Early Splicing Complexes and Human Disease
Abstract
:1. Introduction
2. Assembly and Function of Early Splicing Complexes
2.1. Commitment Complex
2.1.1. Binding of U1 snRNP to the 5′ Splice Site
2.1.2. Binding of SF1 and the U2AF Heterodimer to the Branchpoint Sequence, Polypyrimidine Tract and 3′ Splice Site
2.2. Pre-Spliceosome Complex
2.2.1. Displacement of SF1 from the Branchpoint Sequence
2.2.2. Recruitment and Binding of U2 snRNP to the Pre-mRNA
3. Alterations to the Formation of Early Splicing Complexes Leads to Human Disease
3.1. U1 snRNP
3.2. U2AF Heterodimer
3.3. DDX39B
3.4. U2 snRNP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharp, P.A.; Burge, C.B. Classification of Introns: U2-Type or U12-Type. Cell 1997, 91, 875–879. [Google Scholar] [CrossRef] [Green Version]
- Lerner, M.R.; Steitz, J.A. Antibodies to Small Nuclear RNAs Complexed with Proteins Are Produced by Patients with Systemic Lupus Erythematosus. Proc. Natl. Acad. Sci. USA 1979, 76, 5495–5499. [Google Scholar] [CrossRef] [PubMed]
- Lerner, M.R.; Boyle, J.A.; Mount, S.M.; Wolin, S.L.; Steitz, J.A. Are SnRNPs Involved in Splicing? Nature 1980, 283, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Kastner, B.; Will, C.L.; Stark, H.; Lührmann, R. Structural Insights into Nuclear Pre-MRNA Splicing in Higher Eukaryotes. Cold Spring Harb. Perspect. Biol. 2019, 11, a032417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Conti, L.; Baralle, M.; Buratti, E. Exon and Intron Definition in Pre-MRNA Splicing. WIREs RNA 2013, 4, 49–60. [Google Scholar] [CrossRef]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial Sequencing and Analysis of the Human Genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [Green Version]
- Hnilicová, J.; Staněk, D. Where Splicing Joins Chromatin. Nucleus 2011, 2, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Will, C.L.; Lührmann, R. Spliceosome Structure and Function. Cold Spring Harb. Perspect. Biol. 2011, 3, a003707. [Google Scholar] [CrossRef] [Green Version]
- Havens, M.A.; Duelli, D.M.; Hastings, M.L. Targeting RNA Splicing for Disease Therapy. Wiley Interdiscip. Rev. RNA 2013, 4, 247–266. [Google Scholar] [CrossRef]
- Wilkinson, M.E.; Charenton, C.; Nagai, K. RNA Splicing by the Spliceosome. Annu. Rev. Biochem. 2020, 89, 359–388. [Google Scholar] [CrossRef]
- Legrain, P.; Seraphin, B.; Rosbash, M. Early Commitment of Yeast Pre-MRNA to the Spliceosome Pathway. Mol. Cell. Biol. 1988, 8, 3755–3760. [Google Scholar]
- Michaud, S.; Reed, R. A Functional Association between the 5′ and 3′ Splice Site Is Established in the Earliest Prespliceosome Complex (E) in Mammals. Genes Dev. 1993, 7, 1008–1020. [Google Scholar] [CrossRef] [Green Version]
- Jamison, S.F.; Crow, A.; Garcia-Blanco, M.A. The Spliceosome Assembly Pathway in Mammalian Extracts. Mol. Cell. Biol. 1992, 12, 4279–4287. [Google Scholar]
- Robberson, B.L.; Cote, G.J.; Berget, S.M. Exon Definition May Facilitate Splice Site Selection in RNAs with Multiple Exons. Mol. Cell. Biol. 1990, 10, 84–94. [Google Scholar]
- Mount, S.M.; Pettersson, I.; Hinterberger, M.; Karmas, A.; Steitz, J.A. The U1 Small Nuclear RNA-Protein Complex Selectively Binds a 5′ Splice Site in Vitro. Cell 1983, 33, 509–518. [Google Scholar] [CrossRef]
- Berglund, J.A.; Abovich, N.; Rosbash, M. A Cooperative Interaction between U2AF65 and MBBP/SF1 Facilitates Branchpoint Region Recognition. Genes Dev. 1998, 12, 858–867. [Google Scholar] [CrossRef] [Green Version]
