2021, 13, 2489. [Google Scholar] [CrossRef] [PubMed]
- Abdelnabi, R.; Foo, C.S.; Kaptein, S.J.F.; Zhang, X.; Do, T.N.D.; Langendries, L.; Vangeel, L.; Breuer, J.; Pang, J.; Williams, R.; et al. The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model. eBioMedicine 2021, 72, 103595. [Google Scholar] [CrossRef] [PubMed]
- The United States Food and Drug Administration. Coronavirus (COVID-19) Update: FDA Authorizes Drug Combination for Treatment of COVID-19. 19 November 2020. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-drug-combination-treatment-covid-19 (accessed on 2 July 2023).
- Adem, K.A.; Shanti, A.; Stefanini, C.; Lee, S. Inhibition of SARS-CoV-2 Entry into Host Cells Using Small Molecules. Pharmaceuticals 2020, 13, 447. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Mitre, M.P.; Tong, S.Y.C.; Denholm, J.T.; Dore, G.J.; Bowen, A.C.; Lewin, S.R.; Venkatesh, B.; Hills, T.E.; McQuilten, Z.; Paterson, D.L.; et al. Nafamostat Mesylate for Treatment of COVID-19 in Hospitalised Patients: A Structured, Narrative Review. Clin. Pharmacokinet. 2022, 61, 1331–1343. [Google Scholar] [CrossRef]
- Hoffmann, M.; Hofmann-Winkler, H.; Smith, J.C.; Krüger, N.; Arora, P.; Sørensen, L.K.; Søgaard, O.S.; Hasselstrøm, J.B.; Winkler, M.; Hempel, T.; et al. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine 2021, 65, 103255. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Jeon, S.-H.; Kim, J.; Koh, J.H.; Ra, S.W.; Kim, J.W.; Kim, Y.; Kim, C.K.; Shin, Y.C.; Kang, B.D.; et al. A Double-Blind, Randomized, Placebo-Controlled, Phase II Clinical Study to Evaluate the Efficacy and Safety of Camostat Mesylate (DWJ1248) in Adult Patients with Mild to Moderate COVID-19. Antimicrob. Agents Chemother. 2023, 67, e0045222. [Google Scholar] [CrossRef]
- Chupp, G.; Spichler-Moffarah, A.; Søgaard, O.S.; Esserman, D.; Dziura, J.; Danzig, L.; Chaurasia, R.; Patra, K.P.; Salovey, A.; Nunez, A.; et al. A Phase 2 Randomized, Double-Blind, Placebo-controlled Trial of Oral Camostat Mesylate for Early Treatment of COVID-19 Outpatients Showed Shorter Illness Course and Attenuation of Loss of Smell and Taste. medRxiv 2022. Preprint. [Google Scholar] [CrossRef]
- Kinoshita, T.; Shinoda, M.; Nishizaki, Y.; Shiraki, K.; Hirai, Y.; Kichikawa, Y.; Tsushima, K.; Shinkai, M.; Komura, N.; Yoshida, K.; et al. A multicenter, double-blind, randomized, parallel-group, placebo-controlled study to evaluate the efficacy and safety of camostat mesilate in patients with COVID-19 (CANDLE study). BMC Med. 2022, 20, 342. [Google Scholar] [CrossRef]
- Tobback, E.; Degroote, S.; Buysse, S.; Delesie, L.; Dooren, L.V.; Vanherrewege, S.; Barbezange, C.; Hutse, V.; Romano, M.; Thomas, I.; et al. Efficacy and safety of camostat mesylate in early COVID-19 disease in an ambulatory setting: A randomized placebo-controlled phase II trial. Int. J. Infect. Dis. 2022, 122, 628–635. [Google Scholar] [CrossRef]
- Gunst, J.D.; Staerke, N.B.; Pahus, M.H.; Kristensen, L.H.; Bodilsen, J.; Lohse, N.; Dalgaard, L.S.; Brønnum, D.; Fröbert, O.; Hønge, B.; et al. Efficacy of the TMPRSS2 inhibitor camostat mesilate in patients hospitalized with COVID-19-a double-blind randomized controlled trial. EClinical Med. 2021, 35, 100849. [Google Scholar] [CrossRef] [PubMed]
