Peculiar Properties of Template-Assisted Aniline Polymerization in a Buffer Solution Using Laccase and a Laccase–Mediator System as Compared with Chemical Polymerization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Laccase-Catalyzed Aniline Polymerization
2.2. Aniline Polymerization Using a Laccase–Mediator System
2.3. Chemical Aniline Polymerization Using Ammonium Peroxydisulfate as an Oxidant in a Buffer Micellar Solution
3. Materials and Methods
3.1. Materials
3.2. Enzyme
3.3. Template-Assisted Aniline Polymerization in a Buffer Solution
3.4. Characterization of the Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhadra, S.; Khastgir, D.; Singha, N.K.; Lee, J.H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783–810. [Google Scholar] [CrossRef]
- Zarrintaj, P.; Bakhshandeh, B.; Saeb, M.R.; Sefat, F.; Rezaeian, I.; Ganjali, M.R.; Ramakrishna, S.; Mozafari, M. Oligoaniline-based conductive biomaterials for tissue engineering. Acta Biomater. 2018, 72, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Zarrintaj, P.; Vahabi, H.; Saeb, M.R.; Mozafari, M. Application of polyaniline and its derivatives. In Fundamentals and Emerging Applications of Polyaniline, 1st ed.; Mozafari, M., Chauhan, N.P.S., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 259–272. [Google Scholar] [CrossRef]
- Singh, P.; Shukla, S.K. Advances in polyaniline-based nanocomposites. J. Mater. Sci. 2020, 55, 1331–1365. [Google Scholar] [CrossRef]
- Goswami, S.; Nandy, S.; Fortunato, E.; Martins, R. Polyaniline and its composites engineering: A class of multifunctional smart energy materials. J. Solid State Chem. 2023, 317, 123679. [Google Scholar] [CrossRef]
- Masters, J.G.; Sun, Y.; MacDiarmid, A.G.; Epstein, A.J. Polyaniline: Allowed oxidation states. Synth. Met. 1991, 41, 715–718. [Google Scholar] [CrossRef]
- Stejskal, J.; Gilbert, R.G. Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 857–867. [Google Scholar] [CrossRef] [Green Version]
- Saeb, M.R.; Zarrintaj, P.; Khandelwal, P.; Chauhan, N.P.S. Synthetic route of polyaniline (I): Conventional oxidative polymerization. In Fundamentals and Emerging Applications of Polyaniline, 1st ed.; Mozafari, M., Chauhan, N.P.S., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 17–41. [Google Scholar] [CrossRef]
- Manohar, S.K.; Macdiarmid, A.G.; Epstein, A.J. Polyaniline: Pernigranile, an isolable intermediate in teh conventional chemical synthesis of emeraldine. Synth. Met. 1991, 41, 711–714. [Google Scholar] [CrossRef]
- Lux, F. Properties of electronically conductive polyaniline: A comparison between well-known literature data and some recent experimental findings. Polymer 1994, 35, 2915–2936. [Google Scholar] [CrossRef]
- Wei, Y.; Hsueh, K.F.; Jang, G.-W. Monitoring the chemical polymerization of aniline by open-circuit-potential measurements. Polymer 1994, 35, 3572–3575. [Google Scholar] [CrossRef]
- Stejskal, J.; Kratochvíl, P.; Jenkins, A.D. The formation of polyaniline and the nature of its structures. Polymer 1996, 37, 367–369. [Google Scholar] [CrossRef]
- Sapurina, I.Y.; Stejskal, J. The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products. Russ. Chem. Rev. 2010, 79, 1123–1143. [Google Scholar] [CrossRef]
- Surwade, S.P.; Dua, V.; Manohar, N.; Manohar, S.K.; Beck, E.; Ferraris, J.P. Oligoaniline intermediates in the aniline-peroxydisulfate system. Synth. Met. 2009, 159, 445–455. [Google Scholar] [CrossRef]
- Liu, W.; Kumar, J.; Tripathy, S.; Senecal, K.J.; Samuelson, L. Enzymatically Synthesized Conducting Polyaniline. J. Am. Chem. Soc. 1999, 121, 71–78. [Google Scholar] [CrossRef]
