No Association of Multiple Sclerosis with C9orf72 Hexanucleotide Repeat Size in an Austrian Cohort
Abstract
:1. Introduction
2. Results
2.1. C9orf72 Repeat Length Distribution in Multiple Sclerosis
2.2. C9orf72 Intermediate Allele Frequency
2.3. C9orf72 Hexanucleotide Repeat Expansion Carrier
3. Discussion
4. Materials and Methods
4.1. Patient Cohort
4.2. C9orf72 Genotyping
4.3. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Attfield, K.E.; Jensen, L.T.; Kaufmann, M.; Friese, M.A.; Fugger, L. The immunology of multiple sclerosis. Nat. Rev. Immunol. 2022, 22, 734–750. [Google Scholar] [CrossRef]
- Bar-Or, A.; Li, R. Cellular immunology of relapsing multiple sclerosis: Interactions, checks, and balances. Lancet Neurol. 2021, 20, 470–483. [Google Scholar] [CrossRef] [PubMed]
- ’t Hart, B.A.; Luchicchi, A.; Schenk, G.J.; Stys, P.K.; Geurts, J.J.G. Mechanistic underpinning of an inside-out concept for autoimmunity in multiple sclerosis. Ann. Clin. Transl. Neurol. 2021, 8, 1709–1719. [Google Scholar] [CrossRef] [PubMed]
- Stys, P.K.; Zamponi, G.W.; van Minnen, J.; Geurts, J.J. Will the real multiple sclerosis please stand up? Nat. Rev. Neurosci. 2012, 13, 507–514. [Google Scholar] [CrossRef] [PubMed]
- van der Ende, E.L.; Jackson, J.L.; White, A.; Seelaar, H.; van Blitterswijk, M.; Van Swieten, J.C. Unravelling the clinical spectrum and the role of repeat length in C9ORF72 repeat expansions. J. Neurol. Neurosurg. Psychiatry 2021, 92, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Cooper-Knock, J.; Highley, J.R.; Milano, A.; Kirby, J.; Goodall, E.; Lowe, J.; Scott, I.; Constantinescu, C.S.; Walters, S.J.; et al. Concurrence of multiple sclerosis and amyotrophic lateral sclerosis in patients with hexanucleotide repeat expansions of C9ORF72. J. Neurol. Neurosurg. Psychiatry 2013, 84, 79–87. [Google Scholar] [CrossRef]
- Lorefice, L.; Murru, M.R.; Fenu, G.; Corongiu, D.; Frau, J.; Cuccu, S.; Coghe, G.C.; Tranquilli, S.; Cocco, E.; Marrosu, M.G. A genetic association study of two genes linked to neurodegeneration in a Sardinian multiple sclerosis population: The TARDBP Ala382Thr mutation and C9orf72 expansion. J. Neurol. Sci. 2015, 357, 229–234. [Google Scholar] [CrossRef]
- Fenoglio, C.; De Riz, M.; Villa, C.; Serpente, M.; Ridolfi, E.; Bonsi, R.; Cioffi, S.M.; Barone, C.; Pietroboni, A.; Calvi, A.; et al. C9ORF72 repeat expansion not detected in patients with multiple sclerosis. Neurobiol. Aging 2014, 35, 1213.e1–1213.e2. [Google Scholar] [CrossRef]
- Oliveira Santos, M.; Caldeira, I.; Gromicho, M.; Pronto-Laborinho, A.; de Carvalho, M. Brain white matter demyelinating lesions and amyotrophic lateral sclerosis in a patient with C9orf72 hexanucleotide repeat expansion. Mult. Scler. Relat. Disord. 2017, 17, 1–4. [Google Scholar] [CrossRef]
- Tiloca, C.; Sorosina, M.; Esposito, F.; Peroni, S.; Colombrita, C.; Ticozzi, N.; Ratti, A.; Martinelli-Boneschi, F.; Silani, V. No C9orf72 repeat expansion in patients with primary progressive multiple sclerosis. Mult. Scler. Relat. Disord. 2018, 25, 192–195. [Google Scholar] [CrossRef]