- Inokuchi, R.; Kuno, T.; Komiyama, J.; Uda, K.; Miyamoto, Y.; Taniguchi, Y.; Abe, T.; Ishimaru, M.; Adomi, M.; Tamiya, N.; et al. Association between Nafamostat Mesylate and In-Hospital Mortality in Patients with Coronavirus Disease 2019: A Multicenter Observational Study. J. Clin. Med. 2021, 11, 116. [Google Scholar] [CrossRef] [PubMed]
- Ivashchenko, A.V.; Ivashchenko, A.A.; Savchuk, N.F.; Ivashchenko, A.A.; Loginov, V.G.; Topr, M. Anti-SARS-COV-2 Viral Agent Antiprovir. Patent RU 2738885 2020. [Google Scholar]
- Bojkova, D.; Bechtel, M.; McLaughlin, K.-M.; McGreig, J.E.; Klann, K.; Bellinghausen, C.; Rohde, G.; Jonigk, D.; Braubach, P.; Ciesek, S.; et al. Aprotinin Inhibits SARS-CoV-2 Replication. Cells 2020, 9, 2377. [Google Scholar] [CrossRef]
- Ivachtchenko, A.V.; Ivashchenko, A.A.; Ivachtchenko, A.A.; Ivashchenko, I.A.; Savchuk, N.F. Combined Prevention and Treatment of Patients with Respiratory Diseases Caused by RNA Viral Infections. International Patent Application PCT/US2023/064628, 2023. [Google Scholar]
- U.S. National Library of Medicine. An Open Non-Comparative Study of the Efficacy and Safety of Aprotinin in Patients Hospitalized with COVID-19. NCT04527133, 26 August 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04527133 (accessed on 2 July 2023).
- Li, C.; Li, A.W. Hypertonic Saline and Aprotinin Inhibit Furin and Nasal Protease to Reduce SARS-CoV-2 Specific Furin Site Cleavage Activity. J. Explor. Res. Pharmacol. 2022. [Google Scholar] [CrossRef]
- Ivashchenko, A.A.; Azarova, V.N.; Egorova, A.N.; Karapetian, R.N.; Kravchenko, D.V.; Krivonos, N.V.; Loginov, V.G.; Poyarkov, S.V.; Merkulova, E.A.; Rosinkova, O.S.; et al. Effect of Aprotinin and Avifavir® Combination Therapy for Moderate COVID-19 Patients. Viruses 2021, 13, 1253. [Google Scholar] [CrossRef]
- Avezum, Á.; Oliveira, G.B.F.; Oliveira, H.; Lucchetta, R.C.; Pereira, V.F.A.; Dabarian, A.L.; Vieira, R.D.; Silva, D.V.; Kormann, A.P.M.; Tognon, A.P.; et al. Hydroxychloroquine versus placebo in the treatment of non-hospitalised patients with COVID-19 (COPE—Coalition V): A double-blind, multicentre, randomised, controlled trial. Lancet Reg. Health Am. 2022, 11, 100243. [Google Scholar] [CrossRef]
- Schwartz, I.S.; Boulware, D.R.; Lee, T.C. Hydroxychloroquine for COVID19: The curtains close on a comedy of errors. Lancet Reg. Health-Am. 2022, 11, 100268. [Google Scholar] [CrossRef]
- Singh, B.; Ryan, H.; Kredo, T.; Chaplin, M.; Fletcher, T. Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19. Cochrane Database Syst. Rev. 2021, 2, CD013587. [Google Scholar] [CrossRef]
- Lippi, G.; Muller, F.; Favaloro, E.J. D-dimer: Old dogmas, new (COVID-19) tricks. Clin. Chem. Lab. Med. 2023, 61, 841–850. [Google Scholar] [CrossRef]
- NIH. An Adaptive Study of Favipiravir Compared to Standard of Care in Hospitalized Patients with COVID-19. ClinicalTrials.gov Identifier: NCT04434248. 2020. Available online: https://clinicaltrials.gov/ (accessed on 2 July 2023).