- Cruz-Silva, R.; Ruiz-Flores, C.; Arizmendi, L.; Romero-García, J.; Arias-Marin, E.; Moggio, I.; Castillon, F.F.; Farias, M.H. Enzymatic synthesis of colloidal polyaniline particles. Polymer 2006, 47, 1563–1568. [Google Scholar] [CrossRef]
- Vasil’eva, I.S.; Morozova, O.V.; Shumakovich, G.P.; Shleev, S.V.; Sakharov, I.Y.; Yaropolov, A.I. Laccase-catalyzed synthesis of optically active polyaniline. Synth. Met. 2007, 157, 684–689. [Google Scholar] [CrossRef]
- Otrokhov, G.V.; Morozova, O.V.; Vasil’eva, I.S.; Shumakovich, G.P.; Zaitseva, E.A.; Khlupova, M.E.; Yaropolov, A.I. Biocatalytic synthesis of conducting polymers and prospects for its application. Biochemistry 2013, 78, 1539–1553. [Google Scholar] [CrossRef] [PubMed]
- de Salas, F.; Pardo, I.; Salavagione, H.J.; Aza, P.; Amougi, E.; Vind, J.; Martínez, A.T.; Camarero, S. Advanced synthesis of conductive polyaniline using laccase as biocatalyst. PLoS ONE 2016, 11, e0164958. [Google Scholar] [CrossRef] [Green Version]
- Kurisu, M.; Kissner, R.; Imai, M.; Walde, P. Application of an enzymatic cascade reaction for the synthesis of the emeraldine salt form of polyaniline. Chem. Pap. 2021, 75, 5071–5085. [Google Scholar] [CrossRef]
- Ćirić-Marjanović, G.; Milojević-Rakić, M.; Janošević-Ležaić, A.; Luginbühl, S.; Walde, P. Enzymatic oligomerization and polymerization of arylamines: State of the art and perspectives. Chem. Pap. 2017, 71, 199–242. [Google Scholar] [CrossRef] [Green Version]
- Walde, P.; Kashima, K.; Ćirić-Marjanović, G. Synthesizing Polyaniline With Laccase/O2 as Catalyst. Front. Bioeng. Biotechnol. 2019, 7, 165. [Google Scholar] [CrossRef]
- Solomon, E.; Sundaram, U.; Machonkin, T. Multicopper oxidases and oxygenases. Chem. Rev. 1996, 96, 2563–2605. [Google Scholar] [CrossRef] [PubMed]
- Morozova, O.V.; Shumakovich, G.P.; Gorbacheva, M.A.; Shleev, S.V.; Yaropolov, A.I. “Blue” Laccases. Biochemistry 2007, 72, 1136–1150. [Google Scholar] [CrossRef] [PubMed]
- Walde, P.; Guo, Z. Enzyme-catalyzed chemical structure-controlling template polymerization. Soft Matter 2011, 7, 316–331. [Google Scholar] [CrossRef]
- Hollmann, F.; Arends, I. Enzyme initiated radical polymerizations. Polymers 2012, 4, 759–793. [Google Scholar] [CrossRef] [Green Version]
- Morozova, O.V.; Shumakovich, G.P.; Shleev, S.V.; Yaropolov, Y.I. Laccase-mediator systems and their applications: A review. Appl. Biochem. Microbiol. 2007, 43, 523–535. [Google Scholar] [CrossRef]
- Mogharabi, M.; Faramarzi, M. Laccase and laccase-mediated systems in the synthesis of organic compounds. Adv. Synth. Catal. 2014, 356, 897–927. [Google Scholar] [CrossRef]
- Bassanini, I.; Ferrandi, E.E.; Riva, S.; Monti, D. Biocatalysis with laccases: An updated overview. Catalysts 2021, 11, 26. [Google Scholar] [CrossRef]
- Gu, Y.; Yuan, L.; Jia, L.; Xue, P.; Yao, H. Recent developments of a co-immobilized laccase-mediator system: A review. RSC Adv. 2021, 11, 29498–29506. [Google Scholar] [CrossRef]
- Jayakumar, J.; Priyadarshini, D.; Parthasarathy, A.; Reddy, S.R. Recent advances in molecular oxygen assisted laccase catalyzed sustainable organic transformations. Asian J. Org. Chem. 2023, 12, e202200564. [Google Scholar] [CrossRef]
- Shleev, S.V.; Morozova, O.V.; Nikitina, O.V.; Gorshina, E.S.; Rusinova, T.V.; Serezhenkov, V.A.; Burbaev, D.S.; Gazaryan, I.G.; Yaropolov, A.I. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. Biochimie 2004, 86, 693–703. [Google Scholar] [CrossRef]
- Haba, Y.; Segal, E.; Narkis, M.; Titelman, G.I.; Siegmann, A. Polymerization of aniline in the presence of DBSA in an aqueous dispersion. Synth. Met. 1999, 106, 59–66. [Google Scholar] [CrossRef]
