In Vitro Evaluation of the Antiamoebic Activity of Kaempferol against Trophozoites of Entamoeba histolytica and in the Interactions of Amoebae with Hamster Neutrophils
Abstract
:1. Introduction
2. Results
2.1. Effect of Kaempferol on the Viability of E. histolytica and VERO Cells
2.2. Proteins’ Overexpression of E. histolytica in the Presence of Kaempferol
2.3. Downregulation of E. histolytica-Detoxifying Enzyme Expression in the Presence of Kaempferol
2.4. Kaempferol Induces a Decrease in MPO Activity in E. histolytica and Neutrophil Interactions
2.5. Kaempferol Induces Low ROS Release in E. histolytica and Neutrophil Interactions
2.6. Kaempferol Induces a Decrease in NO Production in the E. histolytica and Neutrophil Interaction
3. Discussion
4. Materials and Methods
4.1. Amoebic Cultures
4.2. VERO Cell Culture
4.3. E. histolytica Viability Assays (WST-1)
4.4. VERO Cell WST-1 Cytotoxicity Assay
4.5. Real-Time qPCR of Antioxidant Enzymes of E. histolytica
4.6. Protein Extraction
4.7. Neutrophil Purification
4.8. Neutrophils and E. histolytica Trophozoite Interactions
4.9. MPO Activity
4.10. ROS and NO Production
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petri, W.A.; Haque, R.; Lyerly, D.; Vines, R.R. Estimating the Impact of Amebiasis on Health. Parasitol. Today 2000, 16, 320–321. [Google Scholar] [CrossRef]
- Ramos, F.; Valdez, E.; Morán, P.; González, E.; Padilla, G.; Gómez, A.; Ramiro, M.; Melendro, E.I.; Muñoz, O.; Clark, C.G.; et al. Prevalence of Entamoeba Histolytica and Entamoeba Dispar in a Highly Endemic Rural Population. Arch. Med. Res. 2000, 31, S34–S35. [Google Scholar] [CrossRef]
- Tsutsumi, V.; Mena-Lopez, R.; Anaya-Velazquez, F.; Martinez-Palomo, A. Cellular Bases of Experimental Amebic Liver Abscess Formation. Am. J. Pathol. 1984, 117, 81–91. [Google Scholar] [PubMed]
- Jacquet, A.; Deby, C.; Mathy, M.; Moguilevsky, N.; Deby-Dupont, G.; Thirion, A.; Goormaghtigh, E.; Garcia-Quintana, L.; Bollen, A.; Pincemail, J. Spectral and Enzymatic Properties of Human Recombinant Myeloperoxidase: Comparison with the Mature Enzyme. Arch. Biochem. Biophys. 1991, 291, 132–138. [Google Scholar] [CrossRef]
- Cruz-Baquero, A.; Jaramillo, L.M.C.; Gutiérrez-Meza, M.; Jarillo-Luna, R.A.; Campos-Rodríguez, R.; Rivera-Aguilar, V.; Miliar-García, A.; Pacheco-Yepez, J. Different Behavior of Myeloperoxidase in Two Rodent Amoebic Liver Abscess Models. PLoS ONE 2017, 12, e0182480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babior, B.M.; Takeuchi, C.; Ruedi, J.; Gutierrez, A.; Wentworth, P. Investigating Antibody-Catalyzed Ozone Generation by Human Neutrophils. Proc. Natl. Acad. Sci. USA 2003, 100, 3031–3034. [Google Scholar] [CrossRef] [PubMed]
- Klebanoff, S.J. Myeloperoxidase: Friend and Foe. J. Leukoc. Biol. 2005, 77, 598–625. [Google Scholar] [CrossRef] [Green Version]
- Hampton, M.B.; Kettle, A.J.; Winterbourn, C.C. Inside the Neutrophil Phagosome: Oxidants, Myeloperoxidase, and Bacterial Killing. Blood 2008, 94, 1043–1052. [Google Scholar]