- Ng, A.S.L.; Tan, E.K. Intermediate C9orf72 alleles in neurological disorders: Does size really matter? J. Med. Genet. 2017, 54, 591–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serpente, M.; Fenoglio, C.; Arighi, A.; Fumagalli, G.G.; Arcaro, M.; Sorrentino, F.; Visconte, C.; Scarpini, E.; Galimberti, D. Analysis of C9orf72 Intermediate Alleles in a Retrospective Cohort of Neurological Patients: Risk Factors for Alzheimer’s Disease? J. Alzheimer’s Dis. JAD 2021, 81, 1445–1451. [Google Scholar] [CrossRef]
- Kaivola, K.; Kiviharju, A.; Jansson, L.; Rantalainen, V.; Eriksson, J.G.; Strandberg, T.E.; Laaksovirta, H.; Renton, A.E.; Traynor, B.J.; Myllykangas, L.; et al. C9orf72 hexanucleotide repeat length in older population: Normal variation and effects on cognition. Neurobiol. Aging 2019, 84, 242.e7–242.e12. [Google Scholar] [CrossRef]
- Konig, T.; Wurm, R.; Parvizi, T.; Silvaieh, S.; Hotzy, C.; Cetin, H.; Klotz, S.; Gelpi, E.; Bancher, C.; Benke, T.; et al. C9orf72 repeat length might influence clinical sub-phenotypes in dementia patients. Neurobiol. Dis. 2022, 175, 105927. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Tortosa, E.; Gallego, J.; Guerrero-Lopez, R.; Marcos, A.; Gil-Neciga, E.; Sainz, M.J.; Diaz, A.; Franco-Macias, E.; Trujillo-Tiebas, M.J.; Ayuso, C.; et al. C9ORF72 hexanucleotide expansions of 20-22 repeats are associated with frontotemporal deterioration. Neurology 2013, 80, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Nuytemans, K.; Bademci, G.; Kohli, M.M.; Beecham, G.W.; Wang, L.; Young, J.I.; Nahab, F.; Martin, E.R.; Gilbert, J.R.; Benatar, M.; et al. C9ORF72 intermediate repeat copies are a significant risk factor for Parkinson disease. Ann. Hum. Genet. 2013, 77, 351–363. [Google Scholar] [CrossRef] [Green Version]
- van der Zee, J.; Gijselinck, I.; Dillen, L.; Van Langenhove, T.; Theuns, J.; Engelborghs, S.; Philtjens, S.; Vandenbulcke, M.; Sleegers, K.; Sieben, A.; et al. A pan-European study of the C9orf72 repeat associated with FTLD: Geographic prevalence, genomic instability, and intermediate repeats. Hum. Mutat. 2013, 34, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Gijselinck, I.; Van Mossevelde, S.; van der Zee, J.; Sieben, A.; Engelborghs, S.; De Bleecker, J.; Ivanoiu, A.; Deryck, O.; Edbauer, D.; Zhang, M.; et al. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol. Psychiatry 2016, 21, 1112–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cali, C.P.; Patino, M.; Tai, Y.K.; Ho, W.Y.; McLean, C.A.; Morris, C.M.; Seeley, W.W.; Miller, B.L.; Gaig, C.; Vonsattel, J.P.G.; et al. C9orf72 intermediate repeats are associated with corticobasal degeneration, increased C9orf72 expression and disruption of autophagy. Acta Neuropathol. 2019, 138, 795–811. [Google Scholar] [CrossRef]
- Iacoangeli, A.; Al Khleifat, A.; Jones, A.R.; Sproviero, W.; Shatunov, A.; Opie-Martin, S.; Alzheimer’s Disease Neuroimaging, I.; Morrison, K.E.; Shaw, P.J.; Shaw, C.E.; et al. C9orf72 intermediate expansions of 24–30 repeats are associated with ALS. Acta Neuropathol. Commun. 2019, 7, 115. [Google Scholar] [CrossRef] [Green Version]
- Biasiotto, G.; Zanella, I. The effect of C9orf72 intermediate repeat expansions in neurodegenerative and autoimmune diseases. Mult. Scler. Relat. Disord. 2019, 27, 42–43. [Google Scholar] [CrossRef] [PubMed]