- Reed, R.; Maniatis, T. Intron Sequences Involved in Lariat Formation during Pre-MRNA Splicing. Cell 1985, 41, 95–105. [Google Scholar] [CrossRef]
- Abovich, N.; Rosbash, M. Cross-Intron Bridging Interactions in the Yeast Commitment Complex Are Conserved in Mammals. Cell 1997, 89, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Michaud, S.; Reed, R. An ATP-Independent Complex Commits Pre-MRNA to the Mammalian Spliceosome Assembly Pathway. Genes Dev. 1991, 5, 2534–2546. [Google Scholar] [CrossRef] [Green Version]
- Kondo, Y.; Oubridge, C.; van Roon, A.-M.M.; Nagai, K. Crystal Structure of Human U1 SnRNP, a Small Nuclear Ribonucleoprotein Particle, Reveals the Mechanism of 5′ Splice Site Recognition. eLife 2015, 4, e04986. [Google Scholar] [CrossRef]
- Nelissen, R.L.; Will, C.L.; van Venrooij, W.J.; Lührmann, R. The Association of the U1-Specific 70K and C Proteins with U1 SnRNPs Is Mediated in Part by Common U SnRNP Proteins. EMBO J. 1994, 13, 4113–4125. [Google Scholar] [CrossRef] [PubMed]
- Malard, F.; Mackereth, C.D.; Campagne, S. Principles and Correction of 5′-Splice Site Selection. RNA Biol. 2022, 19, 943–960. [Google Scholar] [CrossRef] [PubMed]
- Larson, J.D.; Hoskins, A.A. Dynamics and Consequences of Spliceosome E Complex Formation. eLife 2017, 6, e27592. [Google Scholar] [CrossRef] [PubMed]
- Jamison, S.F.; Pasman, Z.; Wang, J.; Will, C.; Lührmann, R.; Manley, J.L.; Garcia-Blanco, M.A. U1 SnRNP-ASF/SF2 Interaction and 5′ Splice Site Recognition: Characterization of Required Elements. Nucleic Acids Res. 1995, 23, 3260–3267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.; Hoang, A.; Sinha, R.; Zhong, X.-Y.; Fu, X.-D.; Krainer, A.R.; Ghosh, G. Interaction between the RNA Binding Domains of Ser-Arg Splicing Factor 1 and U1-70K SnRNP Protein Determines Early Spliceosome Assembly. Proc. Natl. Acad. Sci. USA 2011, 108, 8233–8238. [Google Scholar] [CrossRef]
- Evans, P.R.; Oubridge, C.; Jessen, T.-H.; Li, J.; Teo, C.H.; Pritchard, C.; Ito, N.; Nagai, K. Model of the Interaction between the UI A Small Nuclear Ribonucleoprotein and UI Small Nuclear RNA Stem/Loop II. Biochem. Soc. Trans. 1993, 21, 605–609. [Google Scholar] [CrossRef] [Green Version]
- Oubridge, C.; Ito, N.; Evans, P.R.; Teo, C.-H.; Nagai, K. Crystal Structure at 1.92 Å Resolution of the RNA-Binding Domain of the U1A Spliceosomal Protein Complexed with an RNA Hairpin. Nature 1994, 372, 432–438. [Google Scholar] [CrossRef]
- Sharma, S.; Wongpalee, S.P.; Vashisht, A.; Wohlschlegel, J.A.; Black, D.L. Stem–Loop 4 of U1 SnRNA Is Essential for Splicing and Interacts with the U2 SnRNP-Specific SF3A1 Protein during Spliceosome Assembly. Genes Dev. 2014, 28, 2518–2531. [Google Scholar] [CrossRef] [Green Version]
- Martelly, W.; Fellows, B.; Kang, P.; Vashisht, A.; Wohlschlegel, J.A.; Sharma, S. Synergistic Roles for Human U1 SnRNA Stem-Loops in Pre-MRNA Splicing. RNA Biol. 2021, 18, 2576–2593. [Google Scholar] [CrossRef]
- Hinterberger, M.; Pettersson, I.; Steitz, J.A. Isolation of Small Nuclear Ribonucleoproteins Containing U1, U2, U4, U5, and U6 RNAs. J. Biol. Chem. 1983, 258, 2604–2613. [Google Scholar] [CrossRef]
- Fischer, U.; Englbrecht, C.; Chari, A. Biogenesis of Spliceosomal Small Nuclear Ribonucleoproteins. WIREs RNA 2011, 2, 718–731. [Google Scholar] [CrossRef]
- Keller, E.B.; Noon, W.A. Intron Splicing: A Conserved Internal Signal in Introns of Drosophila Pre-MRNAs. Nucleic Acids Res. 1985, 13, 4971–4981. [Google Scholar] [CrossRef] [Green Version]