- Jeitner, T.M.; Xu, H.; Gibson, G.E. Inhibition of the α-Ketoglutarate Dehydrogenase Complex by the Myeloperoxidase Products, Hypochlorous Acid and Mono-N-Chloramine. J. Neurochem. 2005, 92, 302–310. [Google Scholar] [CrossRef]
- Little, M.A.; Smyth, C.L.; Yadav, R.; Ambrose, L.; Cook, H.T.; Nourshargh, S.; Pusey, C.D. Antineutrophil Cytoplasm Antibodies Directed against Myeloperoxidase Augment Leukocyte-Microvascular Interactions in Vivo. Blood 2005, 106, 2050–2058. [Google Scholar] [CrossRef]
- Arias, D.G.; Regner, E.L.; Iglesias, A.A.; Guerrero, S.A. Entamoeba Histolytica Thioredoxin Reductase: Molecular and Functional Characterization of Its Atypical Properties. Biochim. Biophys. Acta-Gen. Subj. 2012, 1820, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Leitsch, D.; Kolarich, D.; Wilson, I.B.H.; Altmann, F.; Duchêne, M. Nitroimidazole Action in Entamoeba Histolytica: A Central Role for Thioredoxin Reductase. PLoS Biol. 2007, 5, 1820–1834. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Holmgren, A. The Thioredoxin Antioxidant System. Free Radic. Biol. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef]
- Cheng, X.J.; Yoshihara, E.; Takeuchi, T.; Tachibana, H. Molecular Characterization of Peroxiredoxin from Entamoeba Moshkovskii and a Comparison with Entamoeba Histolytica. Mol. Biochem. Parasitol. 2004, 138, 195–203. [Google Scholar] [CrossRef]
- Arias, D.G.; Carranza, P.G.; Lujan, H.D.; Iglesias, A.A.; Guerrero, S.A. Immunolocalization and Enzymatic Functional Characterization of the Thioredoxin System in Entamoeba Histolytica. Free Radic. Biol. Med. 2008, 45, 32–39. [Google Scholar] [CrossRef]
- Maralikova, B.; Ali, V.; Nakada-Tsukui, K.; Nozaki, T.; van der Giezen, M.; Henze, K.; Tovar, J. Bacterial-Type Oxygen Detoxification and Iron-Sulfur Cluster Assembly in Amoebal Relict Mitochondria. Cell. Microbiol. 2010, 12, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Jeelani, G.; Nozaki, T. Entamoeba Thiol-Based Redox Metabolism: A Potential Target for Drug Development. Mol. Biochem. Parasitol. 2016, 206, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, Y.J.; Kwon, S.; Lee, Y.; Young Choi, S.; Park, J.; Kwon, H.J. Inhibitory Effects of Flavonoids on TNF-α-Induced IL-8 Gene Expression in HEK 293 Cells. BMB Rep. 2009, 42, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Kerboeuf, D.; Riou, M.; Guégnard, F. Flavonoids and Related Compounds in Parasitic Disease Control. Mini. Rev. Med. Chem. 2008, 8, 116–128. [Google Scholar] [CrossRef]
- Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A Review on the Dietary Flavonoid Kaempferol | BenthamScience. Mini Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef]
