Overview of the Special Issue “Protein-Based Infection, Inheritance, and Memory”
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wickner, R.B.; Taylor, K.L.; Edskes, H.K.; Maddelein, M.L.; Moriyama, H.; Roberts, B.T. Prions in Saccharomyces and Podospora spp.: Protein-based inheritance. Microbiol. Mol. Biol. Rev. 1999, 63, 844–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 1998, 95, 13363–13383. [Google Scholar] [CrossRef]
- Beisson, J.; Sonneborn, T.M. Cytoplasmic Inheritance of the Organization of the Cell Cortex in Paramecium aurelia. Proc. Natl. Acad. Sci. USA 1965, 53, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Chernoff, Y.O. Mutation processes at the protein level: Is Lamarck back? Mutat. Res. Mutat. Res. 2001, 488, 39–64. [Google Scholar] [CrossRef] [PubMed]
- Bolton, D.; McKinley, M.; Prusiner, S. Identification of a protein that purifies with the scrapie prion. Science 1982, 218, 1309–1311. [Google Scholar] [CrossRef]
- Wickner, R.B. [URE3] as an altered URE2 protein: Evidence for a prion analog in Saccharomyces cerevisiae. Science 1994, 264, 566–569. [Google Scholar] [CrossRef] [Green Version]
- Lansbury, P.T.J.; Caughey, B. The chemistry of scrapie infection: Implications of the “ice 9” metaphor. Chem. Biol. 1995, 2, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buxbaum, J.N.; Linke, R.P. A molecular history of the amyloidoses. J. Mol. Biol. 2012, 421, 142–159. [Google Scholar] [CrossRef] [PubMed]
- Buxbaum, J.N.; Dispenzieri, A.; Eisenberg, D.S.; Fändrich, M.; Merlini, G.; Saraiva, M.J.M.; Sekijima, Y.; Westermark, P. Amyloid nomenclature 2022: Update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid 2022, 29, 213–219. [Google Scholar] [CrossRef]
- Otzen, D.; Riek, R. Functional Amyloids. Cold Spring Harb. Perspect. Biol. 2019, 11, a033860. [Google Scholar] [CrossRef]
- Antonets, K.S.; Belousov, M.V.; Sulatskaya, A.I.; Belousova, M.E.; Kosolapova, A.O.; Sulatsky, M.I.; Andreeva, E.A.; Zykin, P.A.; Malovichko, Y.V.; Shtark, O.Y.; et al. Accumulation of storage proteins in plant seeds is mediated by amyloid formation. PLOS Biol. 2020, 18, e3000564. [Google Scholar] [CrossRef] [PubMed]
- Kosolapova, A.O.; Antonets, K.S.; Belousov, M.V.; Nizhnikov, A.A. Biological functions of prokaryotic amyloids in interspecies interactions: Facts and assumptions. Int. J. Mol. Sci. 2020, 21, 7240. [Google Scholar] [CrossRef] [PubMed]
- Van Gerven, N.; Van der Verren, S.E.; Reiter, D.M.; Remaut, H. The Role of Functional Amyloids in Bacterial Virulence. J. Mol. Biol. 2018, 430, 3657–3684. [Google Scholar] [CrossRef] [PubMed]
- Brundin, P.; Melki, R.; Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 2010, 11, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Walker, L.C.; Schelle, J.; Jucker, M. The Prion-Like Properties of Amyloid-β Assemblies: Implications for Alzheimer’s Disease. Cold Spring Harb. Perspect. Med. 2016, 6, a024398. [Google Scholar] [CrossRef] [Green Version]
- Chernoff, Y.O.; Grizel, A.V.; Rubel, A.A.; Zelinsky, A.A.; Chandramowlishwaran, P.; Chernova, T.A. Application of yeast to studying amyloid and prion diseases. Adv. Genet. 2020, 105, 293–380. [Google Scholar] [CrossRef]