- Gao, K.; Masuda, A.; Matsuura, T.; Ohno, K. Human Branch Point Consensus Sequence Is YUnAy. Nucleic Acids Res. 2008, 36, 2257–2267. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Luyten, I.; Bottomley, M.J.; Messias, A.C.; Houngninou-Molango, S.; Sprangers, R.; Zanier, K.; Krämer, A.; Sattler, M. Structural Basis for Recognition of the Intron Branch Site RNA by Splicing Factor 1. Science 2001, 294, 1098–1102. [Google Scholar] [CrossRef]
- Berglund, J.A.; Fleming, M.L.; Rosbash, M. The KH Domain of the Branchpoint Sequence Binding Protein Determines Specificity for the Pre-MRNA Branchpoint Sequence. RNA 1998, 4, 998–1006. [Google Scholar] [CrossRef] [Green Version]
- Selenko, P.; Gregorovic, G.; Sprangers, R.; Stier, G.; Rhani, Z.; Krämer, A.; Sattler, M. Structural Basis for the Molecular Recognition between Human Splicing Factors U2AF65 and SF1/MBBP. Mol. Cell 2003, 11, 965–976. [Google Scholar] [CrossRef]
- Sickmier, E.A.; Frato, K.E.; Shen, H.; Paranawithana, S.R.; Green, M.R.; Kielkopf, C.L. Structural Basis for Polypyrimidine Tract Recognition by the Essential Pre-MRNA Splicing Factor U2AF65. Mol. Cell 2006, 23, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Mackereth, C.D.; Madl, T.; Bonnal, S.; Simon, B.; Zanier, K.; Gasch, A.; Rybin, V.; Valcárcel, J.; Sattler, M. Multi-Domain Conformational Selection Underlies Pre-MRNA Splicing Regulation by U2AF. Nature 2011, 475, 408–411. [Google Scholar] [CrossRef]
- Roscigno, R.F.; Weiner, M.; Garcia-Blanco, M.A. A Mutational Analysis of the Polypyrimidine Tract of Introns. Effects of Sequence Differences in Pyrimidine Tracts on Splicing. J. Biol. Chem. 1993, 268, 11222–11229. [Google Scholar] [CrossRef]
- Singh, R.; Banerjee, H.; Green, M.R. Differential Recognition of the Polypyrimidine-Tract by the General Splicing Factor U2AF65 and the Splicing Repressor Sex-Lethal. RNA 2000, 6, 901–911. [Google Scholar] [CrossRef] [Green Version]
- Hirano, M.; Galarza-Muñoz, G.; Nagasawa, C.; Schott, G.; Wang, L.; Antonia, A.L.; Jain, V.; Yu, X.; Widen, S.G.; Briggs, F.B.; et al. The RNA Helicase DDX39B Activates FOXP3 RNA Splicing to Control T Regulatory Cell Fate. eLife 2023, 12, e76927. [Google Scholar] [CrossRef] [PubMed]
- Glasser, E.; Maji, D.; Biancon, G.; Puthenpeedikakkal, A.M.K.; Cavender, C.E.; Tebaldi, T.; Jenkins, J.L.; Mathews, D.H.; Halene, S.; Kielkopf, C.L. Pre-MRNA Splicing Factor U2AF2 Recognizes Distinct Conformations of Nucleotide Variants at the Center of the Pre-MRNA Splice Site Signal. Nucleic Acids Res. 2022, 50, 5299–5312. [Google Scholar] [CrossRef] [PubMed]
- Voith von Voithenberg, L.; Sánchez-Rico, C.; Kang, H.-S.; Madl, T.; Zanier, K.; Barth, A.; Warner, L.R.; Sattler, M.; Lamb, D.C. Recognition of the 3′ Splice Site RNA by the U2AF Heterodimer Involves a Dynamic Population Shift. Proc. Natl. Acad. Sci. USA 2016, 113, E7169–E7175. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, J.L.; Agrawal, A.A.; Gupta, A.; Green, M.R.; Kielkopf, C.L. U2AF65 Adapts to Diverse Pre-MRNA Splice Sites through Conformational Selection of Specific and Promiscuous RNA Recognition Motifs. Nucleic Acids Res. 2013, 41, 3859–3873. [Google Scholar] [CrossRef] [Green Version]
- Loerch, S.; Kielkopf, C.L. Unmasking the U2AF Homology Motif Family: A Bona Fide Protein–Protein Interaction Motif in Disguise. RNA 2016, 22, 1795–1807. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Romfo, C.M.; Nilsen, T.W.; Green, M.R. Functional Recognition of the 3′ Splice Site AG by the Splicing Factor U2AF35. Nature 1999, 402, 832–835. [Google Scholar] [CrossRef]