- Van Acker, S.A.B.E.; Van Den Berg, D.J.; Tromp, M.N.J.L.; Griffioen, D.H.; Van Bennekom, W.P.; Van Der Vijgh, W.J.F.; Bast, A. Structural Aspects of Antioxidant Activity of Flavonoids. Free Radic. Biol. Med. 1996, 20, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Xu, H.; Fan, P.Z.; Xie, J.; He, J.; Yu, J.; Gu, X.; Zhang, C.J. Kaempferol Blocks Neutrophil Extracellular Traps Formation and Reduces Tumour Metastasis by Inhibiting ROS-PAD4 Pathway. J. Cell. Mol. Med. 2020, 24, 7590–7599. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Fu, K.; Lv, X.; Li, W.; Zhang, N. Protective Effects of Kaempferol on Lipopolysaccharide-Induced Mastitis in Mice. Inflammation 2014, 37, 1453–1458. [Google Scholar] [CrossRef]
- Chen, X.; Yang, X.; Liu, T.; Guan, M.; Feng, X.; Dong, W.; Chu, X.; Liu, J.; Tian, X.; Ci, X.; et al. Kaempferol Regulates MAPKs and NF-ΚB Signaling Pathways to Attenuate LPS-Induced Acute Lung Injury in Mice. Int. Immunopharmacol. 2012, 14, 209–216. [Google Scholar] [CrossRef]
- Bolaños, V.; Díaz-Martínez, A.; Soto, J.; Marchat, L.A.; Sanchez-Monroy, V.; Ramírez-Moreno, E. Kaempferol Inhibits Entamoeba Histolytica Growth by Altering Cytoskeletal Functions. Mol. Biochem. Parasitol. 2015, 204, 16–25. [Google Scholar] [CrossRef]
- Bolaños, V.; Díaz-Martínez, A.; Soto, J.; Rodríguez, M.A.; López-Camarillo, C.; Marchat, L.A.; Ramírez-Moreno, E. The Flavonoid (-)-Epicatechin Affects Cytoskeleton Proteins and Functions in Entamoeba Histolytica. J. Proteom. 2014, 111, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Domínguez, J.A.; Hernández-Ramírez, V.I.; Calzada, F.; Varela-Rodríguez, L.; Pichardo-Hernández, D.L.; Bautista, E.; Herrera-Martínez, M.; Castellanos-Mijangos, R.D.; Matus-Meza, A.S.; Chávez-Munguía, B.; et al. Linearolactone and Kaempferol Disrupt the Actin Cytoskeleton in Entamoeba Histolytica: Inhibition of Amoebic Liver Abscess Development. J. Nat. Prod. 2020, 83, 3671–3680. [Google Scholar] [CrossRef] [PubMed]
- Calzada, F.; Meckes, M.; Cedillo-Rivera, R. Antiamoebic and Antigiardial Activity of Plant Flavonoids. Planta Med. 1999, 65, 78–80. [Google Scholar] [CrossRef]
- Cabeza, M.S.; Guerrero, S.A.; Iglesias, A.A.; Arias, D.G. New Enzymatic Pathways for the Reduction of Reactive Oxygen Species in Entamoeba Histolytica. Biochim. Biophys. Acta-Gen. Subj. 2015, 1850, 1233–1244. [Google Scholar] [CrossRef]
- Tazreiter, M.; Leitsch, D.; Hatzenbichler, E.; Mair-Scorpio, G.E.; Steinborn, R.; Schreiber, M.; Duchêne, M. Entamoeba Histolytica: Response of the Parasite to Metronidazole Challenge on the Levels of MRNA and Protein Expression. Exp. Parasitol. 2008, 120, 403–410. [Google Scholar] [CrossRef]
- Pacheco-Yépez, J.; Rivera-Aguilar, V.; Barbosa-Cabrera, E.; Rojas Hernández, S.; Jarillo-Luna, R.A.; Campos-Rodríguez, R. Myeloperoxidase Binds to and Kills Entamoeba Histolytica Trophozoites. Parasite Immunol. 2011, 33, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Contis Montes de Oca, A.; Cruz Baquero, A.; Campos Rodríguez, R.; Cárdenas Jaramillo, L.M.; Aguayo Flores, J.E.; Rojas Hernández, S.; Olivos García, A.; Pacheco Yepez, J. Neutrophil Extracellular Traps and MPO in Models of Susceptibility and Resistance against Entamoeba Histolytica. Parasite Immunol. 2020, 42, e12714. [Google Scholar] [CrossRef] [PubMed]
