Single-Nucleotide Polymorphisms in Base-Excision Repair-Related Genes Involved in the Risk of an Occurrence of Non-Alcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Results
2.1. Single Nucleotide Polymorphisms in BER Associated Genes Modulate the Risk of NAFLD Occurrence
2.2. Single Nucleotide Polymorphism in LIG3 Modulate the Risk of IR Occurrence in NAFLD Patients
2.3. Haplotypes of Single Nucleotide Polymorphisms in APEX1 as Well as in LIG3 Modulate the Risk of IR Occurrence in NAFLD Patients
3. Discussion
4. Materials and Methods
4.1. Ethics
4.2. Patients
4.3. Samples Collection
4.4. DNA Isolation
4.5. SNPs Selection
4.6. SNP Genotyping
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaunak, M.; Byrne, C.D.; Davis, N.; Afolabi, P.; Faust, S.N.; Davies, J.H. Non-Alcoholic Fatty Liver Disease and Childhood Obesity. Arch. Dis. Child. 2021, 106, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.L.; Golshan, S.; Harlow, K.E.; Angeles, J.E.; Durelle, J.; Goyal, N.P.; Newton, K.P.; Sawh, M.C.; Hooker, J.; Sy, E.Z.; et al. Prevalence of Nonalcoholic Fatty Liver Disease in Children with Obesity. J. Pediatr. 2019, 207, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Pipitone, R.M.; Ciccioli, C.; Infantino, G.; La Mantia, C.; Parisi, S.; Tulone, A.; Pennisi, G.; Grimaudo, S.; Petta, S. MAFLD: A Multisystem Disease. Ther. Adv. Endocrinol. Metab. 2023, 14, 20420188221145548. [Google Scholar] [CrossRef] [PubMed]
- Hliwa, A.; Ramos-Molina, B.; Laski, D.; Mika, A.; Sledzinski, T. The Role of Fatty Acids in Non-Alcoholic Fatty Liver Disease Progression: An Update. Int. J. Mol. Sci. 2021, 22, 6900. [Google Scholar] [CrossRef]
- Yu, S.; Li, C.; Ji, G.; Zhang, L. The Contribution of Dietary Fructose to Non-Alcoholic Fatty Liver Disease. Front. Pharmacol. 2021, 12, 783393. [Google Scholar] [CrossRef]
- Coronati, M.; Baratta, F.; Pastori, D.; Ferro, D.; Angelico, F.; Del Ben, M. Added Fructose in Non-Alcoholic Fatty Liver Disease and in Metabolic Syndrome: A Narrative Review. Nutrients 2022, 14, 1127. [Google Scholar] [CrossRef]
- Ziolkowska, S.; Binienda, A.; Jabłkowski, M.; Szemraj, J.; Czarny, P. The Interplay between Insulin Resistance, Inflammation, Oxidative Stress, Base Excision Repair and Metabolic Syndrome in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2021, 22, 11128. [Google Scholar] [CrossRef]
- Stanhope, K.L.; Havel, P.J. Fructose Consumption: Potential Mechanisms for Its Effects to Increase Visceral Adiposity and Induce Dyslipidemia and Insulin Resistance. Curr. Opin. Lipidol. 2008, 19, 16. [Google Scholar] [CrossRef] [Green Version]
- Kosmalski, M.; Frankowski, R.; Ziółkowska, S.; Różycka-Kosmalska, M.; Pietras, T. What’s New in the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD). J. Clin. Med. 2023, 12, 1852. [Google Scholar] [CrossRef]
- Masarone, M.; Rosato, V.; Dallio, M.; Gravina, A.G.; Aglitti, A.; Loguercio, C.; Federico, A.; Persico, M. Role of Oxidative Stress in Pathophysiology of Nonalcoholic Fatty Liver Disease. Oxid. Med. Cell. Longev. 2018, 2018, 9547613. [Google Scholar] [CrossRef]