- Tiloca, C.; Sorosina, M.; Esposito, F.; Peroni, S.; Colombrita, C.; Ticozzi, N.; Ratti, A.; Martinelli-Boneschi, F.; Silani, V. Response to the commentary “The effect of C9orf72 intermediate repeat expansions in neurodegenerative and autoimmune diseases” by Biasiotto G and Zanella I. Mult. Scler. Relat. Disord. 2019, 27, 79–80. [Google Scholar] [CrossRef] [PubMed]
- Rascovsky, K.; Hodges, J.R.; Knopman, D.; Mendez, M.F.; Kramer, J.H.; Neuhaus, J.; van Swieten, J.C.; Seelaar, H.; Dopper, E.G.; Onyike, C.U.; et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011, 134 Pt 9, 2456–2477. [Google Scholar] [CrossRef] [PubMed]
- Snowden, J.S.; Rollinson, S.; Thompson, J.C.; Harris, J.M.; Stopford, C.L.; Richardson, A.M.; Jones, M.; Gerhard, A.; Davidson, Y.S.; Robinson, A.; et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 2012, 135 Pt 3, 693–708. [Google Scholar] [CrossRef]
- Solje, E.; Aaltokallio, H.; Koivumaa-Honkanen, H.; Suhonen, N.M.; Moilanen, V.; Kiviharju, A.; Traynor, B.; Tienari, P.J.; Hartikainen, P.; Remes, A.M. The Phenotype of the C9ORF72 Expansion Carriers According to Revised Criteria for bvFTD. PLoS ONE 2015, 10, e0131817. [Google Scholar] [CrossRef]
- Bieniek, K.F.; van Blitterswijk, M.; Baker, M.C.; Petrucelli, L.; Rademakers, R.; Dickson, D.W. Expanded C9ORF72 hexanucleotide repeat in depressive pseudodementia. JAMA Neurol. 2014, 71, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Block, N.R.; Sha, S.J.; Karydas, A.M.; Fong, J.C.; De May, M.G.; Miller, B.L.; Rosen, H.J. Frontotemporal Dementia and Psychiatric Illness: Emerging Clinical and Biological Links in Gene Carriers. Am. J. Geriatr. Psychiatry Off. J. Am. Assoc. Geriatr. Psychiatry 2016, 24, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Saracino, D.; Geraudie, A.; Remes, A.M.; Ferrieux, S.; Nogues-Lassiaille, M.; Bottani, S.; Cipriano, L.; Houot, M.; Funkiewiez, A.; Camuzat, A.; et al. Primary progressive aphasias associated with C9orf72 expansions: Another side of the story. Cortex 2021, 145, 145–159. [Google Scholar] [CrossRef]
- Martinelli, V.; Rodegher, M.; Moiola, L.; Comi, G. Late onset multiple sclerosis: Clinical characteristics, prognostic factors and differential diagnosis. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2004, 25 (Suppl. 4), S350–S355. [Google Scholar] [CrossRef]
- Goodin, D.S. Disease-modifying therapy in multiple sclerosis: Update and clinical implications. Neurology 2008, 71 (Suppl. 3), S8–S13. [Google Scholar] [CrossRef]
- Branco, M.; Ruano, L.; Portaccio, E.; Goretti, B.; Niccolai, C.; Patti, F.; Chisari, C.; Gallo, P.; Grossi, P.; Ghezzi, A.; et al. Aging with multiple sclerosis: Prevalence and profile of cognitive impairment. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2019, 40, 1651–1657. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, P.; Penner, I.K. Cognitive dysfunctions in multiple sclerosis—A “multiple disconnection syndrome”? J. Neurol. 2007, 254 (Suppl. 2), II18–II21. [Google Scholar] [CrossRef]