- Shiba, Y.; Kinoshita, T.; Chuman, H.; Taketani, Y.; Takeda, E.; Kato, Y.; Naito, M.; Kawabata, K.; Ishisaka, A.; Terao, J.; et al. Flavonoids as Substrates and Inhibitors of Myeloperoxidase: Molecular Actions of Aglycone and Metabolites. Chem. Res. Toxicol. 2008, 21, 1600–1609. [Google Scholar] [CrossRef] [PubMed]
- Dahlgren, C.; Karlsson, A. Respiratory Burst in Human Neutrophils. J. Immunol. Methods 1999, 232, 3–14. [Google Scholar] [CrossRef]
- Saini, R.; Singh, S. Inducible Nitric Oxide Synthase: An Asset to Neutrophils. J. Leukoc. Biol. 2019, 105, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Park, H.R.; Lee, J.S.; Chung, T.S.; Chung, H.Y.; Chung, J. Down-Regulation of INOS and TNF-α Expression by Kaempferol via NF-ΚB Inactivation in Aged Rat Gingival Tissues. Biogerontology 2007, 8, 399–408. [Google Scholar] [CrossRef]
- Tauber, A.I.; Fay, J.R.; Marletta, M.A. Flavonoid Inhibition of the Human Neutrophil NADPH-Oxidase. Biochem. Pharmacol. 1984, 33, 1367–1369. [Google Scholar] [CrossRef]
- Wang, L.; Tu, Y.C.; Lian, T.W.; Hung, J.T.; Yen, J.H.; Wu, M.J. Distinctive Antioxidant and Antiinflammatory Effects of Flavonols. J. Agric. Food Chem. 2006, 54, 9798–9804. [Google Scholar] [CrossRef]
- Klaunig, J.E.; Kamendulis, L.M. The Role of Oxidative Stress in Carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 239–267. [Google Scholar] [CrossRef]
- Diamond, L.S.; Harlow, D.R.; Cunnick, C.C. A New Medium for the Axenic Cultivation of Entamoeba Histolytica and Other Entamoeba. Trans. R. Soc. Trop. Med. Hyg. 1978, 72, 431–432. [Google Scholar] [CrossRef]
- Jabari, S.; Keshavarz, H.; Salimi, M.; Morovati, H.; Mohebali, M.; Shojaee, S. In Vitro Culture of Toxoplasma Gondii in Hela, Vero, RBK and A549 Cell Lines. Infez. Med. 2018, 26, 145–147. [Google Scholar] [PubMed]
- Redondo, M.J.; Palenzuela, O.; Alvarez-Pellitero, P. In Vitro Studies on Viability and Proliferation of Enteromyxum Scophthalmi (Myxozoa), an Enteric Parasite of Cultured Turbot Scophthalmus Maximus. Dis. Aquat. Organ. 2003, 55, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.O.; Colli, W.; Bechara, E.J.H.; Alves, M.J.M. 1,4-Diamino-2-Butanone, a Putrescine Analogue, Promotes Redox Imbalance in Trypanosoma Cruzi and Mammalian Cells. Arch. Biochem. Biophys. 2012, 528, 103–110. [Google Scholar] [CrossRef]
- Muiva-Mutisya, L.M.; Atilaw, Y.; Heydenreich, M.; Koch, A.; Akala, H.M.; Cheruiyot, A.C.; Brown, M.L.; Irungu, B.; Okalebo, F.A.; Derese, S.; et al. Antiplasmodial Prenylated Flavanonols from Tephrosia Subtriflora. Nat. Prod. Res. 2018, 32, 1407–1414. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Pietersz, R.N.I.; Reesink, H.W.; Dekker, W.J.A.; Steneker, I.; Biewenga, J.; Al, E.J.M.; Huisman, J.G. Comparison of Five Different Filters for the Removal of Leukocytes from Red Cell Concentrates. Vox Sang. 1992, 62, 76–81. [Google Scholar] [CrossRef]