- Roberts, B.T.; Wickner, R.B. Heritable activity: A prion that propagates by covalent autoactivation. Genes Dev. 2003, 17, 2083–2087. [Google Scholar] [CrossRef] [Green Version]
- Chakravarty, A.K.; Smejkal, T.; Itakura, A.K.; Garcia, D.M.; Jarosz, D.F. A Non-amyloid Prion Particle that Activates a Heritable Gene Expression Program. Mol. Cell 2020, 77, 251–265.e9. [Google Scholar] [CrossRef]
- Caudron, F.; Barral, Y. Mnemons: Encoding memory by protein super-assembly. Microb. Cell 2014, 1, 100–102. [Google Scholar] [CrossRef]
- Chernova, T.A.; Kiktev, D.A.; Romanyuk, A.V.; Shanks, J.R.; Laur, O.; Ali, M.; Ghosh, A.; Kim, D.; Yang, Z.; Mang, M.; et al. Yeast Short-Lived Actin-Associated Protein Forms a Metastable Prion in Response to Thermal Stress. Cell Rep. 2017, 18, 751–761. [Google Scholar] [CrossRef]
- Rayman, J.B.; Kandel, E.R. Functional Prions in the Brain. Cold Spring Harb. Perspect. Biol. 2017, 9, a023671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kachkin, D.V.; Volkov, K.V.; Sopova, J.V.; Bobylev, A.G.; Fedotov, S.A.; Inge-Vechtomov, S.G.; Galzitskaya, O.V.; Chernoff, Y.O.; Rubel, A.A.; Aksenova, A.Y. Human RAD51 Protein Forms Amyloid-like Aggregates In Vitro. Int. J. Mol. Sci. 2022, 23, 1657. [Google Scholar] [CrossRef]
- Sulatskaya, A.I.; Kosolapova, A.O.; Bobylev, A.G.; Belousov, M.V.; Antonets, K.S.; Sulatsky, M.I.; Kuznetsova, I.M.; Turoverov, K.K.; Stepanenko, O.V.; Nizhnikov, A.A. β-Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis. Int. J. Mol. Sci. 2021, 22, 1316. [Google Scholar] [CrossRef] [PubMed]
- Heumüller, S.-E.; Hornberger, A.C.; Hebestreit, A.S.; Hossinger, A.; Vorberg, I.M. Propagation and Dissemination Strategies of Transmissible Spongiform Encephalopathy Agents in Mammalian Cells. Int. J. Mol. Sci. 2022, 23, 2909. [Google Scholar] [CrossRef] [PubMed]
- Fedotov, S.A.; Khrabrova, M.S.; Anpilova, A.O.; Dobronravov, V.A.; Rubel, A.A. Noninvasive Diagnostics of Renal Amyloidosis: Current State and Perspectives. Int. J. Mol. Sci. 2022, 23, 12662. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, F.; Brignola, B.; Caudron, F. Septin Defects Favour Symmetric Inheritance of the Budding Yeast Deceptive Courtship Memory. Int. J. Mol. Sci. 2023, 24, 3003. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernoff, Y.O.; Nizhnikov, A.A. Overview of the Special Issue “Protein-Based Infection, Inheritance, and Memory”. Int. J. Mol. Sci. 2023, 24, 11280. https://doi.org/10.3390/ijms241411280
Chernoff YO, Nizhnikov AA. Overview of the Special Issue “Protein-Based Infection, Inheritance, and Memory”. International Journal of Molecular Sciences. 2023; 24(14):11280. https://doi.org/10.3390/ijms241411280
Chicago/Turabian StyleChernoff, Yury O., and Anton A. Nizhnikov. 2023. "Overview of the Special Issue “Protein-Based Infection, Inheritance, and Memory”" International Journal of Molecular Sciences 24, no. 14: 11280. https://doi.org/10.3390/ijms241411280
APA StyleChernoff, Y. O., & Nizhnikov, A. A. (2023). Overview of the Special Issue “Protein-Based Infection, Inheritance, and Memory”. International Journal of Molecular Sciences, 24(14), 11280. https://doi.org/10.3390/ijms241411280