- Chiaravalloti, N.D.; DeLuca, J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008, 7, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Londono, D.P.; Arumaithurai, K.; Constantopoulos, E.; Basso, M.R.; Reichard, R.R.; Flanagan, E.P.; Keegan, B.M. Diagnosis of coexistent neurodegenerative dementias in multiple sclerosis. Brain Commun. 2022, 4, fcac167. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G.G.; Alafuzoff, I.; Al-Sarraj, S.; Arzberger, T.; Bogdanovic, N.; Capellari, S.; Ferrer, I.; Gelpi, E.; Kovari, V.; Kretzschmar, H.; et al. Mixed brain pathologies in dementia: The BrainNet Europe consortium experience. Dement. Geriatr. Cogn. Disord. 2008, 26, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, J.; Kovacs, G.G. Prevalence of mixed pathologies in the aging brain. Alzheimer’s Res. Ther. 2014, 6, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sorensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [Green Version]
HC | PPMS | SPMS | RRMS | Not Assigned | |
---|---|---|---|---|---|
Sample size | 643 | 19 | 63 | 269 | 31 |
Mean repeat size (range) | 4.4 (2–27) | 4.0 (2–10) | 4.8 (2–22) | 4.3 (2–18) | 3.9 (2–11) |
Adjusted p value | - | 0.90 | 0.77 | 0.83 | 0.61 |
S Allele (%) | 1277 (99.3) | 38 (100) | 123 (97.6) | 538 (100) | 62 (100) |
I Allele (%) | 9 (0.7) | - | 2 (1.6) | - | - |
E Allele (%) | - | - | 1 (0.8) | - | - |
HC | MS | p Value | |
---|---|---|---|
Allele frequency ≥ 7 | |||
S Allele (n, %) | 1017 (79.1) | 598 (78.4) | 0.74 |
I Allele (n, %) | 269 (20.9) | 165 (21.6) | |
Allele frequency ≥ 17 | |||
S Allele (n, %) | 1272 (98.9) | 756 (99.2) | 0.64 |
I Allele (n, %) | 14 (1.1) | 6 (0.8) | |
Allele frequency ≥ 20 | |||
S Allele (n, %) | 1277 (99.3) | 761 (99.7) | 0.23 |
I Allele (n, %) | 9 (0.7) | 2 (0.3) | |
Allele frequency ≥ 24 | |||
S Allele (n, %) | 1283 (99.8) | 762 (100) | 0.30 |
I Allele (n, %) | 3 (0.2) | 0 |
HC | PPMS | SPMS | RRMS | Not Assigned | |
---|---|---|---|---|---|
Sample size | 643 | 19 | 63 | 269 | 31 |
Females | 52% | 58% | 65% | 70% | 65% |
Mean age at diagnosis (IQR) * | 60.3 (43–76) | 46.6 (41–52) | 45.8 (38–53) | 36.1 (28–44) | 37.3 (24–48) |
Mean EDSS (IQR) ** | n.a. | 4.4 (3.3–6.1) | 5.5 (4.0–7.0) | 2.1 (1.0–3.0) | 0.8 (0–1.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
König, T.; Leutmezer, F.; Berger, T.; Zimprich, A.; Schmied, C.; Stögmann, E.; Zrzavy, T. No Association of Multiple Sclerosis with C9orf72 Hexanucleotide Repeat Size in an Austrian Cohort. Int. J. Mol. Sci. 2023, 24, 11254. https://doi.org/10.3390/ijms241411254
König T, Leutmezer F, Berger T, Zimprich A, Schmied C, Stögmann E, Zrzavy T. No Association of Multiple Sclerosis with C9orf72 Hexanucleotide Repeat Size in an Austrian Cohort. International Journal of Molecular Sciences. 2023; 24(14):11254. https://doi.org/10.3390/ijms241411254
Chicago/Turabian StyleKönig, Theresa, Fritz Leutmezer, Thomas Berger, Alexander Zimprich, Christiane Schmied, Elisabeth Stögmann, and Tobias Zrzavy. 2023. "No Association of Multiple Sclerosis with C9orf72 Hexanucleotide Repeat Size in an Austrian Cohort" International Journal of Molecular Sciences 24, no. 14: 11254. https://doi.org/10.3390/ijms241411254
APA StyleKönig, T., Leutmezer, F., Berger, T., Zimprich, A., Schmied, C., Stögmann, E., & Zrzavy, T. (2023). No Association of Multiple Sclerosis with C9orf72 Hexanucleotide Repeat Size in an Austrian Cohort. International Journal of Molecular Sciences, 24(14), 11254. https://doi.org/10.3390/ijms241411254