- Karkucinska-Wieckowska, A.; Simoes, I.C.M.; Kalinowski, P.; Lebiedzinska-Arciszewska, M.; Zieniewicz, K.; Milkiewicz, P.; Górska-Ponikowska, M.; Pinton, P.; Malik, A.N.; Krawczyk, M.; et al. Mitochondria, Oxidative Stress and Nonalcoholic Fatty Liver Disease: A Complex Relationship. Eur. J. Clin. Investig. 2022, 52, e13622. [Google Scholar] [CrossRef]
- Krupa, R.; Czarny, P.; Wigner, P.; Wozny, J.; Jablkowski, M.; Kordek, R.; Szemraj, J.; Sliwinski, T. The Relationship Between Single-Nucleotide Polymorphisms, the Expression of DNA Damage Response Genes, and Hepatocellular Carcinoma in a Polish Population. DNA Cell Biol. 2017, 36, 693–708. [Google Scholar] [CrossRef] [PubMed]
- Ide, H.; Kotera, M. Human DNA Glycosylases Involved in the Repair of Oxidatively Damaged DNA. Biol. Pharm. Bull. 2004, 27, 480–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czarny, P.; Kwiatkowski, D.B.; Toma, M.; Gałecki, P.B.; Orzechowska, A.B.; Bobińska, K.C.; Bielecka-Kowalska, A.; Szemraj, J.C.; Berk, M.C.; Anderson, G.; et al. Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder. Experiment 2016, 22, 4455–4474. [Google Scholar] [CrossRef] [Green Version]
- Czarny, P.; Wigner, P.; Galecki, P.; Sliwinski, T. The Interplay between Inflammation, Oxidative Stress, DNA Damage, DNA Repair and Mitochondrial Dysfunction in Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 80, 309–321. [Google Scholar] [CrossRef]
- Paoli, A.; Cerullo, G. Investigating the Link between Ketogenic Diet, NAFLD, Mitochondria, and Oxidative Stress: A Narrative Review. Antioxidants 2023, 12, 1065. [Google Scholar] [CrossRef]
- Dabravolski, S.A.; Bezsonov, E.E.; Orekhov, A.N. The Role of Mitochondria Dysfunction and Hepatic Senescence in NAFLD Development and Progression. Biomed. Pharmacother. 2021, 142, 112041. [Google Scholar] [CrossRef] [PubMed]
- Dornas, W.; Schuppan, D. Mitochondrial Oxidative Injury: A Key Player in Nonalcoholic Fatty Liver Disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 319, G400–G411. [Google Scholar] [CrossRef] [PubMed]
- Ajith, T.A. Role of Mitochondria and Mitochondria-Targeted Agents in Non-Alcoholic Fatty Liver Disease. Clin. Exp. Pharmacol. Physiol. 2018, 45, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Seki, S.; Kitada, T.; Sakaguchi, H. Clinicopathological Significance of Oxidative Cellular Damage in Non-Alcoholic Fatty Liver Diseases. Hepatol. Res. 2005, 33, 132–134. [Google Scholar] [CrossRef]
- Akazawa, Y.; Nakashima, R.; Matsuda, K.; Okamaoto, K.; Hirano, R.; Kawasaki, H.; Miuma, S.; Miyaaki, H.; Malhi, H.; Abiru, S.; et al. Detection of DNA Damage Response in Nonalcoholic Fatty Liver Disease via P53-Binding Protein 1 Nuclear Expression. Mod. Pathol. 2019, 32, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Paternostro, R.; Staufer, K.; Traussnigg, S.; Stättermayer, A.F.; Halilbasic, E.; Keritam, O.; Meyer, E.L.; Stift, J.; Wrba, F.; Sipos, B.; et al. Combined Effects of PNPLA3, TM6SF2 and HSD17B13 Variants on Severity of Biopsy-Proven Non-Alcoholic Fatty Liver Disease. Hepatol. Int. 2021, 15, 922. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, S.A.; Dorairaj, V.; Adrus, M.N.H. Genetic Polymorphisms and Diversity in Nonalcoholic Fatty Liver Disease (NAFLD): A Mini Review. Biomedicines 2023, 11, 106. [Google Scholar] [CrossRef] [PubMed]