- Yoshida, H.; Park, S.-Y.; Oda, T.; Akiyoshi, T.; Sato, M.; Shirouzu, M.; Tsuda, K.; Kuwasako, K.; Unzai, S.; Muto, Y.; et al. A Novel 3′ Splice Site Recognition by the Two Zinc Fingers in the U2AF Small Subunit. Genes Dev. 2015, 29, 1649–1660. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S. SR Proteins: Binders, Regulators, and Connectors of RNA. Mol. Cells 2017, 40, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.Y.; Maniatis, T. Specific Interactions between Proteins Implicated in Splice Site Selection and Regulated Alternative Splicing. Cell 1993, 75, 1061–1070. [Google Scholar] [CrossRef]
- Kohtz, J.D.; Jamison, S.F.; Will, C.L.; Zuo, P.; Lührmann, R.; Garcia-Blanco, M.A.; Manley, J.L. Protein-Protein Interactions and 5′-Splice-Site Recognition in Mammalian MRNA Precursors. Nature 1994, 368, 119–124. [Google Scholar] [CrossRef]
- Fleckner, J.; Zhang, M.; Valcárcel, J.; Green, M.R. U2AF65 Recruits a Novel Human DEAD Box Protein Required for the U2 SnRNP-Branchpoint Interaction. Genes Dev. 1997, 11, 1864–1872. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Green, M.R. Identification and Characterization of YUAP/Sub2p, a Yeast Homolog of the Essential Human Pre-MRNA Splicing Factor HUAP56. Genes Dev. 2001, 15, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Rigo, N.; Dybkov, O.; Fourmann, J.-B.; Will, C.L.; Kumar, V.; Urlaub, H.; Stark, H.; Lührmann, R. Structural Insights into How Prp5 Proofreads the Pre-MRNA Branch Site. Nature 2021, 596, 296–300. [Google Scholar] [CrossRef]
- Yamazaki, T.; Fujiwara, N.; Yukinaga, H.; Ebisuya, M.; Shiki, T.; Kurihara, T.; Kioka, N.; Kambe, T.; Nagao, M.; Nishida, E.; et al. The Closely Related RNA Helicases, UAP56 and URH49, Preferentially Form Distinct MRNA Export Machineries and Coordinately Regulate Mitotic Progression. MBoC 2010, 21, 2953–2965. [Google Scholar] [CrossRef] [Green Version]
- Galarza-Muñoz, G.; Briggs, F.B.S.; Evsyukova, I.; Schott-Lerner, G.; Kennedy, E.M.; Nyanhete, T.; Wang, L.; Bergamaschi, L.; Widen, S.G.; Tomaras, G.D.; et al. Human Epistatic Interaction Controls IL7R Splicing and Increases Multiple Sclerosis Risk. Cell 2017, 169, 72–84.e13. [Google Scholar] [CrossRef] [Green Version]
- Kistler, A.L.; Guthrie, C. Deletion of MUD2, the Yeast Homolog of U2AF65, Can Bypass the Requirement for Sub2, an Essential Spliceosomal ATPase. Genes Dev. 2001, 15, 42–49. [Google Scholar] [CrossRef]
- Krämer, A.; Utans, U. Three Protein Factors (SF1, SF3 and U2AF) Function in Pre-Splicing Complex Formation in Addition to SnRNPs. EMBO J 1991, 10, 1503–1509. [Google Scholar] [CrossRef]
- Shuster, E.O.; Guthrie, C. Human U2 SnRNA Can Function in Pre-MRNA Splicing in Yeast. Nature 1990, 345, 270–273. [Google Scholar] [CrossRef]
- Ares, M. U2 RNA from Yeast Is Unexpectedly Large and Contains Homology to Vertebrate U4, U5, and U6 Small Nuclear RNAs. Cell 1986, 47, 49–59. [Google Scholar] [CrossRef]
- Behrens, S.E.; Galisson, F.; Legrain, P.; Lührmann, R. Evidence That the 60-KDa Protein of 17S U2 Small Nuclear Ribonucleoprotein Is Immunologically and Functionally Related to the Yeast PRP9 Splicing Factor and Is Required for the Efficient Formation of Prespliceosomes. Proc. Natl. Acad. Sci. USA 1993, 90, 8229–8233. [Google Scholar] [CrossRef]