- Stejskal, J.; Kratochvíl, P.; Radhakrishnan, N. Polyaniline dispersions 2. UV-Vis absorption spectra. Synth. Met. 1993, 61, 225–231. [Google Scholar] [CrossRef]
- Furukawa, Y.; Ueda, F.; Hyodo, Y.; Harada, I.; Nakajima, T.; Kawagoe, T. Vibrational spectra and structure of polyaniline. Macromolecules 1988, 21, 1297–1305. [Google Scholar] [CrossRef]
- Deng, H.; Van Berke, G.J. Electrochemical polymerization of aniline investigated using on-line electrochemistry/electrospray mass spectrometry. Anal. Chem. 1999, 71, 4284–4293. [Google Scholar] [CrossRef]
- Dolan, A.R.; Wood, T.D. Synthesis and characterization of low molecular weight oligomers of soluble polyaniline by electrospray ionization mass spectrometry. Synth. Met. 2004, 143, 243–250. [Google Scholar] [CrossRef]
- Laska, J.; Widlarz, J. Spectroscopic and structural characterization of low molecular weight fractions of polyaniline. Polymer 2005, 46, 1485–1495. [Google Scholar] [CrossRef]
- Li, R.L.; Lin, C.-W.; Shao, Y.; Chang, C.W.; Yao, F.-K.; Kowal, M.D.; Wang, H.; Yeung, M.T.; Huang, S.-C.; Kaner, R.B. Characterization of aniline tetramer by MALDI TOF mass spectrometry upon oxidative and reductive cycling. Polymers 2016, 8, 401. [Google Scholar] [CrossRef] [Green Version]
- Gorshina, E.S.; Rusinova, T.V.; Biryukov, V.V.; Morozova, O.V.; Shleev, S.V.; Yaropolov, A.I. The dynamics of oxidase activity during cultivation of basidiomycetes from the genus Trametes Fr. Appl. Biochem. Microbiol. 2006, 42, 558–563. [Google Scholar] [CrossRef]
- Vasil’eva, I.; Morozova, O.; Shumakovich, G.; Yaropolov, A. Betaine-based deep eutectic solvent as a new media for laccase-catalyzed template-guided polymerization/copolymerization of aniline and 3-aminobenzoic acid. Int. J. Mol. Sci. 2022, 23, 11409. [Google Scholar] [CrossRef]
Synthesis | Oxidant | Polymerization Time, h | UV–Vis Absorption Characteristics, nm | Conductivity, mS cm−1 |
---|---|---|---|---|
Laccase-catalyzed | Air oxygen | 24 | 380–420, 787 | 0.3–0.5 |
LMS (laccase + K4Mo(CN)8) | Air oxygen | 24 | 380–420, 825 | 1–2 |
Chemical | (NH4)2S2O8 | 24 | 415 | non-conducting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozova, O.; Vasil’eva, I.; Shumakovich, G.; Zaitseva, E.; Yaropolov, A. Peculiar Properties of Template-Assisted Aniline Polymerization in a Buffer Solution Using Laccase and a Laccase–Mediator System as Compared with Chemical Polymerization. Int. J. Mol. Sci. 2023, 24, 11374. https://doi.org/10.3390/ijms241411374
Morozova O, Vasil’eva I, Shumakovich G, Zaitseva E, Yaropolov A. Peculiar Properties of Template-Assisted Aniline Polymerization in a Buffer Solution Using Laccase and a Laccase–Mediator System as Compared with Chemical Polymerization. International Journal of Molecular Sciences. 2023; 24(14):11374. https://doi.org/10.3390/ijms241411374
Chicago/Turabian StyleMorozova, Olga, Irina Vasil’eva, Galina Shumakovich, Elena Zaitseva, and Alexander Yaropolov. 2023. "Peculiar Properties of Template-Assisted Aniline Polymerization in a Buffer Solution Using Laccase and a Laccase–Mediator System as Compared with Chemical Polymerization" International Journal of Molecular Sciences 24, no. 14: 11374. https://doi.org/10.3390/ijms241411374
APA StyleMorozova, O., Vasil’eva, I., Shumakovich, G., Zaitseva, E., & Yaropolov, A. (2023). Peculiar Properties of Template-Assisted Aniline Polymerization in a Buffer Solution Using Laccase and a Laccase–Mediator System as Compared with Chemical Polymerization. International Journal of Molecular Sciences, 24(14), 11374. https://doi.org/10.3390/ijms241411374