- Ivashchenko, A.A.; Dmitriev, K.A.; Vostokova, N.V.; Azarova, V.N.; Blinow, A.A.; Egorova, A.N.; Gordeev, I.G.; Ilin, A.P.; Karapetian, R.N.; Kravchenko, D.V.; et al. AVIFAVIR for Treatment of Patients with Moderate Coronavirus Disease 2019 (COVID-19): Interim Results of a Phase II/III Multicenter Randomized Clinical Trial. Clin. Infect. Dis. 2020, 9, 1176. [Google Scholar] [CrossRef] [PubMed]
- Luan, B.; Huynh, T.; Cheng, X.; Lan, G.; Wang, H.-R. Targeting Proteases for Treating COVID-19. J. Proteome Res. 2020, 19, 11, 4316–4326. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.-L.; Zhao, R.; Matalon, S.; Matthay, M.A. Elevated Plasmin(ogen) as a Common Risk Factor for COVID-19 Susceptibility. Physiol. Rev. 2020, 100, 1065–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favresse, J.; Lippi, G.; Roy, P.-M.; Chatelain, B.; Jacqmin, H.; Cate, H.T.; Mullier, F. D-dimer: Preanalytical, analytical, postanalytical variables, and clinical applications. Crit. Rev. Clin. Lab. Sci. 2018, 55, 548–577. [Google Scholar] [CrossRef] [PubMed]
- Task Force for the Management of COVID-19 of the European Society of Cardiology; Baigent, C.; Windecker, S.; Andreini, D.; Arbelo, E.; Barbato, E.; Bartorelli, A.L.; Baumbach, A.; Behr, E.R.; Berti, S.; et al. European Society of Cardiology guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: Part 1-epidemiology, pathophysiology, and diagnosis. Cardiovasc. Res. 2022, 118, 1385–1412. [Google Scholar] [CrossRef]
- Gorog, D.A.; Storey, R.F.; Gurbel, P.A.; Tantry, U.S.; Berger, J.S.; Chan, M.Y.; Duerschmied, D.; Smyth, S.S.; Parker, W.A.E.; Ajjan, R.A.; et al. Current and novel biomarkers of thrombotic risk in COVID-19: A consensus statement from the international COVID-19 thrombosis biomarkers colloquium. Nat. Rev. Cardiol. 2022, 19, 475–495. [Google Scholar] [CrossRef]
- Redondo-Calvo, F.J.; Padín, J.F.; Muñoz-Rodríguez, J.R.; Serrano-Oviedo, L.; López-Juárez, P.; Leal, M.L.P.; Gasca, F.J.G.; Martínez, M.R.; Serrano, R.P.; Cadena, A.S.; et al. Aprotinin treatment against SARS-CoV-2: A randomized phase III study to evaluate the safety and efficacy of a pan-protease inhibitor for moderate COVID-19. Eur. J. Clin. Investig. 2022, 52, e13776. [Google Scholar] [CrossRef]
- Redondo-Calvo, F.J.; Padín, J.F.; Martínez-Alarcón, J.; Muñoz-Rodríguez, J.R.; Serrano-Oviedo, L.; López-Juárez, P.; Leal, M.L.P.; Gasca, F.J.G.; Martínez, M.R.; Serrano, R.P.; et al. Inhaled aprotinin reduces viral load in mild-to-moderate inpatients with SARS-CoV-2 infection. Eur. J. Clin. Investig. 2022, 52, e13850. [Google Scholar] [CrossRef]
Enzyme-Source-Condition | Ki |
---|---|
Chemotrypsinogen (bovine), pH 8.0 | 9.0 nM |
CMP-N-Acetylneuraminate lactosylceramide α-2,3-sialyltransferase | 74% inhibition at 300.0 nm |
Elastase (human leucocytes), pH 8.0 | 3.5 μM |
Kallikrein (pancreatic, porcine), pH 8.0 | 1.0 nM |
Kallikrein (submandibular, porcine), pH 9.0 | 1.6 nM |
Kallikrein (plasma), pH 8 | 30.0 nM |
Kallikrein (plasma), pH 7.8 | 100.0 nM |
Kallikrein (tissue) | 0.8 nM; 1.0 nM |
Kallikrein (urine, porcine), pH 9.0 | 1.7 nM |
Kallikrein (urine, human), pH 8.0 | 0.1 nM |
Trypsin (bovine), pH 8.0 | 0.06 pM |