- Lardelli, R.M.; Thompson, J.X.; Yates, J.R.; Stevens, S.W. Release of SF3 from the Intron Branchpoint Activates the First Step of Pre-MRNA Splicing. RNA 2010, 16, 516–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tholen, J.; Razew, M.; Weis, F.; Galej, W.P. Structural Basis of Branch Site Recognition by the Human Spliceosome. Science 2022, 375, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Gozani, O.; Potashkin, J.; Reed, R. A Potential Role for U2AF-SAP 155 Interactions in Recruiting U2 SnRNP to the Branch Site. Mol. Cell. Biol. 1998, 18, 4752–4760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacMillan, A.M.; Query, C.C.; Allerson, C.R.; Chen, S.; Verdine, G.L.; Sharp, P.A. Dynamic Association of Proteins with the Pre-MRNA Branch Region. Genes Dev. 1994, 8, 3008–3020. [Google Scholar] [CrossRef] [Green Version]
- van der Feltz, C.; Hoskins, A.A. Structural and Functional Modularity of the U2 SnRNP in Pre-MRNA Splicing. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 443–465. [Google Scholar] [CrossRef]
- Beier, D.H.; Carrocci, T.J.; van der Feltz, C.; Tretbar, U.S.; Paulson, J.C.; Grabowski, N.; Hoskins, A.A. Dynamics of the DEAD-Box ATPase Prp5 RecA-like Domains Provide a Conformational Switch during Spliceosome Assembly. Nucleic Acids Res. 2019, 47, 10842–10851. [Google Scholar] [CrossRef]
- Zhou, Q.; Sharp, P.A. Tat-SF1: Cofactor for Stimulation of Transcriptional Elongation by HIV-1 Tat. Science 1996, 274, 605–610. [Google Scholar] [CrossRef]
- Miller, H.B.; Saunders, K.O.; Tomaras, G.D.; Garcia-Blanco, M.A. Tat-SF1 Is Not Required for Tat Transactivation but Does Regulate the Relative Levels of Unspliced and Spliced HIV-1 RNAs. PLoS ONE 2009, 4, e5710. [Google Scholar] [CrossRef] [Green Version]
- Loerch, S.; Leach, J.R.; Horner, S.W.; Maji, D.; Jenkins, J.L.; Pulvino, M.J.; Kielkopf, C.L. The Pre-MRNA Splicing and Transcription Factor Tat-SF1 Is a Functional Partner of the Spliceosome SF3b1 Subunit via a U2AF Homology Motif Interface. J. Biol. Chem. 2019, 294, 2892–5793. [Google Scholar] [CrossRef] [Green Version]
- Hales, C.M.; Dammer, E.B.; Diner, I.; Yi, H.; Seyfried, N.T.; Gearing, M.; Glass, J.D.; Montine, T.J.; Levey, A.I.; Lah, J.J. Aggregates of Small Nuclear Ribonucleic Acids (SnRNAs) in Alzheimer’s Disease. Brain Pathol. 2014, 24, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Shuai, S.; Suzuki, H.; Diaz-Navarro, A.; Nadeu, F.; Kumar, S.A.; Gutierrez-Fernandez, A.; Delgado, J.; Pinyol, M.; López-Otín, C.; Puente, X.S.; et al. The U1 Spliceosomal RNA Is Recurrently Mutated in Multiple Cancers. Nature 2019, 574, 712–716. [Google Scholar] [CrossRef]
- Suzuki, H.; Kumar, S.A.; Shuai, S.; Diaz-Navarro, A.; Gutierrez-Fernandez, A.; De Antonellis, P.; Cavalli, F.M.G.; Juraschka, K.; Farooq, H.; Shibahara, I.; et al. Recurrent Noncoding U1 SnRNA Mutations Drive Cryptic Splicing in SHH Medulloblastoma. Nature 2019, 574, 707–711. [Google Scholar] [CrossRef]
- Chen, P.-C.; Han, X.; Shaw, T.I.; Fu, Y.; Sun, H.; Niu, M.; Wang, Z.; Jiao, Y.; Teubner, B.J.W.; Eddins, D.; et al. Alzheimer’s Disease-Associated U1 SnRNP Splicing Dysfunction Causes Neuronal Hyperexcitability and Cognitive Impairment. Nat. Aging 2022, 2, 923–940. [Google Scholar] [CrossRef]
- Nakaya, T. A Specific Gene-Splicing Alteration in the SNRNP70 Gene as a Hallmark of an ALS Subtype. Gene 2022, 818, 146203. [Google Scholar] [CrossRef]
- Shirai, C.L.; Ley, J.N.; White, B.S.; Kim, S.; Tibbitts, J.; Shao, J.; Ndonwi, M.; Wadugu, B.; Duncavage, E.J.; Okeyo-Owuor, T.; et al. Mutant U2AF1 Expression Alters Hematopoiesis and Pre-MRNA Splicing In Vivo. Cancer Cell 2015, 27, 631–643. [Google Scholar] [CrossRef] [Green Version]