- Czarny, P.; Merecz-Sadowska, A.; Majchrzak, K.; Jabłkowski, M.; Szemraj, J.; Śliwiński, T.; Karwowski, B. The Influence of Hepatitis C Virus Therapy on the DNA Base Excision Repair System of Peripheral Blood Mononuclear Cells. DNA Cell. Biol. 2017, 36, 535–540. [Google Scholar] [CrossRef]
- Tong, Z.; Shen, H.; Yang, D.; Zhang, F.; Bai, Y.; Li, Q.; Shi, J.; Zhang, H.; Zhu, B. Genetic Variations in the Promoter of the APE1 Gene Are Associated with DMF-Induced Abnormal Liver Function: A Case-Control Study in a Chinese Population. Int. J. Environ. Res. Public Health 2016, 13, 752. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.; Yi, M.; Li, J.; Zhang, Y. DNA Repair in Lung Cancer: A Large-Scale Quantitative Analysis for Polymorphisms in DNA Repairing Pathway Genes and Lung Cancer Susceptibility. Expert Rev. Respir. Med. 2022, 16, 997–1010. [Google Scholar] [CrossRef]
- Wang, X.; Yue, H.; Li, S.; Guo, J.; Guan, Z.; Zhu, Z.; Niu, B.; Zhang, T.; Wang, J. Genetic Polymorphisms in DNA Repair Gene APE1/Ref-1 and the Risk of Neural Tube Defects in a High-Risk Area of China. Reprod. Sci. 2021, 28, 2592–2601. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, J.; Guo, Y.; Sheng, X.; Yin, Y.; Qian, S.; Xu, B.; Xiong, W.; Yin, X. Association between APE1 Rs1760944 and Rs1130409 Polymorphism with Prostate Cancer Risk: A Systematic Review and Meta-Analysis. Medicine 2021, 100, E27630. [Google Scholar] [CrossRef]
- Qiao, L.; Feng, X.; Wang, G.; Zhou, B.; Yang, Y.; Li, M. Polymorphisms in BER Genes and Risk of Breast Cancer: Evidences from 69 Studies with 33760 Cases and 33252 Controls. Oncotarget 2018, 9, 16220–16233. [Google Scholar] [CrossRef]
- Saad, A.M.; Abdel-Megied, A.E.S.; Elbaz, R.A.; Hassab El-Nabi, S.E.; Elshazli, R.M. Genetic Variants of APEX1 p.Asp148Glu and XRCC1 p.Gln399Arg with the Susceptibility of Hepatocellular Carcinoma. J. Med. Virol. 2021, 93, 6278–6291. [Google Scholar] [CrossRef]
- Datkhile, K.D.; Durgawale, P.P.; Patil, M.N.; Gudur, R.A.; Gudur, A.K.; Patil, S.R. Impact of Polymorphism in Base Excision Repair and Nucleotide Excision Repair Genes and Risk of Cervical Cancer: A Case-Control Study. Asian Pac. J. Cancer Prev. 2022, 23, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, K.; Wu, J.; Hu, Y.; Yang, X.; Xu, L.; Sun, W.; Jia, X.; Wu, J.; Fu, S.; et al. Association of APEX1 and XRCC1 Gene Polymorphisms With HIV-1 Infection Susceptibility and AIDS Progression in a Northern Chinese MSM Population. Front. Genet. 2022, 13, 861355. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Cheng, H.; Jiang, Q.; Li, H.; Wu, Z. APEX1 Is a Novel Diagnostic and Prognostic Biomarker for Hepatocellular Carcinoma. Aging 2020, 12, 4573–4591. [Google Scholar] [CrossRef] [PubMed]
- Sawakami, T.; Sun, Z.; Inagaki, Y.; Hasegawa, K.; Tang, W.; Xu, G.; Zhang, N. The Impact of Apurinic-Apyrimidinic Endonuclease I on Hepatocyte Immuno-Inflammatory Factors and Cell Apoptosis. Biosci. Trends 2019, 13, 539–545. [Google Scholar] [CrossRef]