Anhydrotrypsin (bovine), pH 8.0 | <0.3 pM |
Trypsinogen (bovine), pH 8.0 | 1.8 μM |
Chemotrypsin (bovine), pH 8.0 | 9.0 nM |
Chemotrypsin (bovine), pH 7.0 | 9.0 nM |
Plasmin (porcine), pH 7.8 | 4.0 nM |
Plasmin (human), pH 7.8 | 0.23 nM |
Plasminogen activator | 8.0 μM; 27.0 μM |
Tryptase TL-2 | 16% inhibition at 10.0 μM |
Viral Protein Target | Mechanism | Inhibitor (Drug) | Virus-IC50, nM a |
---|---|---|---|
M2 ion channel (IAV) | Interferes with virion and endosomal acidification. Inhibits downstream HA conformation change, endosomal fusion, and release of viral genomes into the cytoplasm | Amantadine (Amantadine: Symmetrel) | J—64.2 µM [139]; IAV M2 proton channel WT (S31)—16.1 µM, IAV M2 proton channel S31N mutant—199.9 µM [140] |
Rimantadine (Rimantadine: Flumadine) | J—67.0 µM [139]; IAV M2 proton channel WT (S31)—10.8 µM, IAV M2 proton channel S31N mutant > 2 mM [140] | ||
Neuraminidase (IAV and IBV) | Blocks NA enzymatic cleavage of host cell sialic acid receptors. Inhibits progeny virus budding | Oseltamivir (Tamiflu) | A—0.58 nM [141], A—1.04 nM [142], B—296.85 ± 8.41 nM, C—0.42 nM, D—172.30 nM [141], H—7.8 nM, I—0.43 nM [142] |
Zanamivir (Relenza) | A—0.38 nM [141]; A—0.35 nM [142]; B—0.44 ± 0.00 nM, C—0.23 nM, D—0.33 nM [141]; H—0.8 nM, I—0.47 nM [142] | ||
Peramivir (Rapivab/Rapiacta/PeramiFlu) | A—0.05 nM, H—0.18 nM, I—0.07 nM [142] | ||
Laninamivir (Inavir) | Represented IC50s from 0.91 nM (A(H1N1)/Yamagata/83/2006) to 40.5 nM (A(H3N2)/Wisconsin/67/2005) for H1N1 (11 strains), H3N2 (15 strains) and type B viruses (23 strains) are presented [143]. | ||
PB1 (IAV, IBV and ICV) | Preferentially incorporated by PB1 into viral RNA. Leads to chain elongation termination and/or lethal mutagenesis | Favipiravir (Avigan) | A—17.05 µM, B—5.07 µM, C—15.54 µM, D—11.36 µM [141] b |
PA (IAV and IBV) | Blocks PA endonuclease activity necessary to cleave PB2-bound, capped host mRNAs. Halts viral mRNA transcription | Baloxavir marboxil (Xofluza) | E—0.2 nM, F—0.2 nM, G—2.3 nM [144] b |
HA (IVs) [145] | Suppresses virus HA cleavage and limits reproduction of human and avian IVs with a single arginine in the HA cleavage site. | APR (AerusTM) | Represented IC50s from 11 nM (A/CA/04/09 (H1N1, 2009 pandemic)) to 110 nM (A/Bris/10/07 (H3N2, oseltamivir-resistant)) for IAV (6 strains) and 39 nM for IBV (B/Seoul/32/11 (Yamagata-like) [145]. |
Group 1 IV APR + SOC, n = 10 | Group 2 Inh APR + SOC, n = 10 | Group 3 SOC *, n = 20 | |
---|---|---|---|
Time until SARS-CoV-2 virus elimination | |||
Median (IQR), days | 7.5 (6–9), p = 0.019 | 9.0 (5–9), p = 0.006 | 9.0 (5.0–9.0) |
Time to normal body temperature (normal: <37 °C) | |||
Median (IQR), days | 3.0 (2.0–3.0), p = 0.053 | 4.5 (3.0–5.0) | 4.0 (1.0–8.0) |
Fever (°C) in patients before treatment | 38.3 ± 0.1 | 38.3 ± 0.3 | |
Time to normalization of CRP concentration (normal or minor elevation: 3 to 10 mg/L) | |||
Median (IQR), days | 6.0 (6.0–6.0), p < 0.001 | 4.0 (3.0–5.0), p < 0.001 | 14.0 (14.0–14.0) |
CRP value in patients before treatment | 21.5 (±8.2) | 38.9 (±8.1) | |
Time to normalization of D-dimer concentration (normal: <253 ng/mL) | |||