- Xiao, L.; Ma, X.; Ye, L.; Su, P.; Xiong, W.; Bi, E.; Wang, Q.; Xian, M.; Yang, M.; Qian, J.; et al. IL-9/STAT3/Fatty Acid Oxidation-Mediated Lipid Peroxidation Contributes to Tc9 Cell Longevity and Enhanced Antitumor Activity. J. Clin. Investig. 2022, 132, e153247. [Google Scholar] [CrossRef]
- El-Mancy, E.M.; Elsherbini, D.M.A.; Al-Serwi, R.H.; El-Sherbiny, M.; Ahmed Shaker, G.; Abdel-Moneim, A.M.H.; Enan, E.T.; Elsherbiny, N.M. α-Lipoic Acid Protects against Cyclosporine A-Induced Hepatic Toxicity in Rats: Effect on Oxidative Stress, Inflammation, and Apoptosis. Toxics 2022, 10, 442. [Google Scholar] [CrossRef]
Gene | Accession | Forward (5′--3′) | Reverse (5′--3′) |
---|---|---|---|
Thioredoxin (Trx) | XM_649815.1 | TATGCAGAGTGGTG- TGGTCCAT | AAATGTCGGCATAC-AACGAATACC |
Thioredoxin reductase (TrxR) | XM_650656.2 | ATGAGAACACAATC- AGAGAAGTATGGA | AGCTGTAGCACCTG-TTGCAATAAT |
Peroxiredoxin (Prx) | XM_646911.2 XM_644418.2 XM_643430.2 | CGAAGCAGGAATTG- CAAGAAG | GCTCCATGTTCATC- ACTGAATTG |
Rubrerythrin (Rr) | XM_647039.2 | CATGCTCAAATTGC- TGCTAGACTT | ATATCCACATTCTC- TACAAACCCAAA |
GAPDH | AB002800.1 | TTCATGGATCCAAA- ATACATGGTT | GCCAATTTGAGCTG-GATCTCTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levaro-Loquio, D.; Serrano-Luna, J.; Velásquez-Torres, M.; Higuera-Martínez, G.; Arciniega-Martínez, I.M.; Reséndiz-Albor, A.A.; Pérez-Vielma, N.M.; Pacheco-Yépez, J. In Vitro Evaluation of the Antiamoebic Activity of Kaempferol against Trophozoites of Entamoeba histolytica and in the Interactions of Amoebae with Hamster Neutrophils. Int. J. Mol. Sci. 2023, 24, 11216. https://doi.org/10.3390/ijms241311216
Levaro-Loquio D, Serrano-Luna J, Velásquez-Torres M, Higuera-Martínez G, Arciniega-Martínez IM, Reséndiz-Albor AA, Pérez-Vielma NM, Pacheco-Yépez J. In Vitro Evaluation of the Antiamoebic Activity of Kaempferol against Trophozoites of Entamoeba histolytica and in the Interactions of Amoebae with Hamster Neutrophils. International Journal of Molecular Sciences. 2023; 24(13):11216. https://doi.org/10.3390/ijms241311216
Chicago/Turabian StyleLevaro-Loquio, David, Jesús Serrano-Luna, Maritza Velásquez-Torres, Germán Higuera-Martínez, Ivonne Maciel Arciniega-Martínez, Aldo Arturo Reséndiz-Albor, Nadia Mabel Pérez-Vielma, and Judith Pacheco-Yépez. 2023. "In Vitro Evaluation of the Antiamoebic Activity of Kaempferol against Trophozoites of Entamoeba histolytica and in the Interactions of Amoebae with Hamster Neutrophils" International Journal of Molecular Sciences 24, no. 13: 11216. https://doi.org/10.3390/ijms241311216
APA StyleLevaro-Loquio, D., Serrano-Luna, J., Velásquez-Torres, M., Higuera-Martínez, G., Arciniega-Martínez, I. M., Reséndiz-Albor, A. A., Pérez-Vielma, N. M., & Pacheco-Yépez, J. (2023). In Vitro Evaluation of the Antiamoebic Activity of Kaempferol against Trophozoites of Entamoeba histolytica and in the Interactions of Amoebae with Hamster Neutrophils. International Journal of Molecular Sciences, 24(13), 11216. https://doi.org/10.3390/ijms241311216