- Zhang, X.; Xin, X.; Zhang, J.; Li, J.; Chen, B.; Zou, W. Apurinic/Apyrimidinic Endonuclease 1 Polymorphisms Are Associated with Ovarian Cancer Susceptibility in a Chinese Population. Int. J. Gynecol. Cancer 2013, 23, 1393–1399. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, M.; Zhang, Z.; Jiang, G.; Fu, X.; Fan, M.; Sun, M.; Wei, Q.; Zhao, K. A NEIL1 Single Nucleotide Polymorphism (Rs4462560) Predicts the Risk of Radiation-Induced Toxicities in Esophageal Cancer Patients Treated with Definitive Radiotherapy. Cancer 2013, 119, 4205–4211. [Google Scholar] [CrossRef]
- Czarny, P.; Kwiatkowski, D.; Galecki, P.; Talarowska, M.; Orzechowska, A.; Bobinska, K.; Bielecka-Kowalska, A.; Szemraj, J.; Maes, M.; Su, K.P.; et al. Association between Single Nucleotide Polymorphisms of MUTYH, HOGG1 and NEIL1 Genes, and Depression. J. Affect. Disord. 2015, 184, 90–96. [Google Scholar] [CrossRef]
- Pal, S.; Polyak, S.J.; Bano, N.; Qiu, W.C.; Carithers, R.L.; Shuhart, M.; Gretch, D.R.; Das, A. Hepatitis C Virus Induces Oxidative Stress, DNA Damage and Modulates the DNA Repair Enzyme NEIL1. J. Gastroenterol. Hepatol. 2010, 25, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Vartanian, V.; Minko, I.G.; Chawanthayatham, S.; Egner, P.A.; Lin, Y.C.; Earley, L.F.; Makar, R.; Eng, J.R.; Camp, M.T.; Li, L.; et al. NEIL1 Protects against Aflatoxin-Induced Hepatocellular Carcinoma in Mice. Proc. Natl. Acad. Sci. USA 2017, 114, 4207–4212. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, Z.; Chen, S.; Liang, Z.; Zhu, J.; Zhao, M.; Xu, C.; He, J.; Duan, P.; Zhang, A. The Association of Polymorphisms in Base Excision Repair Genes with Ovarian Cancer Susceptibility in Chinese Women: A Two-Center Case-Control Study. J. Cancer 2021, 12, 264–269. [Google Scholar] [CrossRef]
- Pang, J.; Xi, C.; Dai, Y.; Gong, H.; Zhang, T.M. Altered Expression of Base Excision Repair Genes in Response to High Glucose-Induced Oxidative Stress in HepG2 Hepatocytes. Med. Sci. Monit. 2012, 18, BR281-5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Gonzalez, M.; Gawlowski, T.; Kocalis, H.; Scott, B.T.; Dillmann, W.H. Mitochondrial 8-Oxoguanine Glycosylase Decreases Mitochondrial Fragmentation and Improves Mitochondrial Function in H9C2 Cells under Oxidative Stress Conditions. Am. J. Physiol. Cell Physiol. 2014, 306, C221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.L.; Hsieh, M.C.; Hsin, S.C.; Lin, H.Y.; Lin, K.D.; Lo, C.S.; Chen, Z.H.; Shin, S.J. The HOGG1 Ser326Cys Gene Polymorphism Is Associated with Decreased Insulin Sensitivity in Subjects with Normal Glucose Tolerance. J. Hum. Genet. 2006, 51, 124–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.; Chen, Y.; Liu, J.; Zhang, W.; Zhang, X.; Zha, L.; Liu, W.; Ling, Y.; Li, S.; Tang, S. High Glucose Induced Endothelial Cell Reactive Oxygen Species via OGG1/PKC/NADPH Oxidase Pathway. Life Sci. 2020, 256, 117886. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, Y.; Shi, M.; Huang, M.; Xin, J.; Ci, S.; Chen, M.; Jiang, T.; Hu, Z.; He, L.; et al. Excessive Iron Inhibits Insulin Secretion via Perturbing Transcriptional Regulation of SYT7 by OGG1. Cell. Mol. Life Sci. 2023, 80, 159. [Google Scholar] [CrossRef]