- Okeyo-Owuor, T.; White, B.S.; Chatrikhi, R.; Mohan, D.R.; Kim, S.; Griffith, M.; Ding, L.; Ketkar-Kulkarni, S.; Hundal, J.; Laird, K.M.; et al. U2AF1 Mutations Alter Sequence Specificity of Pre-MRNA Binding and Splicing. Leukemia 2015, 29, 909–917. [Google Scholar] [CrossRef] [Green Version]
- Park, S.M.; Ou, J.; Chamberlain, L.; Simone, T.M.; Yang, H.; Virbasius, C.-M.; Ali, A.M.; Zhu, L.J.; Mukherjee, S.; Raza, A.; et al. U2AF35(S34F) Promotes Transformation by Directing Aberrant ATG7 Pre-MRNA 3′ End Formation. Mol. Cell 2016, 62, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Herdt, O.; Neumann, A.; Timmermann, B.; Heyd, F. The Cancer-Associated U2AF35 470A>G (Q157R) Mutation Creates an in-Frame Alternative 5′ Splice Site That Impacts Splicing Regulation in Q157R Patients. RNA 2017, 23, 1796–1806. [Google Scholar] [CrossRef]
- Tian, J.; Zhu, B.; Tian, Y.; Zhong, R.; Miao, X.; Wang, L. Association between Pancreatic Cancer Risk and the Interaction of U2AF65 Gene Polymorphisms and Smoking. Zhonghua Liuxingbingxue Zazhi 2014, 35, 710–713. [Google Scholar]
- Maji, D.; Glasser, E.; Henderson, S.; Galardi, J.; Pulvino, M.J.; Jenkins, J.L.; Kielkopf, C.L. Representative Cancer-Associated U2AF2 Mutations Alter RNA Interactions and Splicing. J. Biol. Chem. 2020, 295, 17148–17157. [Google Scholar] [CrossRef]
- Tian, J.; Liu, Y.; Zhu, B.; Tian, Y.; Zhong, R.; Chen, W.; Lu, X.; Zou, L.; Shen, N.; Qian, J.; et al. SF3A1 and Pancreatic Cancer: New Evidence for the Association of the Spliceosome and Cancer. Oncotarget 2015, 6, 37750–37757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Ali, A.M.; Lieu, Y.K.; Liu, Z.; Gao, J.; Rabadan, R.; Raza, A.; Mukherjee, S.; Manley, J.L. Disease-Causing Mutations in SF3B1 Alter Splicing by Disrupting Interaction with SUGP1. Mol. Cell 2019, 76, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Timberlake, A.T.; Griffin, C.; Heike, C.L.; Hing, A.V.; Cunningham, M.L.; Chitayat, D.; Davis, M.R.; Doust, S.J.; Drake, A.F.; Duenas-Roque, M.M.; et al. Haploinsufficiency of SF3B2 Causes Craniofacial Microsomia. Nat. Commun. 2021, 12, 4680. [Google Scholar] [CrossRef] [PubMed]
- Bernier, F.P.; Caluseriu, O.; Ng, S.; Schwartzentruber, J.; Buckingham, K.J.; Innes, A.M.; Jabs, E.W.; Innis, J.W.; Schuette, J.L.; Gorski, J.L.; et al. Haploinsufficiency of SF3B4, a Component of the Pre-MRNA Spliceosomal Complex, Causes Nager Syndrome. Am. J. Hum. Genet. 2012, 90, 925–933. [Google Scholar] [CrossRef] [Green Version]
- Manser, T.; Gesteland, R.F. Human U1 Loci: Genes for Human U1 RNA Have Dramatically Similar Genomic Environments. Cell 1982, 29, 257–264. [Google Scholar] [CrossRef]
- Tam, O.H.; Rozhkov, N.V.; Shaw, R.; Kim, D.; Hubbard, I.; Fennessey, S.; Propp, N.; Fagegaltier, D.; Harris, B.T.; Ostrow, L.W.; et al. Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia. Cell Rep. 2019, 29, 1164–1177.e5. [Google Scholar] [CrossRef] [Green Version]
- Graubert, T.A.; Shen, D.; Ding, L.; Okeyo-Owuor, T.; Lunn, C.L.; Shao, J.; Krysiak, K.; Harris, C.C.; Koboldt, D.C.; Larson, D.E.; et al. Recurrent Mutations in the U2AF1 Splicing Factor in Myelodysplastic Syndromes. Nat. Genet. 2011, 44, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, K.; Sanada, M.; Shiraishi, Y.; Nowak, D.; Nagata, Y.; Yamamoto, R.; Sato, Y.; Sato-Otsubo, A.; Kon, A.; Nagasaki, M.; et al. Frequent Pathway Mutations of Splicing Machinery in Myelodysplasia. Nature 2011, 478, 64–69. [Google Scholar] [CrossRef]