Median (IQR), days | 4.5 (3–6) | 9 (5–9) | *** nt |
D-dimer value in patients before treatment | 525.4 ± 175.7 | 820.1 ± 133.1 | nt |
Time to improvement in clinical status by 2 points on the Ordinal Scale of Clinical Improvement or discharge from the hospital. | |||
Median (IQR), days | 11.0 (6.0–11.0), p < 0.001 | 6.0 (6.0–6.0), p < 0.001 | 13.0 (11.5–15.5) |
Drug a | Dose (mg/kg) | Lung Titer (mean ± SD, log10TCID50/mL) b | Survived, No. (P) c | Mortality (%) | Average Life Expectancy (Days) |
---|---|---|---|---|---|
Control (saline) | N/A | >7.0 | 0 | 100 | 7.6 |
APR | 50,000 d | 4.75 ± 0.43 | 3 (0.0652) | 70 | 10.7 |
RDV | 5 | 4.33 ± 0.76 | 4 (0.0248) | 60 | 10.8 |
MOV | 5 | 4.17 ± 0.58 | 5 (0.0077) | 50 | 11.4 |
FVP | 5 | 2.67 ± 0.29 | 6 (0.0017) | 40 | 12.4 |
AV5080 | 0.25 | 3.92 ± 0.8 | 7 (0.0002) | 30 | 13.0 |
APR + RDV | 50,000 d + 5 | 3.5 ± 0 | 5 (0.0077) | 50 | 10.4 |
APR + MOV | 50,000 d + 5 | 3.5 ± 0.66 | 5 (0.0077) | 50 | 11.8 |
APR + FVP | 50,000 d + 5 | 2.08 ± 0.14 | 9 | 0 | 16.0 |
APR + AV5080 | 50,000 d + 0.25 | 2.5 ± 0.87 | 8 (0.00001) | 20 | 14.0 |
Cohort 1, n = 10 (IV APR + PO FVP + SOC *) | Group 2, n = 10 IV APR + SOC | Cohort 3, n = 40 (PO FVP + SOC) [310] | |
---|---|---|---|
Time until SARS-CoV-2 virus elimination | |||
Median (IQR), days | 3.5 (3–4) | 7.5 (6–9), p = 0.019 | 4.5 (4–9) |
Time to normalization of CRP concentration (normal or minor elevation: 3 to 10 mg/L) | |||
Median (IQR), days | 3.5 (3–5) | 6.0 (6.0–6.0), p < 0.001 | 14.0 (5.5–14) |
CRP value in patients before treatment | 37.8 ± 6.7 | 21.5 ± 8.2 | |
Time to normalization of D-dimer concentration (normal: <253 ng /mL) | |||
Median (IQR), days | 5.0 (4–5) | 4.5 (3–6) | NA ** |
D-dimer value in patients before treatment | 855.5 ±142.5 | 525.4 ±175.7 | NA ** |
Time to normal body temperature (normal: <37 °C) | |||
Median (IQR), days | 1.0 (1–3) | 3.0 (2.0–3.0), p = 0.053 | 2.0 (1–3) |
Fever (°C) in patients before treatment | 38.5 ± 0.4 | 38.3 ± 0.1 | >38.0 |
Time to improvement in clinical status by 2 points on the Ordinal Scale of Clinical Improvement or discharge from the hospital. | |||
Median (IQR), days | 5.0 (5–5) | 11.0 (6.0–11.0), p < 0.001 | 14.0 (11.5–16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivachtchenko, A.V.; Ivashchenko, A.A.; Shkil, D.O.; Ivashchenko, I.A. Aprotinin—Drug against Respiratory Diseases. Int. J. Mol. Sci. 2023, 24, 11173. https://doi.org/10.3390/ijms241311173
Ivachtchenko AV, Ivashchenko AA, Shkil DO, Ivashchenko IA. Aprotinin—Drug against Respiratory Diseases. International Journal of Molecular Sciences. 2023; 24(13):11173. https://doi.org/10.3390/ijms241311173
Chicago/Turabian StyleIvachtchenko, Alexandre V., Andrey A. Ivashchenko, Dmitrii O. Shkil, and Ilya A. Ivashchenko. 2023. "Aprotinin—Drug against Respiratory Diseases" International Journal of Molecular Sciences 24, no. 13: 11173. https://doi.org/10.3390/ijms241311173
APA StyleIvachtchenko, A. V., Ivashchenko, A. A., Shkil, D. O., & Ivashchenko, I. A. (2023). Aprotinin—Drug against Respiratory Diseases. International Journal of Molecular Sciences, 24(13), 11173. https://doi.org/10.3390/ijms241311173