- Sampath, H.; Lloyd, R.S. Roles of OGG1 in Transcriptional Regulation and Maintenance of Metabolic Homeostasis. DNA Repair 2019, 81, 102667. [Google Scholar] [CrossRef]
- Komakula, S.S.B.; Blaze, B.; Ye, H.; Dobrzyn, A.; Sampath, H. A Novel Role for the DNA Repair Enzyme 8-Oxoguanine DNA Glycosylase in Adipogenesis. Int. J. Mol. Sci. 2021, 22, 1152. [Google Scholar] [CrossRef]
- Srivastava, A.; Srivastava, K.; Pandey, S.N.; Choudhuri, G.; Mittal, B. Single-Nucleotide Polymorphisms of DNA Repair Genes OGG1 and XRCC1: Association with Gallbladder Cancer in North Indian Population. Ann. Surg. Oncol. 2009, 16, 1695–1703. [Google Scholar] [CrossRef]
- Arizono, K.; Osada, Y.; Kuroda, Y. DNA Repair Gene HOGG1 Codon 326 and XRCC1 Codon 399 Polymorphisms and Bladder Cancer Risk in a Japanese Population. Jpn. J. Clin. Oncol. 2008, 38, 186–191. [Google Scholar] [CrossRef]
- Thameem, F.; Puppala, S.; Lehman, D.M.; Stern, M.P.; Blangero, J.; Abboud, H.E.; Duggirala, R.; Habib, S.L. The Ser(326)Cys Polymorphism of 8-Oxoguanine Glycosylase 1 (OGG1) Is Associated with Type 2 Diabetes in Mexican Americans. Hum. Hered. 2010, 70, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Pcal, L.; Varvašovsk, J.; Ruav, Z.; Lacigov, S.; Tětina, R.; Racek, J.; Pomahačov, R.; Tanhuserov, V.; Kaňkov, K. Parameters of Oxidative Stress, DNA Damage and DNA Repair in Type 1 and Type 2 Diabetes Mellitus. Arch. Physiol. Biochem. 2011, 117, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Purkayastha, S.; Roy, H.; Sinha, A.; Choudhury, Y. Polymorphisms in DNA Repair Genes Increase the Risk for Type 2 Diabetes Mellitus and Hypertension. Biomol. Concepts 2018, 9, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.W.; Park, N.H.; Shin, J.W.; Park, B.R.; Kim, C.J.; Lee, J.E.; Shin, E.S.; Kim, J.A.; Chung, Y.H. Polymorphisms of DNA Repair Genes in Korean Hepatocellular Carcinoma Patients with Chronic Hepatitis B: Possible Implications on Survival. J. Hepatol. 2012, 57, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.A.; Hassan, M.H.; Ghweil, A.A.; Abdelrahman, A.; Mohammad, A.N.; Ameen, H.H. Urinary 8-Hydroxydeoxyguanosine in Relation to XRCC1 Rs25487 G/A (Arg399Gln) and OGG1 Rs1052133 C/G (Ser326Cys) DNA Repair Genes Polymorphisms in Patients with Chronic Hepatitis C and Related Hepatocellular Carcinoma. Cancer Manag. Res. 2019, 11, 5343–5351. [Google Scholar] [CrossRef] [Green Version]
- Parameswaran, M.; Hasan, H.A.; Sadeque, J.; Jhaveri, S.; Avanthika, C.; Arisoyin, A.E.; Dhanani, M.B.; Rath, S.M. Factors That Predict the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Cureus 2021, 13, e20776. [Google Scholar] [CrossRef]
- Qin, Z.S.; Niu, T.; Liu, J.S. Partition-Ligation–Expectation-Maximization Algorithm for Haplotype Inference with Single-Nucleotide Polymorphisms. Am. J. Hum. Genet. 2002, 71, 1242. [Google Scholar] [CrossRef] [Green Version]
Genotype/Allele | NAFLD (n = 150) | Control (n = 340) | Crude OR (95% CI) | p-Value | ||
---|---|---|---|---|---|---|
Number | Frequency | Number | Frequency | |||