- Nakata, D.; Nakao, S.; Nakayama, K.; Araki, S.; Nakayama, Y.; Aparicio, S.; Hara, T.; Nakanishi, A. The RNA Helicase DDX39B and Its Paralog DDX39A Regulate Androgen Receptor Splice Variant AR-V7 Generation. Biochem. Biophys. Res. Commun. 2017, 483, 271–276. [Google Scholar] [CrossRef]
- Evsyukova, I.; Bradrick, S.S.; Gregory, S.G.; Garcia-Blanco, M.A. Cleavage and Polyadenylation Specificity Factor 1 (CPSF1) Regulates Alternative Splicing of Interleukin 7 Receptor (IL7R) Exon 6. RNA 2013, 19, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Lundström, W.; Highfill, S.; Walsh, S.T.R.; Beq, S.; Morse, E.; Kockum, I.; Alfredsson, L.; Olsson, T.; Hillert, J.; Mackall, C.L. Soluble IL7Rα Potentiates IL-7 Bioactivity and Promotes Autoimmunity. Proc. Natl. Acad. Sci. USA 2013, 110, E1761–E1770. [Google Scholar] [CrossRef]
- Gregory, S.G.; Schmidt, S.; Seth, P.; Oksenberg, J.R.; Hart, J.; Prokop, A.; Caillier, S.J.; Ban, M.; Goris, A.; Barcellos, L.F.; et al. Interleukin 7 Receptor α Chain ( IL7R ) Shows Allelic and Functional Association with Multiple Sclerosis. Nat. Genet. 2007, 39, 1083–1091. [Google Scholar] [CrossRef]
- The International Multiple Sclerosis Genetics Consortium. Risk Alleles for Multiple Sclerosis Identified by a Genomewide Study. N. Engl. J. Med. 2007, 357, 851–862. [Google Scholar] [CrossRef] [Green Version]
- Lundmark, F.; Duvefelt, K.; Iacobaeus, E.; Kockum, I.; Wallström, E.; Khademi, M.; Oturai, A.; Ryder, L.P.; Saarela, J.; Harbo, H.F.; et al. Variation in Interleukin 7 Receptor α Chain (IL7R) Influences Risk of Multiple Sclerosis. Nat. Genet. 2007, 39, 1108–1113. [Google Scholar] [CrossRef]
- Georgiev, P.; Charbonnier, L.-M.; Chatila, T.A. Regulatory T Cells: The Many Faces of Foxp3. J. Clin. Immunol. 2019, 39, 623–640. [Google Scholar] [CrossRef]
- Malcovati, L.; Stevenson, K.; Papaemmanuil, E.; Neuberg, D.; Bejar, R.; Boultwood, J.; Bowen, D.T.; Campbell, P.J.; Ebert, B.L.; Fenaux, P.; et al. SF3B1-Mutant MDS as a Distinct Disease Subtype: A Proposal from the International Working Group for the Prognosis of MDS. Blood 2020, 136, 157–170. [Google Scholar] [CrossRef]
- Haferlach, T.; Nagata, Y.; Grossmann, V.; Okuno, Y.; Bacher, U.; Nagae, G.; Schnittger, S.; Sanada, M.; Kon, A.; Alpermann, T.; et al. Landscape of Genetic Lesions in 944 Patients with Myelodysplastic Syndromes. Leukemia 2014, 28, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Papaemmanuil, E.; Cazzola, M.; Boultwood, J.; Malcovati, L.; Vyas, P.; Bowen, D.; Pellagatti, A.; Wainscoat, J.S.; Hellstrom-Lindberg, E.; Gambacorti-Passerini, C.; et al. Somatic SF3B1 Mutation in Myelodysplasia with Ring Sideroblasts. N. Engl. J. Med. 2011, 365, 1384–1395. [Google Scholar] [CrossRef] [Green Version]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Quesada, V.; Conde, L.; Villamor, N.; Ordóñez, G.R.; Jares, P.; Bassaganyas, L.; Ramsay, A.J.; Beà, S.; Pinyol, M.; Martínez-Trillos, A.; et al. Exome Sequencing Identifies Recurrent Mutations of the Splicing Factor SF3B1 Gene in Chronic Lymphocytic Leukemia. Nat. Genet. 2012, 44, 47–52. [Google Scholar] [CrossRef]
- Shiozawa, Y.; Malcovati, L.; Gallì, A.; Sato-Otsubo, A.; Kataoka, K.; Sato, Y.; Watatani, Y.; Suzuki, H.; Yoshizato, T.; Yoshida, K.; et al. Aberrant Splicing and Defective MRNA Production Induced by Somatic Spliceosome Mutations in Myelodysplasia. Nat. Commun. 2018, 9, 3649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darman, R.B.; Seiler, M.; Agrawal, A.A.; Lim, K.H.; Peng, S.; Aird, D.; Bailey, S.L.; Bhavsar, E.B.; Chan, B.; Colla, S.; et al. Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3′ Splice Site Selection through Use of a Different Branch Point. Cell Rep. 2015, 13, 1033–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Cánovas, J.L.; del Rio-Moreno, M.; García-Fernandez, H.; Jiménez-Vacas, J.M.; Moreno-Montilla, M.T.; Sánchez-Frias, M.E.; Amado, V.; L-López, F.; Fondevila, M.F.; Ciria, R.; et al. Splicing Factor SF3B1 Is Overexpressed and Implicated in the Aggressiveness and Survival of Hepatocellular Carcinoma. Cancer Lett. 2021, 496, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Cassina, M.; Cerqua, C.; Rossi, S.; Salviati, L.; Martini, A.; Clementi, M.; Trevisson, E. A Synonymous Splicing Mutation in the SF3B4 Gene Segregates in a Family with Highly Variable Nager Syndrome. Eur. J. Hum. Genet. 2017, 25, 371–375. [Google Scholar] [CrossRef] [Green Version]
Splicing Component | Alteration to Splicing Component | Outcome | Associated Disease | References |
---|---|---|---|---|
U1 snRNP | ||||
U1 snRNA | Aggregation in post mortem human brain and spinal cord | RNA processing defects | Alzheimer’s disease | [70] |
U1 snRNA | A→C somatic mutation at third position | Use of cryptic 5′SS | Chronic lymphocytic leukemia Hepatocellular carcinoma | [71] |
U1 snRNA | A→G somatic mutation at third position | Use of cryptic 5′SS | Sonic hedgehog medulloblastoma | [72] |
U1-70K | N40K isoform | Dominant-negative effect affecting the ability to assemble commitment complex | Alzheimer’s disease | [73] |
U1-70K | Alternative exon between exons 7 and 8 | Shorter transcript | Amyotrophic lateral sclerosis-oxidative stress (ALS-Ox) | [74] |
U2AF complex | ||||
U2AF1 | S34F/Y substitution | Promote exon skipping | Myelodysplastic syndrome | [75,76] |
U2AF1 | S34F substitution | Affects pre-mRNA processing of autophagy-related factor 7 | Myelodysplastic syndrome | [77] |
U2AF1 | Q157R substitution | Promote exon skipping | Myelodysplastic syndrome | [78] |
U2AF2 | SNP rs310445 (T→C) | Not specified | Pancreatic cancer | [79] |
U2AF2 | N196K substitution | Stabilization of open conformation; increases RNA-binding affinity | Acute myeloid leukemia | [80] |
U2AF2 | G301D substitution | Decreases RNA-binding affinity | Colon adenocarcinoma Castration-resistant prostate carcinoma | [80] |
DDX39B/UAP56 | SNP rs2523506 (C→T) | Decreases translation | Multiple sclerosis | [55] |
U2 snRNP | ||||
SF3A1 | SNP rs2074733 (T→C) | Not specified | Pancreatic cancer | [81] |
SF3B1 | K700E substitution | Disrupt branchpoint recognition and induces usage of cryptic 3′SS | Myelodysplastic syndrome-ring sideroblasts | [82] |
SF3B2 | Loss of function variants | Haploinsufficiency | Craniofacial microsomia | [83] |
SF3B4 | Loss of function variants | Haploinsufficiency | Nager syndrome | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagasawa, C.K.; Garcia-Blanco, M.A. Early Splicing Complexes and Human Disease. Int. J. Mol. Sci. 2023, 24, 11412. https://doi.org/10.3390/ijms241411412
Nagasawa CK, Garcia-Blanco MA. Early Splicing Complexes and Human Disease. International Journal of Molecular Sciences. 2023; 24(14):11412. https://doi.org/10.3390/ijms241411412
Chicago/Turabian StyleNagasawa, Chloe K., and Mariano A. Garcia-Blanco. 2023. "Early Splicing Complexes and Human Disease" International Journal of Molecular Sciences 24, no. 14: 11412. https://doi.org/10.3390/ijms241411412
APA StyleNagasawa, C. K., & Garcia-Blanco, M. A. (2023). Early Splicing Complexes and Human Disease. International Journal of Molecular Sciences, 24(14), 11412. https://doi.org/10.3390/ijms241411412