hOGG1 rs1052133 | ||||||
CC | 88 | 0.587 | 187 | 0.550 | 1.161 (0.787–1.713) | 0.955 |
CG | 56 | 0.373 | 140 | 0.412 | 0.851 0.573–1.263) | 0.424 |
GG | 6 | 0.040 | 13 | 0.038 | 1.048 (0.391–2.812) | 0.926 |
χ2 = 0.642; p = 0.725 | ||||||
C | 232 | 0.773 | 58 | 0.756 | 1.114 (0.793–1.563) | 0.534 |
G | 68 | 0.227 | 38 | 0.244 | 0.898 (0.640–1.260) | 0.534 |
APEX1 rs1760944 | ||||||
TT | 29 | 0.193 | 65 | 0.191 | 1.014 (0.623–1.650) | 0.955 |
TG | 91 | 0.607 | 154 | 0.453 | 1.863 (1.260–2.754) | 0.002 |
GG | 30 | 0.200 | 121 | 0.356 | 0.452 (0.286–0.715) | ≤0.001 |
χ2 = 13.129; p = 0.001 | ||||||
T | 149 | 0.497 | 284 | 0.418 | 1.385 (1.049–1.827) | 0.021 |
G | 151 | 0.503 | 396 | 0.582 | 0.722 (0.547–0.953) | 0.021 |
APEX1 rs1130409 | ||||||
TT | 36 | 0.240 | 71 | 0.209 | 1.196 (0.758–1.889) | 0.442 |
TG | 112 | 0.747 | 202 | 0.594 | 2.014 (1.314–3.086) | 0.001 |
GG | 2 | 0.013 | 67 | 0.197 | 0.055 (0.013–0.228) | ≤0.001 |
χ2 = 29.192; p ≤ 0.001 | ||||||
T | 184 | 0.613 | 344 | 0.506 | 1.870 (1.335–2.618) | ≤0.001 |
G | 116 | 0.387 | 336 | 0.494 | 0.535 (0.382–0.749) | ≤0.001 |
NEIL1 rs4462560 | ||||||
CC | 85 | 0.567 | 223 | 0.655 | 0.702 (0.472–1.045) | 0.081 |
CG | 65 | 0.433 | 109 | 0.321 | 1.580 (1.060–2.355) | 0.025 |
GG | 0 | 0.000 | 8 | 0.024 | <0.001 (0.000 ± inf) | 0.990 |
χ2 = 8.573; p = 0.014 | ||||||
C | 235 | 0.783 | 555 | 0.816 | 0.802 (0.555–1.159) | 0.240 |
G | 65 | 0.217 | 125 | 0.184 | 1.247 (0.863–1.803) | 0.240 |
LIG3 rs1052536 | ||||||
CC | 25 | 0.167 | 62 | 0.182 | 0.897 (0.538–1.493) | 0.675 |
CT | 81 | 0.540 | 184 | 0.541 | 0.995 (0.677–1.463) | 0.981 |
TT | 44 | 0.293 | 94 | 0.277 | 1.086 (0.711–1.660) | 0.702 |
χ2 = 0.250; p = 0.883 | ||||||
C | 131 | 0.437 | 308 | 0.453 | 0.930 (0.698–1.240) | 0.620 |
T | 169 | 0.563 | 372 | 0.547 | 1.075 (0.807–1.434) | 0.620 |
LIG3 rs4796030 | ||||||
AA | 15 | 0.100 | 33 | 0.097 | 1.041 (0.547–1.981) | 0.902 |
AC | 49 | 0.327 | 167 | 0.491 | 0.492 (0.329–0.737) | ≤0.001 |
CC | 86 | 0.573 | 140 | 0.412 | 1.950 (1.320–2.881) | ≤0.001 |
χ2 = 12.290; p = 0.002 | ||||||
A | 79 | 0.263 | 233 | 0.343 | 0.675 (0.496–0.918) | 0.012 |
C | 221 | 0.737 | 447 | 0.657 | 1.482 (1.089–2.015) | 0.012 |
LIG1 rs20579 | ||||||
AA | 1 | 0.007 | 3 | 0.009 | 0.764 (0.079–7.407) | 0.816 |
AG | 43 | 0.287 | 84 | 0.247 | 1.208 (0.782–1.864) | 0.394 |
GG | 106 | 0.706 | 253 | 0.744 | 0.840 (0.546–1.291) | 0.426 |
χ2 = 0.889; p = 0.641 | ||||||
A | 45 | 0.150 | 90 | 0.132 | 1.160 (0.771–1.748) | 0.476 |
G | 255 | 0.850 | 590 | 0.868 | 0.862 (0.572–1.298) | 0.476 |
Genotype/Allele | without IR (n = 130) | IR (n = 20) | Crude OR (95% CI) | p-Value | ||
---|---|---|---|---|---|---|
Number | Frequency | Number | Frequency | |||
LIG3 rs4796030 | ||||||
AA | 14 | 0.108 | 1 | 0.050 | 2.293 (0.285–18.464) | 0.436 |
AC | 48 | 0.369 | 1 | 0.050 | 11.122 (1.443–85.722) | 0.021 |
CC | 68 | 0.523 | 18 | 0.900 | 0.122 (0.027–0.547) | 0.006 |
χ2 = 10.279; p = 0.006 | ||||||
A | 76 | 0.292 | 3 | 0.075 | 4.420 (1.351–14.466) | 0.014 |
C | 184 | 0.708 | 37 | 0.925 | 0.226 (0.069–0.740) | 0.014 |
Haplotype | NAFLD (n = 150) | Control (n = 340) | Crude OR (95% CI) | p-Value | ||
---|---|---|---|---|---|---|
Number | Frequency | Number | Frequency | |||
APEX1 rs1760944 and rs1130409 | ||||||
TT | 126 | 0.420 | 205 | 0.301 | 1.677 (1.265–2.223) | ≤0.001 |
GG | 93 | 0.310 | 257 | 0.377 | 0.739 (0.553–0.987) | 0.040 |
TG | 23 | 0.076 | 79 | 0.116 | 0.631 (0.388–1.026) | 0.061 |
GT | 58 | 0.193 | 139 | 0.204 | 0.932 (0.662–1.312) | 0.690 |
LIG3 rs1052536 and rs4796030 | ||||||
CC | 56 | 0.186 | 92 | 0.135 | 1.466 (1.019–2.111) | 0.042 |
TC | 165 | 0.550 | 355 | 0.522 | 1.118 (0.851–1.469) | 0.445 |
CA | 75 | 0.250 | 216 | 0.317 | 0.716 (0.526–0.973) | 0.032 |
Number of Patients (Male/Female) | 77/73 |
---|---|
Mean age of patients ± SD | 60.56 ± 11.04 |
Mean BMI of patients ± SD | 33.99 ± 5.38 |
Patients with NAFLD | Controls | |
---|---|---|
With IR | Without IR | |
130 | 20 | 340 |
Parameters | Mean | SD |
---|---|---|
Age, years | 60.56 | 11.04 |
BMI, kg m−2 | 33.99 | 5.38 |
Fasting glucose, mg dL−1 | 132.05 | 32.52 |
HbA1c, % | 7.05 | 1.45 |
ALT, U L−1 | 49.05 | 38.34 |
AST, U L−1 | 37.86 | 27.11 |
Total cholesterol, mg dL−1 | 186.86 | 46.29 |
HDL cholesterol, mg dL−1 | 52.10 | 15.35 |
LDL cholesterol, mg dL−1 | 102.97 | 39.26 |
TG, mg dL−1 | 175.19 | 92.17 |
Gene | NCBI db SNP ID | SNP Localization | MAF * |
---|---|---|---|
hOGG1 | rs1052133 | c.977C>G | 0.22140 |
APEX1 | rs1760944 | c.-468T>G | 0.60318 |
APEX1 | rs1130409 | c.444T>G | 0.46836 |
NEIL1 | rs4462560 | c.*589G>C | 0.74094 |
LIG3 | rs1052536 | c.*50C>T | 0.46071 |
LIG3 | rs4796030 | c.*83A>C | 0.55784 |
LIG1 | rs20579 | c.-7C>T | 0.12513 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziółkowska, S.; Kosmalski, M.; Kołodziej, Ł.; Jabłkowska, A.; Szemraj, J.Z.; Pietras, T.; Jabłkowski, M.; Czarny, P.L. Single-Nucleotide Polymorphisms in Base-Excision Repair-Related Genes Involved in the Risk of an Occurrence of Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2023, 24, 11307. https://doi.org/10.3390/ijms241411307
Ziółkowska S, Kosmalski M, Kołodziej Ł, Jabłkowska A, Szemraj JZ, Pietras T, Jabłkowski M, Czarny PL. Single-Nucleotide Polymorphisms in Base-Excision Repair-Related Genes Involved in the Risk of an Occurrence of Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences. 2023; 24(14):11307. https://doi.org/10.3390/ijms241411307
Chicago/Turabian StyleZiółkowska, Sylwia, Marcin Kosmalski, Łukasz Kołodziej, Aleksandra Jabłkowska, Janusz Zbigniew Szemraj, Tadeusz Pietras, Maciej Jabłkowski, and Piotr Lech Czarny. 2023. "Single-Nucleotide Polymorphisms in Base-Excision Repair-Related Genes Involved in the Risk of an Occurrence of Non-Alcoholic Fatty Liver Disease" International Journal of Molecular Sciences 24, no. 14: 11307. https://doi.org/10.3390/ijms241411307
APA StyleZiółkowska, S., Kosmalski, M., Kołodziej, Ł., Jabłkowska, A., Szemraj, J. Z., Pietras, T., Jabłkowski, M., & Czarny, P. L. (2023). Single-Nucleotide Polymorphisms in Base-Excision Repair-Related Genes Involved in the Risk of an Occurrence of Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 24(14), 11307. https://doi.org/10.3390/ijms241411307